A Regret Analysis of MDP-RFTL: Proof of Theorem/I|

To bound the regret incurred by MDP-RFTL, we bound each term in Eq (3). We start with the first
term. We use the following lemma, which was first stated in [[17] and was also used by [33]].

Lemma 2. Forany T > 1 and any policy 7 it holds that
T

T
E[Y ri(sf.af)] =Y pf <2r+2.

t=1

~

—

Proof of Lemma[2]. Recall that |r:(s,a)| < 1, so we have | ), 7(s,a)r:(s,a)| < 1by Cauchy-
Schwarz inequality, since 7 (s, -) defines a probability distribution over actions. Also, recall that v]" is
the stationary distribution over states by following policy 7 and vf7, ; = vJ P™ forall t € [T]. We
have

T T
E[Y ri(sT,al)l =D of =Y > (7 (s) = viy(s) Y_ w(s,a)re(s,a)
t=1 t=1 t=1 seS acA
S IACETAD
t=1sesS

Now, notice that

17 (s) = v ()l

v PT — vt P71

IN

e v llvi_q — vstllt by Assumption 1

IA

t . .
e 7 |lvT —vil|li Dby repeating the argument ¢ — 1 more times

t
2e 7.

IN

Finally, we have that

T T

T T -t
Do lvf(s) —vh)lh <2) e
t=1 t=1

<201 +/ e~ )dt
0

=27+ 2,
which concludes the proof. O

We now bound the third term in (3). We use the following lemma, which bounds the difference of
two stationary distributions by the difference of the corresponding occupancy measures.

Lemma 3. Let v}, and v2, be two arbitrary stationary distributions over S. Let u' and p? be the
corresponding occupancy mesures. It holds that

lvse = V2l < llut = w2
Proof of Lemma 3}

||V;t - Vgt”l = Z |V;t(3) - Vs2t(5)|

seS

= Z| Zﬂl(&a) 7/“‘2(570’”

SES acA

<D0 lut(s.a) = 4 (s,0)]

seSacA
= [|u* = p?[lx.
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We are ready to bound the third term in (3).

Lemma 4. Let {s;,a;}L_, be the random sequence of state-action pairs generated by the policies
induced by occupancy measures { ™ }1_,. It holds that

t—1

T T T
> n—E lzft(st,at 1 < 226 s Zze‘gﬂu’”*g — pT e g
t=1 t=1

= t=16=0
Proof of Lemma[d] By the definition of p;, we have

Zpt Z (st at ] ZZ (s)) Z ' (s,a)r4(s,a)

t=1 t=1seS a€A
T
< v =
t=1

Now, recall that v, = vy P™ P™2...P™=1. We now bound ||} — v*||; for all ¢ € [T] as follows:
4 llve ™ = vt

<t = s+ ™ — g™y by Lemmaf]

— PR = P e —

TTt—1 Tt—1

[ S P LA

<e 7|t = vl A+ ™t — ™y by Assumption 1
IFDE T
e HEH G )+

<e Tt =i+ Z e Fllum= = e |,
which yields the desired claim. O

Combining Lemma 2] Lemmafd]and Eq (3)), we have arrived at the following bound on the regret:

T T t—1
R(T,7) < (2+2)+ Z T Z 226 = _|_ZZG ; P04 ||
t=1 t=1 t=1 60=0

To complete the proof, we want to bound the second and the third terms. For the second term
MaX,cA ,, Zthl (U™, re) — Zthl (u™, r4), since the reward functions are linear in £ and the set Ay
is convex, any algorithm for Online Linear Optimization, e.g., Online Gradient Ascent [45], ensures a
regret bound that is sublinear T'. However, this would yield an MDP-regret rate that depends linearly
on | S| x |A|.

Instead, by noticing that the feasible set of the LP, Ay, is a subset of the probability simplex AlSI1Al
we use RFTL and regularize using the negative entropy function. This will give us a rate that scales
as In( ), which is much more desirable than O(|S||A]). Notice that the algorithm does not
work with the set Ay, directly but with A,y 5 instead, this is because the negative entropy is not
Lipschitz over A ;. Working over Ay s is the key to being able to bound the third term in the regret
decomposition. Formally, we have the following result.

Lemma 5. Let {y;}1_, be the iterates of MDP-RFTL, then it holds that

T

T
max (re,py < (re, p™ 1) + —  max [R - R .
/’LEAI\/I,(St ¢ Z s n M17N2€A1\/16[ (Ml) (’UQ)]

Proof of Lemmal[5] Define f; = (u,r;) and fF £ f,(u) — %R(,u) forallt =1,..,T. We first prove
by induction that

7"1+1

HM’%

T
max g ftR
'U’GAM’Jt*I
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The base case T' = 1 is trivial by the definition of ;1™2. Suppose the claim holds for 7" — 1. For all
i € Apr,s, we have that

}:ﬂ ) <

Mﬂ

SE ()

“
Il
-

max th +fR (p™T+1)

#GAM 5 =

T-1
< ZfR mer1) 4 fR(y7T+1) by induction hyposthesis
t=1

T
=) flwm).
1

t=
The lemma follows by plugging back in the definition of ff and rearranging terms. O

Lemma 6. Let {1}, be the iterates of MDP-RFTL, it holds that

2n
= e < 3 (14 26)

Proof of Lemmal6] Let J(p) = 22:1 [(u, re) — %R(u)} . Since R is the negative entropy we know
it is 1- strongly convex with respect to norm || - ||1, thus J is %—strongly concave. By strong concavity
we have

t
Sl = R S T () = () + (9 (), ),
n

Since p™++1 is the optimizer of J the optimality condition states that (V,,J (u™+1), p™ — p™+1) < 0.
Plugging back in the definition of J we have that

t s T
%W““—MW?

<2 [roan - ] -3 fows - )

1
=3 (o) = SR
6=1 N

H\Qb
>—l>~
Pﬁ%
)—‘H

(™) = 2 R

0=1
1 1
+ (re, ™) — ;R(u”“) — (o, u™) + ER(MW")
1 1
< g, () — —R(u™ ) — (rg, ™) + —R(u™) by definition of ™
n n
1 1
< lrllool|pt™ — ™+ ||y + =R(p™) — —R(u™**) by Cauchy-Schwarz inequality
n n
g g G i s . . . .
<l — gy 4 =2 || — |y Since R is G- Lipschitz.
n
By rearranging terms, we get
2n
el < 23 (14 26)
O

Notice that by Lemma [ we will need the regularizer R to be Lipschitz continuous with respect to
norm || - ||;. Unfortunately, the negative entropy function is not Lipschitz continuous over Ay, so
we will force the algorithm to play in a shrunk set Ay 5.
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Lemma 7. Let As = {z € R? : |z|ly = lL,a; > 6 Vi = 1,..,d}. The function

R(z) £ Zle x; In(x;) is Gr-Lipschitz continuous with respect to || - ||1 over As with Ggr =

max{|In(d)|,1}.

Proof of Lemma(7] We want to find G > 0 such that |[VR(z)||cc < G forall z € As. Notice
that [VR(z)]; = 1+1n(x;) fori = 1, ...d. Moreover, since forevery i = 1,...,d wehave § < z; < 1
the following sequence of inequalities hold: In(d) < 1 + In(d) < 1 + In(z;) < 1. It follows that

Gr = max{|1n(d)|,1}. O

The next lemma quantifies the loss in the regret due to playing in the shrunk set.

Lemma 8. It holds that

T T

ma re, ) < ma re, 1) + 20T (|S]|A] — 1) .
e Do) < e i) + 297 (11141 - 1)

Proof of Lemma[8] Given z* € A C R?, define 2} £ argmin.ea, ||z — 2*||1, with § < 3. It holds
that ||z — 2*[[; < 26(d — 1). To see why the previous is true, choose z* = [1;0;0;...;0;0]. Tt is
easily verified that z; = [1 — §(d — 1);6;65...;6,0] and ||2* — 2,[|1 = 26(d — 1). Because of the
previous argument, if p* € argmax,ca,, ZtT:1<rt, p) and g is its || - [|; projection onto the set
Aprs then ||p* — prlly < 20(|S[|A] = 1). The claim then follows since each function (ry, u1) is
1-Lipschitz continuous with respect to || - ||1.

O

Given that we know the iterates of MDP-RFTL are close by Lemma [f] we can bound the last term in
our regret bound

Lemma 9. It holds that
T t—1

1
Z?e TAY Y e - ”t<9+1>|1s2<1+f>+2n(1+nGR) (1+In(T))(147).

t=1 60=0

Proof of Lemma(9] We first bound the first term

o0 x—1
226 F < 1+/ e T dr) <201+ 7).
1

We now bound the second term, let o = 27 (1 + %G R). We have that

T -1 T t—1
2] A
YN e e = a3 Y e
t=1 0=0 t=1 6=0
r T T-1 T-2
0 1 2
=ale ?E 1/t+e E 1/t+e = E 1/t + ...
t=1 t=1 t=1

T T

B T
<a e*%Zl/t+e*521/t+e*521/t+...

t=1 t=1 t=1

T
since E

§1+ln (T)

ﬂ \
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We are now ready to prove Theorem T}

Proof of Theorem(I] Combining Eq (3), Lemma 2] Lemmafd]and Lemmal[9} we have

sup R(T, )
mell
T T t-1
[}
< (2742)+ maXZu o) Z Ty 223*7+Zze*;|mm 0T+ |
t=1 t=1 t=10=0
d 1
< A(r+1)+ w420 | 1+4=G 1+In(T))(147). 10
- Wrga@Zu =3 | #20 (141G ) (D) 14 (10)
The second term in Eq (I0) is bounded by
T T
Trnelgjj(w 1<,LL ,7’0*2(# 7Tt>
t=1
T T
< ma Tore)— Tt ry)+20T (|S]|A]—1) Lemmalg]
< max 3 (WTre) =) (W) (1S114]-1)

T T
T
< Tt41 _ 7Tf —_ — —
<) =D ) e [R(u) = R(a) 4207 (1S]]4]=1) Lemmal§
a T
< E (u’”“,rt)—g (;/”,rt)—&—gln(\S||A|)+26T(\S||A|—1) by choice of function R

T
< Z ll7¢ ] oo | ™+ — ™ ”H_E In(|S||A|)+26T (|S||A|—1) by Cauchy-Schwarz inequality

T
2n 1 T
< Z (1+77GR> +E In(|S||A])+26T (|S||A]—1) by Lemmalg|

[\

1 T
<2n (1+77GR> (1+ln(T))+Eln(|S|\A|)+26T(|S||A|—1).
Plugging this result into Eq (T0), we get

sup R(T, ) < 4(r +1) + 20(1 + GR)(l +In(T)) + %ln(\SHAD
+ 26T (|S||A] — 1) + 2n(1 + %GR)(l +In(7))(1+7)
<A(r+1) +4dn(1+ %GR)(l In(T))(1+ 1) + %mqsum) + 28T (S|4 - 1)
-0 (T + 4y/TTI(S[[A) In(T) + v/~ In(]S|[A]) + e_£T|S||A|) .

v
The proof is completed by choosing n = 4/ w and 0 = e V7, and using the fact that
Gr < max{|In(d)|,1}. O



B Proof of Theorem 2

Using Lemma 2] and Lemma[d]in Appendix [A] we can obtain a bound on ®-MDP-Regret as follows.

T T T T
max R <E|(2742 +max — r¢(se, a
e (m,T) ( ) [Zpt ;Pt Z:Pt ; t\St, At H
T
=E |(274+2)+| max Z W) Z ®0. Zpt— Zrt ¢, at)]
HEAN s v t=1
T T t— 5
SE 2(27+2 max Z ,U/,Tt Z (I)G, Tt ZZ@ 71— @91 i ,u/égt(i+1)|1‘|‘| .
Alrs 121 t=1 t=1 i=0
Let ; be a solution to the following optimization problem:
t—1
max (e, ) + lR‘s(u)
beo Fafs n
st pu= o0
ZZusa (8'|s,a) = Zﬂ(s’,a) vs' e S
s€S acA a€A
> 3wt =1
seSacA

wu(s,a) >0 Vse S Vae A

Since {®0; }1_, represents the iterates of RFTL, we can use the regret guarantee of RFTL to bound
o Ztll(u, re) — ZtT=1<Hq>6Z ,r¢). Notice also that u®% = ®6F as 6; satisfies all the
constraints that ensure 6} is an occupancy measure.

maXueA

In the remainder of the proof, we want to show that the occupancy measures ;% induced by our

algorithm’s iterates B0, are close to 1®% . The rest of the analysis is to prove that ||u®% — uq’ét Il is
small. Notice that using the triangle inequality, we can upper bound this distance by

6% — p® |y < [ = Pag, (@001 + | Pax, , (@0,) = DGy]|x + |90, — ™|

M,5 M,
= ||©6; — Paz, (900)]1 + [|Pas,  (20,) — @6,y + (| @6, — p*" 1.
To bound the last term, the following lemma from [3[] will be useful. It relates a vector @6 which is
almost feasible with its occupancy measure.

Lemma 10. [Lemma 2 in [3]] Let u € RISIAl be a vector. Let N be the set of entries (s, a) where
u(s,a) < 0. Assume

Z u(s,a) =1, Z lu(s,a)| <€, |u"(P—-B)| <€
(s,a) (s,a)eN
Vector [u] 4 /||[u]+]|1 defines a policy, which in turn defines a stationary distribution p*. It holds that

1
™ — w1 <Tln( -)(2€" +€") + 3¢€'.

Suppose we are given a vector ®0; such that ||[<I>§t](57_)||1 < ¢ and ||(®0,)T (P — B)||; < ¢€".
In view of Lemma and the fact that ||[®0,]_||; < ||[<I>9~t](57,)||1 < €, we have a bound on
| ®6; — 1*%|,. The next lemma shows that we can also obtain a bound on [ Pas, (®6;) — DO, |;.

Lemma 11. Let &0, be a vector such that ||[<I>9~](57_) |y < ¢ and ||(®0)T (P — B)||1 < € for some
€, > 0. It holds that

IPag, ,(@0) = 90,y < cf¢ +¢"),

where c is a bound on the l, norm of the Lagrange multipliers of certain linear programming
problem.
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Proof. The idea comes from sensitivity analysis in Linear Programming (LP) (see for example [36]).
Consider the [y projection problem of ®6; onto the set of occupancy measures parametrized by ®

meinllu*@élll

st u= oo
p'l1=1
=0
p'(P-B)=0
6co.

It can be reforumulated as the following LP

Primal 1:

u(s,a) + [®0](s,a) > [®0](s,a)
= o0

p'1=1

p=>0

p'(P—B)=

9> W Vi=1,..d

0(i)>0 Vi=1,...d

Let us now consider the perturbed problem ‘Primal 2’ which arises by perturbing the right hand side

vector of ‘Primal 1°:

Primal 2: min (z:) u(s,a)

s.t u(s,a) — [PO](s,a) > —[PO](s,a)
u(s,a) + [®0](s,a) > [®6](s, a)
uw= o0
p'1=1
w>d0+a
pl(P=B)=b

—0(i)>-W Vi=1,...d
0(i) >0 Vi=1,..d

We choose perturbation vectors &,l; such that the optimal value of ‘ Primal 2’ is zero is 0. Let b
be the right hand side vector of ‘Primal 1’ and b’ £ b — £ be that of ‘Primal 2’ for some vector £.
Since by assumption we have that || [<I>9~](57_) |1 < ¢ and ||(®0)T (P — B)||; < ¢’ then it holds that
[Ib—0b|l1 = ||¢]l1 < € + €’. Let ‘Opt. Primal 1’ and ‘Opt. Primal 2’ be the optimal value of the
respective problems (‘Opt. Primal 2’ = 0 by construction) and let A\* be the vector of optimal dual
variables of ‘Dual 1°, the problem dual to ‘Primal 1°. Since by assumption, the feasible set of ‘Primal
1’ is feasible, then the absolute value of the entries of A\* is bounded by some constant c.

Now, since A* is feasible for ‘Dual 2’, the following sequence of inequalities hold:

‘Opt. Primal 2’
<= ‘Opt. Primal 2’

>(\)T(b-¢)

> ‘Opt. Primal 1’ — (\*) €.

18



Therefore,
‘Opt. Primal 1’ < ‘Opt. Primal 2” + ||A*|| 0o [|€ | 0o
= 0+ [N [lsc i€l
< c( +¢€),
which yields the result. O
Now, we proceed to bound || P85 — Pas, (®6;)||1. Consider the function

t

1
Fy(®0) £ "[(r;, 90) — 536@9)}. (11)
i=1
Since R? is strongly convex over A%, s with respect to || - |1 (but not everywhere over the reals as
the extension uses a linear function), we have that I} is %-strongly concave with respect to || - ||1 over

A% s+ With this in mind, we can prove the following result.

Lemma 12. Let &0, be a vector such that ||[<I>§t+1](5’,)||1 < ¢ and ||(®,41)T (P — B)||; < ¢”
for some € ;" > 0. Let "' be such that Fy(®07, ;) — Fy(®0;11) < €. And let G, be the Lipschitz
constant of F; with respect to norm || - ||1 over the set A‘}CL s It holds that

~ 2
907, Pyg, @in)lh < | 22 + Grele + 7).

M,s

Proof. Since Fy is 1 -strongly concave over Af; ; and ®0;, , is the optimizer of I, over Afy ;. It
holds that

51007, = ¥ |} < F(®6;,1) — Fo(Pag, (96110))
< Fy(®07,,) — F(®0,41) + Gr, ||PA§M(<D9~H1) — ®0;41[h
<" +Gp, ||PA}ICM (®0;41) — ®0; 1|1 by assumption
<"+ Grc(e +€') by Lemmal[Tl)
which yields the result. O

The next lemma bounds the Lipschitz constant G, .

Lemma 13. Lern = /L, 6 = e VT, The function Fy(p) : RISIA — R is Gp,-Lipschitz
continuous on variables (i with respect to norm || - ||y over AY; 5 with Gp, < t(1 4 2y/7 In(dW)).

Proof. It suffices to find a an upper bound for ||V, Fi(i)||co. Since V,Fi(pn) = Zle Ty —
%V#R‘s (), we have that

t
t . . .
IV (i)l < 11D milloo + VB (0)lloc by riangle inequality
i=1
t
<t 5\\V;LR§(M)HO<> since (s, a)| <1
t
<t 4 —max{|1 +1n(d)|, |1 +In(dW)|} as in the proof of Lemmal[7].
n

The second to last inequality holds since |-&z In(z)| = |1 + In(x)| and the maximum will occur at
x = dorz = [DI|(s,a), [PI](s,a) can be bounded by Wd. Plugging in the values for n and § we
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get

IVuFi(i) oo < t+ —= (1 + max{VT, n(dW)})

ﬁ

<t+ ﬁ@f In(dW))

=t(1 4 2y/7In(dW)).

Combining the previous three lemmas, we obtain the following result.

Lemma 14. Let ®0,, be a vector such that ||[<I>0~t+1](57_)||1 < ¢ and ||(®0y41)T (P — B)||1 < ¢’
for some € ;€ > 0. Let "' be such that Fy(®0},,) — Fy(®0;11) < €. And let GF, be the Lipschitz
constant Of F, with respect to norm || - ||1 over the set A%, 15 It holds that

27](

. 1
1120 — 20|, < TIn(5)(2€ +€") + 3¢ + (¢ + ) + \/t ¢ + Grc(e +¢")).

Proof. By triangle inequality, we have

% — u®0 ||y < || BOF — Pre

M,s

(@00)[11 + | Pag, , (®0:) — ®Oil1 + |0, - i

Using Lemmas|[I0] [T1] and[I2]to bound the first, second, and third terms respectively yields the result.
O

Now we can upper bound the bound on the ®-MDP-Regret, Eq (T1)), using triangle inequality and
Lemma. 4] For the bound to be useful we want to be able to produce vectors {<I>6‘t}t 1 that satisfy
the conditions of Lemma.w1th €', €”, €' that are small enough. It is also important that we produce
{<I>9t}t:1 in a computationally efﬁment manner. At time ¢, our approach to generate ®6,, will be to
run Projected Stochastic Gradient Descent on function[7] The following theorem from [3]] will be
useful.

Theorem 3 (Theorem 3 in [3]]). Let Z C R be a convex set such thati( zllo < Z forall z € Z
for some Z > 0. Let f be a concave function defined over Z. Let {z};-_ | € “Z7T be the iterates
of Projected Stochastic Gradient Ascent, i.e. 211 < Pz(xy + nf]) where Pz is the euclidean
projection onto Z, 1 is the step-size and { fi}£_, are such that E[f{|2x] = V f(zx) with || fi|l2 < F
for some F' > 0. Then, for n = (F\Z/?) forall k € (0,1), with probability at least 1 — k it holds that

max f(2) — (o =

1 K ZF (1+422K) (2In(L) + dIn(1 + £K))
Do) < ﬁ+\/ —
2€2 k=1 K

In view of Theorem we need to design a stochastic subgradient for ¢**7 and a bound for its I-2 norm.
We follow the approach in [3]], we notice however that the objective function considered in [3]] does
not contain the regularizer R° so must take care of that in our analysis.

Lemma creates a stochastic subgradient for ¢ and provides an upper bound for its [-2 norm. We
now present its proof.

Proof of Lemmall] Let us first compute V¢ (). Define 7 =S 2221 r; By definition we have

P (O) = (20) Ty — — Z R{, o) (®0) — Hy|[[®0](s,—)lln — He[|(P — B) " 961
M (sa)
=0T (®ry) —fZR(M) HtZ@(Sa) 0], HtZ| (P —B)T®],.0].
(s a) (s,a)
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So, we get

t
Voc(0) = @ = 3 VoRy, ) (26)
(s,a)
— Hy Y =P (0 {000 < 8} — Hy Y _[(P — B)T @], sign([(P — B) @],.0).

(s,a) s

We design a stochastic subgradient g of Vyc!(#) by sampling a state-action pair (s’, a’) from the
given distribution ¢; and a state s” from distribution go. Then, we have

H
T t
s’ ,a’,s" (9) =0 T.¢ + 7(]1(8/,(1,/) (I)(s’,a’),:]l{q)(s’,a’),: S 5}
H, T . T
— ——F[(P—B) ®|g. P-B <I>gu:077VR D0).
QQ(SH)[( ) } PS’Lng([( ) ] ) ) 7](]1(5/7(1) 015 a)( )

We will also give a closed form expression of VgR?S,’a,)@)G) in the proof below. By con-
struction, it holds that E(y 4/)wq, s7ngs [9s7,ar,s7 (0)]0] = Vgc"(#). To simplify notation, let
9(0) = g5 0,57 (6).

We now bound ||g(6)||2 with probability 1. First, we have

d
[T rlle = | D (r]®.4)?
i=1
d
< Z(Hr:t||oo||q)ui”1)2 by Cauchy-Schwarz
i=1
< Vdt21 = tVd,

where the last inequality holds since ||7;||oc < 1fort = 1,...,T and each column of ® is a probability
distribution. Next, we have

‘ H,
o (s a')
where C; and Cs are defined in @) Finally, we bound |\V9R(S a)(@0)]|2. By definition of R((Ss,a) in

Eq we need to compute the gradients of the negative entropy function Vo R(®8). Let us compute
%R((I)G) as follows.

< H;C7, and

)" s sign([(P — B)T(I)]s”,:e) < H,Cs,

2

dvR (®0) (Z) 7 — Rs.a)(90)

-> %

(s, a)

d
_qu)(sa kgkr 7lnz(b(sa)k9k +lnzq}sa)k9k <I)(:;a)z
k=1

Z D (5,0),10k) In Z D), 10k)

k=1

(s,a)
d & d
= Z Z‘I’(s B P E— 70, (Z D (5,0),00k) + hl(z D (5,0),k01)P(s,a),i
(s,a) Zk 1 (I)(G a)ak b k=1 k=1
- z:q)sa)7 +1n Z(I)sa kok (I)(sa e
(s,a)
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We are also interested in the gradient of the linear extension of R(s 4)(2): R(s,4)(8)+ = R 4)(8) (2 —
d) which is equal to §In(d) + (1 + In(d))(x — §). So we upper bound |%m51n(5) + (1 +
n(0))(®s,a),:6/ — 9)| by

(0) + (1 +(0))(P(s,a),:60 — 9]

d

=g (L 10(6)) (@10 — 0)
=|(1 4 In(6)) @ (s,a),il-

It follows that

||v9R((ss,a)(<I’9) ”2

d T d 2\ 1/2
< Z max{(I)(sﬂ),i + In(W Z (I)(s,a),k)q)(s,a),ia I(1+ 111(5))(1)(37,1)71'}]
i=1 L k=1
da T d 2\ /2
<> (1—&-max{ln(WZ(I)(s’a)’k),|ln(6)|}<1>(s’a)ﬂ-]
i=1 L k=1
J 1/2
< (Z [(1 + max{In(Wd), | 1n(5)}<1>(3,a),i]2>
i=1
<(1+ 1H(Wd) + [ ()P (s,a),: l2-
Thus, we have || - V9R5 an(@0)]|2 < %(1+1n(Wd)+| In(4)|)C}. Using triangle inequality,

we have that Wlth probab111ty 1

1g(0) 1> < tV/d+ H(Cy + Ca) + %(1 + In(Wd) + | In(8)])Ch.

O

By using Lemmall] as well as the fact that § € © and ||6||> < d||f]|s implies [|0]|> < W, we can
prove the following.
Lemma 15. Forallt = 1,...,T, n > 0, k € (0,1), after running K (t) iterations of Projected

Stochastic Gradient Ascent on function c*(6) over the set ©F and using step-size \;(E(ZG/ with

G' = tVd+ Hy(Cy + Co) + %(1 +1In(Wd) + | In(6)|)Cy with probability at least 1 — & it holds that

t

M [CRMEE W]

i=1

- [Z [< ho) ;R‘S(@ém)} CH(@6,)T(P — B[y — Hil|[ @15

i=1

\f WG’ (14 4dW2K (t))(21In(

<Txm

Proof. The proof follows from applying Theoreml on function ¢”*(#). Using the bound of the
stochastic gradients from Lemmal|l| as well as the fact that maxgcge ¢*(6) > ¢"*(0;, ) and since

®Y;, , is feasible, we have ||(®0; )" (P — B)|l1 = 0 and ||[®6;,,](5,—)[1 = 0. O

) + dIn(1 4 DKWL)
7 .

K(iP

We remark that we did not relax the constraint (®6) "1 = 1 and in fact when we use Projected
Gradient Ascent we are projecting onto a subset of that hyperplane, although ® has |S||A| rows we
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can precompute the vector ® "1 € RY so that all projections to the subset of the hyper plane given by
(®0) "1 = 1 can be done in O(poly(d)) time.

The next lemma bounds the largest difference the function F;(®6) can take over § € ©%. It will be
clear later why this bound is needed.

Lemma 16. Forallt = 1,...,T. It holds that

1
max  F,(00) — Fy(00,) < ¢ {2 + 1n(S|A|)] .
01,00€0® n

Proof. By definition of F} it suffices to bound
t
t
> (ri, @0, — ©) + ; [R%(90,) — R°(96,)] .
i=1

Now, we have
t t
> (ri, @01 — ®3) <> [|rifloo |61 — P61 By Cauchy-Schwarz

i=1 i=1

t
<> 16, — 26,1

=1

t
< Z |®6:]]1 + ||®O2]|1 by triangle inequality
i=1
< 2t,

where the last inequality holds since all entries of ® and 6 are nonnegative, and (®0) "1 = 1 for all
RO

It is well known that the minimizer of R(u) for u € AlSI14lis —1n(|S||A]). Moreover, its optimal
solution p* is equal to the vector with value 1/(]S||A|) on each of its entries, which is of course
in the interior of the simplex. Notice that since R? is an extension of R, if § is sufficiently small

(which we ensure by the choice of § later in the analysis), the minimizer of R?(®6) for § € ©F will
be bounded below by — In(|S||A]). That is

—1In(|S||A]) £ min R°(®0).
0co?®

We upper bound maxgcge R°(®6). By construction R (@) < R(®0) forall 0 < 0 € ©. Since
6 > 0,17 ®H = 1 defines the set © and P has probability distributions as its columns it holds that
R(®0) <0, thus R5(<I>0) < 0. We have shown that

t

> (ri, @0, — ©5) + % [RO(205) — R°(®6)] < 2t + % [In(]S||A])]
i=1

which finishes the proof. O

Lemma [14] assumes we have at our disposal a vector ®@,,; such that || [@étﬂ](&,) i < € and

[(@0:41) T (P — B)|ly < ¢”, and Fy(®0; 1) — Fy(®0;41) < € for some ¢, ¢”, " > 0. We now
show how to obtain such error bounds by running at each time step ¢, K (¢) iterations of PSGA and
using Lemma([I5]

Lemma 17. Fort =1,...,T, let b ) the right hand side of the equation in the bound of Lemma

and assume the same conditions hold. After K (t) iterations of PSGA, with probability at least 1 — K,
it holds that

~ 1 1
1901l ll < g (b + 2+ S s

t n

~ 1 1
I(06,52)T(P = B)ls < - b+ 2+ (811D

Fy(®0;,,) — Fy(®0i11) < b
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Proof. To show the first two inequalities, notice that Lemma [T5]implies
Hy||[®0111)(5,—) + Hill(90151) T (P = B) |l < biery + Fo(@0,41) — Fi(D6],,)

1
< by 41 [2 ; nln('S“A')} ,

where the last inequality holds by Lemma Since || - || > 0 we get the desired results. To show
that Fy (907, ) — Fi(P0s41) < b (y) again use Lemma and the fact that || - ||; > 0.

O
We are ready to prove the main theorem from this section.

Proof of Theorem[Z] Recall the ®-MDP-Regret regret bound from Equation[T1]

max R(m,T)
Tell®

S ]EPSGA[(4T + 4)

t—1

T T T i
+ [ max S (re) = D (u )]+ D Y e F|pt = pPle |]),
HEAT, e}

M6 t=1 t=114

I
=

Since it is cumbersome to work with the Epg 4[-] in our bounds let us make the following argument.

Fort = 1,..., T, define &; be the event that the inequality in Lemma|15|holds, let £ = N_, &;. For
any random variable X we know that Epsga[X] = Epsga X |E]P(E) + Epsca X |EC|P(E°). Let
us work conditioned on the event £, we will later bound Epsga[X |E€]P(E°).

By triangle inequality, Cauchy-Schwarz inequality, and the fact ||7||oc < 1fort =1,...,T), it holds
that

T T
max Z 1y Tt Z cwt ) < max Z s Tt) ZW@O::TQ + Z ||H<I>0: - N(I)étHL
t=1 t=1

REAT s 41 REATLs 1 =1

~

Notice that
0 — ot |

el e e e ] ¢

Therefore, we have

max R(m,T)
mell®
T T T t—i
<2(274+2)+ | max (,7e) Z ®0; T ZZG ||,U¢’9:’i - N(WT ““)”1]
IJ’GAM 5 =1 t=1 t=1 i=0
T ~ T t—i B -
+ Z HM@?: _ N(betHl + Zze—é (Hu‘i’&ﬂ: _ M@G;linl + ||M<I>0t7(i+1) _ ,u@gti(ﬁl)”l)
t=1 t=1 =0

<0 <T +4VTT In(T) + V7T In(|S||A]) + 6’ﬁT\S||A|)

T t—1
D % = %+ ZZe (i A TR A R T
t=1 t=1 i=0

where the second inequality follows from the proof of Theorem [T]since we chose the same parameters

n= ﬁ,éze_ﬁ.
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If we choose K (t) such that ||u®% — ;%% ||y are less than or equal to a constant e(¢}, ¢/, ¢/, K (t))
forallt =1,...,T we have

T : T
PSRN TS
t=1 t=1

—1 i=

t_i . ~
e (Huq’e‘” — pPi
0

L e — e )

o
< Te+2Te(1 +/ e~ 7o)
0
<Te+2Te(1+7)
=TA+2(1+7))e
We have that

max R(m,T) < O (T + 4V7TIn(T) + V7T In(|S||A]) + e=VTT|S||A| + Tn) .

Tell®

Lete, = ¢ = H% [bK(t) + 2+ %ln(|5||A\)]} €' = bg (). By Lemma we have that

1 2
e <7In(5)(2¢ +€") 4+ 3¢ +c(e +€") + \/tn(e’” + Gpc(e +¢€)).
€

By Lemma 13| we know that G, < ¢(1 + 2,/7 In(dWW)) so that

e < Tln(é)@e' +€")+ 3¢ +c(e +€")+ \/2\\;?(6/” + [l 4+ 2y/T In(dW)](¢ + €")),

where we plugged in the value for n It is easy to see that the right hand side of the last in-
equality bounded above by O(7 In(2 )T /4c\/dW (€' + €’ + €”)). So that forcing all €, €”, ¢
to be O(w) will ensure T'7e to be O(ev7T) ensuring that max,cpe R(m,T) <

O(evrT In(T) In(|S]|A]))-
Since ¢ = € = g-bg ) + 12+ g t‘f In(|S||A|) we choose H; = +/dWtr>T3/*, this ensures

that 712+ -1 Y% VT vz In(|S||A[) are bounded above by O(

that EbK o) and e;” are both O( \/W7-3/2T3/4) Since by the choice of H; we have H%bK(t) < bk
it suffices to bound b ().

W) We now must choose K (t) so

Setk = % in Lemmaand recall we are working conditioned on £, we have that forallt =1, ..., T

VAW tV/d + Hy(Cr + C2) + £(1+ In(Wd) + | In(6)[)Cy
K(t)
\/(1 +4dW2K (1)) (21n(L) + dIn(1 + LKD)

i K (1)?

WtdH(Cy + Co)VT+/TIn(WTd) )

VTVE(D)
Wt2d(Cy + Co) 7%/ 2T3/4 In(WTd) )
K(t)

K(t) =

o(

= O(

Setting
Wt2d(Cy + Co)T°/2T3/*In(WTd) 1
K(t) VAW r3/2T3/4
and solving for K (t), we get that K (t) = [W3/2¢2d3/274(Cy + Co)T?/? In(WTd)] ?_ which en-
sures bK(t) = O(W)

25



By the choice of « in Lemma we have that for each ¢ = 1, ..., T" with probability at least 1 — %,
[|1®% — p®%||y < O(VAW —577777 ). This implies that

®-MDP-Regret

< O(eVTT In(T) In(|S||A])) P(€)

T
O <7’ +4v7T In(T) + V7T In(|S||4]) + e_ﬁT\SHA| + Z ||'u‘1>9t* _ M<I>9t|1>

t=1

+ P(£°)

Notice that since £®% , and p®% are probability distributions then ||z®% — 1 ®% ||, < 2. So that
®-MDP-Regret < O(cvV7T In(T) In(|S||4])) + O(T)P(E°)
where we upper bounded P(€) with 1. Notice that by the choice of x, P(£¢) = P(UL_,&Ef) <
2321 P(&f) < 7 so that O(T)P(€¢) = O(1). This completes the proof.
O

C Bounding the problem dependent constant in Theorem 2]

Consider the LP formulation of the [; projection problem of ®6 onto A‘}C/L 5

rg’iun(sz:a)u(s,a)

st u(s,a) — [®0](s,a) > —[®0](s,a), wu(s,a)+ [®](s,a) > [®O)(s,a),
p==®0, p'1=1, pu>6 pn (P-B)>0, —u (P-B)>0
9> W, 0()>0 Yi=1,..d.

Fix any state action pair (s’,a’) € S x A and change the constraint p(s’,a’) > § for u(s',a’) >
d + 7sr,ar- Let 0bj (Vs o/) be the optimal value of the above LP with the constraint is replaced by
wu(s',a’) > 6 + e .q. Let u*(7ys,q/) be the optimal solution to this problem. Let 7, o be the
maximum value of 7y, 4/ such that the LP above is feasible.

Some remarks are in order. First, for any v, o € [0,%s 4], it holds that 0bj(7s 4/) > 0. Second,
0bj(7ys’.q’) is a convex and increasing function in v, /. Third, a subgradient of 0bj (s o) is given
by the optimal dual variable associated with the constraint /(s’,a’) > § + vy 4. Let us call this
optimal dual variable \*(vs /). Since the above LP’s objective is equivalent to ||z — ®8]|1, using
triangle inequality we have that 007 (s/.a/) < ||tt* (Fsr.ar )|l + | @0]] < 14 || @O < 2, where the
last inequality holds since ($6)T1 = 1.

We are ready to upper bound A*(0) which is the subgradient of 0bj(vs /) for s o = 0. Since

obj(7) is an increasing function, we can upper bound A*(0) with the slope of the line that passes

003 (37,1) =0bi (0)
Vs’ ,a! ’

through the points (0, 0bj(0)) and (Fs 47, 007 (Fs'.a’)). The slope of this line is
have that

N(0) < Ob](’Ys’,iz') — 0bj(0) < 2 iob](O) < 2 7
Vs’ ,a! Vs’ ,a’ Vs’ ,a’
where the last inequality holds since || - |1 > 0.

Let us now discuss in more detail the quantity 4, .. It turns out to be problem-dependent. For
example, consider an MDP such that regardless of the action chosen by the player, it transitions to
any state with equal probability and there is only one action at each state, then 7,/ o = ﬁ Thus,

the bound for cg 4 becomes c¢g 4 < 2|.S|, which depends linearly on |.S|. Consider another example:
suppose the MDP is such that for any state, there exists an action that allows us to remain in that state
with probability 1 (a concrete case is the Markovian multi-armed bandit problem with the “retirement”
option, see Whittle [41], Weber [40]). This implies that we can make the occupancy measure equal to
a vector consisting of zeros of dimension |S||A| with a 1 on any desired entry. Then, the analysis
above shows that ¥y o = 1.
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