- We thank the reviewers for their time and their reviews. We address the questions below.
- 2 Ambiguities beyond flips and rotations (R3) As pointed out by R3, the albedo of the hidden scene is fundamentally
- 3 ambiguous, as any intensity can be compensated by a reciprocal intensity in the transport matrix. To anchor the solution
- 4 colors, we use the common "gray world assumption", and impose it by a simple chromaticity prior that discourages
- 5 large differences between color channels. The color of the observed scene can therefore tint the colors of the hidden
- 6 scene solution.
- 7 The space of ambiguities and potential distortions can be characterized as follows (see Koenderink et al., The Generic
- 8 Bilinear Calibration-Estimation Problem). Let T_0 and L_0 be the true underlying factors, the observed video thus being
- 9 $Z = T_0 L_0$. All "valid" factorizations are of the form $T = T_0 A^{\dagger}$ and $L = A L_0$, where A is chosen (almost) arbitrarily
- and A^{\dagger} is its (pseudo)inverse. This can be seen by substituting $TL = (T_0 A^{\dagger})(AL_0) = T_0 (A^{\dagger} A)L_0 = T_0 L_0 = Z$.
- The result of any factorization implicitly corresponds to some choice of A and A^{\dagger} . In simple cases, the matrix A can
- represent e.g. a permutation that flips the image, whence A^{\dagger} is a flip that restores the original orientation: this case is
- 13 illustrated in Figure 4's conversely flipped matrices. They can also represent complementary color transformations
- as discussed above. However, for classical factorization methods, they tend to consist of unstructured "noise" that
- scrambles the image-like structure in T_0 and L_0 beyond recognition.
- Our finding in the paper is that via DIP-based factorization, these transformations instead tend to express continuous and
- bijective image warps (and color modulations) that preserve the general image structure. As observed by R3, this does
- in practice include more complex distortions than just flips and rotations —- see for example the nonlinear stretching of
- the cameraman image in Figure 4. In full two dimensions, there is room for more complex distortions, but we still find
- 20 that e.g. the relative motions of independent objects often remain readable.
- Geometric complexity (R3) We assume that the scene contains a sufficient amount of geometric complexity to
- 22 generate high-frequency features like shadows. This improves the conditioning of the problem, as discussed in the
- 23 literature on frequency analysis of light transport effects (see e.g. A Theory of Locally Linear Light Transport by
- Mahajan et al.). We will emphasize this in the revised paper.
- 25 Comparisons to previous methods (R4) To our knowledge, no existing work attempts to solve the problem under a
- 26 similarly general setup, with no assumptions about the shapes viewed in the scene. Attempts to use standard factorization
- 27 methods consistently produce unstructured and scrambled results, analogous to the baselines in Figure 4. An example is
- seen in the supplemental video, where an SVD factorization is visualized at time 2:00 2:09.
- 29 To provide a comparison, we generalized a recent algorithm that addresses the closest analogue we could think of, i.e.
- 30 blind deconvolution with a classical sparse gradient prior that models natural image statistics. As discussed in Section
- 5.2, we were unable to obtain competitive results despite fair efforts put into the experiment.
- Regarding comparisons to other non-line-of-sight methods: active non-line-of-sight methods are outside the scope of
- 33 the paper, as these techniques assume fundamentally different imaging modalities (usually static hidden scenes, actively
- probed over an extended period of time). Similarly, a recent passive non-line-of-sight technique by Bouman et al.
- 35 (Turning Corners into Cameras: Principles and Methods, ICCV 2017) assumes a specific scene geometry with clearly
- defined "corners" and focuses on near-invisible signals, while our method assumes the geometry and reflectances of the
- 37 relay objects are unknown.
- 38 Validity of reconstructions for machine vision tasks (R4) When factorizing light transport using traditional factor-
- ization techniques, there is no guarantee that the two factors correspond to the true visible and hidden scene, or even to
- any plausible image signal. The question raised by R4 is whether the factors reconstructed using DIP actually correspond
- to the true visible and hidden scenes, or are just arbitrary natural-looking images. Figure 6 of the paper provides a
- 42 partial answer to that question. We show that for controlled scenes such as the Disks sequence, the reconstructed signal
- is clearly not arbitrary, but closely matches the ground truth sequence. Even for more complicated sequences (Hands),
- 44 this correspondence still appears to hold.