Supplementary Materials for “Non-Cooperative Inverse
Reinforcement Learning”

A Illustrative Example

Consider a simple zero-sum patrolling game where a thief A aims to steal valuables from a museum
m and a gallery g that a security guard D is watching over. The state space is defined as the set of
possible locations of the players (A, D), defined as S = {(m,m), (m, g), (g,m), (g, 9)}. The initial
state is uniformly sampled from S. The game is played over multiple stages, where at each stage
of the game, A and D observe the current state s € S and (simultaneously) choose to either stay at
their respective locations or switch to the other location, i.e., A = D = {stay, switch}. The state
deterministically transitions from s to s’ based on (a, d). If the state transitions to either s’ = (m, g)
or s’ = (g,m), A will successfully steal an item with probability 1 and gain a reward of either 6 if
s’ =(m,g),or1—0if s’ = (g,m), where 6 € [0, 1] reflects A’s private preference that is unknown
to D. If the state transitions to either s’ = (m, m) or s’ = (g, g), the presence of D will lower A’s
probability of success to 1/2. Thus, A’s (expected) reward at each stage is

0/2 if s = (m,m)
Rso) =10 aZ ) ®
(1-0)/2 ifs=(g,9)

Under this setting, we compare the strategies obtained under the MA-IRL formalism, e.g., [21, 41,
20], to the strategies where D can learn the intent adaptively under the N-CIRL formalism. In MA-
IRL, D has access to an attack log, which reflects that A prefers the gallery twice as much as the
museum, i.e., § = 1/3. In an initial learning phase, D learns from previous equilibrium behavior,
and in the subsequent execution phase, A and D play the game described above. In contrast, D
under N-CIRL has no prior knowledge of A’s intent and learns it from scratch through information
that is revealed as the game unfolds. For purposes of this example, A’s preferences are assumed to
flip in the execution phase, i.e., # = 2/3. We now compare two strategies in a two-stage instance of
the above game.

MA-IRL Strategies. For 6 = 1/3, D has a unique pure Nash equilibrium strategy that generates its
next location to be g, independent of the initial state. However, since A’s true intent in the execution
phase when D actually participates is § = 2/3, A’s pure Nash equilibrium strategies is to go to m.
Such a combination of A and D’s equilibrium strategies yields a next state of (m, g), which results
in a reward of 2/3 for A. Hence, over the two-stage game (execution phase), the total reward for A
against D under MA-IRL is 2 - 2/3 = 4/3.

N-CIRL Strategies. D has a uniform patrol strategy in the first stage (toss a fair coin to decide
where to patrol). Since A has intent parameter # = 2/3 in the execution phase, it will go to the
museum according to R(s; 0 = 2/3), with state (m, m) arising from the Nash equilibrium strategies.
Hence, A’s expected reward in the first stage is 1/2-1/2-2/3 4+ 1/2-2/3 = 1/2. At the second
stage, D receives the observation that A went to m, thus infers 6 > 1/2. With the new estimation
of A’s intent, D prefers to defend m, which results in a cost of —1/2 - § that is smaller than the
cost of defending g, which is —f. Therefore, the expected reward of A at the second stage becomes
1/2-2/3 = 1/3, and the total reward in the two-stage game is 1/2 + 1/3 = 5/6 < 4/3.

The above example illustrates that there exist settings where the defender can incur a lower cost by
interleaving learning and execution.

3D under MA-IRL is (generously) assumed to be able to perfectly recover the parameter § = 1/3 during
the learning phase. This is often not the case as D’s inference using historical data can not be exactly accurate
in practice. We make this assumption to favor MA-IRL as much as possible.
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B Proofs of Main Results

B.1 Proof of Lemma 1

Proof. Given a current state s and distribution b on ©, the posterior distribution is computed by
conditioning on the new information (consisting of the actions (a, d) and updated state s’) as

P(s,b,a,d, s | 9)P(6 =9)

PO=91sb0.d8) = 5~ 5 a .o | 9) P = ) ©
_ P(s|9)P(a,d|s,0)P(b,s" | s,a,d,9)P(f = ) (10)
Yoo P(s,b,a,d,s" | 9)P(0 =)
_ P(s|9)P(a|s,3)P(d|s)P(s' | s,a,d)P(b|s,9)P(0 =9) (11
Yoo P(s,b,a,d, s | 9)P(0 =)

_ P(s|9)P(a|s,3)P(d| s)P(s' | s,a,d)P(b| s,9)b() (12)

Yoo P(s|V)P(a|s,9)P(d|s)P(s"|s,a,d)P(b|s,39)b(d)
_ P(s'| s,a,d)P(d| s)P(a| s,9)b(1}) (13)

P | 50, )P ] 5) Sy Pla | 5,000

P(a | s,9)b(9) (14)

T Yy Plals,9)b(d)

where Eq. (9) follows Bayes rule, Eq. (10) uses definition of conditional probability, Eq. (11)
uses the conditional independence of a and d given s, 1, and that of b and s’ given s, a,d, 9, Eq.
(12) expands the denominator as in Eq. (11) and uses the fact that P(6 = ') = b(¢), Eq. (13)
uses that P(s | ¥) = P(b | s,9) = 1, and Eq. (14) follows by cancelling out P(s’ | s,a,d).
Note that the probabilities P(s’ | s,a,d), P(d | s), P(a | s,1) are all nonzero, as the calculation
in Egs. (9)-(14) is only for those tuples of (a,d,s’) that have been realized. Recognizing that
P(a | s,9) =74(a | s,9) yields the result. O

B.2 Proofs of Propositions 1 and 2

Proof. The proofs of Propositions 1 and 2 are similar and are built upon the results of [35]. In the
language of [35], player 1 is the more informed player and player 2 is the less informed player.
Let I and J denote the action sets of player 1 and 2, respectively, K denotes the set of the states
of the world, X denotes the set of the stochastic states, and A € (0, 1) is the discount factor. Let
s € A(I)X denote the strategy® of player 1 and t € A(J) denote the strategy of player 2. To prove
Proposition 1, consider the following sequential decomposition from [35, Proposition 6],

ua(p,z) = max min {)\Z Z phs( A’”t()

seA)X terl)) | L eIk

Z Z ZP q(z,4, J, y)va(pi, v) | (15)

keK (i,j)elIxJyeX

where superscripts denote indexing and p; denotes the Bayesian update defined elementwise by
pk = Zf"‘ip%(l) There are two modifications that need to be made to the recursive formula. First,
leK I~

compared to the reward function A in [35], the reward function in N-CIRL additionally depends on
the successor state s’. This dependence requires that the first term in the summation of Eq. (15) also
needs to take an expectation over s’. Second, the form of the payoff differs in N-CIRL; dividing
Eq. (15) by A yields an expressron for vy /A which corresponds to value of the primal game v in
Proposition 1. Denoting s,t,p, A,q,1 — X therein by 74,7 b, R, T, in our notation system,
respectively, yields the sequentlal decomposmon of (2) in Proposition 1.

SThe notation A ()™ means all functions from K to A(I).
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To prove Proposition 2, consider the sequential decomposition from [35, Proposition 7],

wy(a,z) = inf inf sup Z Z (i, k) ()\t(j)Aff + ozk)

LEA(S) BERFXIXX re N(IXK) 27 ek

=303 S -k Gy, i, y)

keEK (i,j)elIxJyeX

F 00Xt y))ﬁ(i)wx(ﬁ(i,y),y) (16)

i€l yeX JjeJ

where 7(i) = >, w(i,k) and @ € R¥. First, note that the dual game in our case is finite
(I, J, K, X are finite in our problem) and hence has a value. As a result, the inf and sup in [35,
Propositions 7] can be replaced by min and max. Next, as in the proof of Proposition 1, divide Eq.
(16) by X and denote t, /A, B/, 7, wx /A, 1— A therein by 72 ¢, €, u, w, v, respectively. Grouping
terms, we arrive at the sequential decomposition of (5) in Proposition 2. O

B.3 Proof of Lemma 2

Proof. We prove this lemma by showing that the value backup operator GG for a given one-stage

strategy profile (74, 77) is a contraction mapping with v € [0,1). Let n := (s,b) and v, v’ be

value functions. By Blackwell’s sufficiency theorem [5], [Gv](n) is a contraction mapping if it
satisfies 1) monotonicity: [Gv](n) > [GV'](n), if v(n) > v'(n) for any 7, and ii) discounting:

[Gv](n) = [GV'](n) + ~ve, Yv(n) = v'(n) + . To show monotonicity, assume v(n) > v'(n) for all
7; then we have

Y. )t al s, )rP(d] )T (s | s,a,d)(v(n) =o' (7)) =20 v
a,d,s’ 9

where 1’ represents the updated attacker information state. Note that the instantaneous reward does
not depend on v, v/, thus

[Go)(n) = [GV'](n) = ymaxmin {Via 2o (vn) = Vea 2o (v) }

= ymacmin{ D7 b(0)7 (0| 5. DFP (A | T | s.a.d) o)~ ') }

a,d,s’, 9
> 0.

To show discounting, let v(n) = v'(n) + €. Then

[Gv](n) = maxmln{ Z b(9)7?(a | 5,9)7P(d | s)T (5" | s,a,d)R(s,a,d,s';9)
a,d,s',0

£1 30 MOa | s DT T |50 d) ) +2) |

a,d,s’ 9

= maxmin{ Z b7t (a | s,0)7P(d | s)T(s"| s,a,d)R(s,a,d,s’;9)

74 7D

Ty S b a5, 0y (dIS)T(S'Sva,d)(v'(n'))}Jr%‘

a,d,s’ 9

(GV'](n) + e.

Therefore, the one-stage value backup operator is a contraction mapping for a given one-stage strat-
egy profile (74, 7). O

B.4 Proof of Lemma 3

Proof. Letw,w’ be value functions. As in the proof of Lemma 2, we show the monotonicity and dis-
counting properties, and then invoke Blackwell’s sufficiency theorem. Assume w(&,s) > w'(€, s)
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for all s, &; then

Z w(a, ﬁ)ﬁD(d | $)T (s | 5,0,d)(w(a,s,8') — W' (€as,8")) 20 Vs,
a,d,s’ 9
Note that the instantaneous reward does not depend on w, w’, and thus
[Hw](s, () — [Huw'|(s, ()

= 7 min max {Wip, j(w, & s) = Wan (', & 5) }

=7 min ml?“X { Z /u‘(a7 ﬁ)ﬁD(d | S)T(S/ ‘ 5, @, d) (w(ga,s’a 5,) - w/(ga,s’a 5,))}

To show discounting, let w(¢, s) = w’(, s) + ¢ for all s,&. Then

[Hw](s, () = min max { Zu(a, J) (C(ﬁ) + ZﬁD(d | $)T(s" | s,a,d)R(s,a,d,s; 19))

D¢ n

a,9 d,s’
+y > om Dia|s)T(s s,a,d)(w(faysz,s’)—fa,s/(ﬂ))}
a,d,s’ 9
= min max (a,?) )+ Y 77(d s’ s,a,dRs,a,d,s’;ﬂ)
oy {z;u ( ST | s dIR )

+y Y wla,)TP(d] ) T(s | s.0,d) (W (Easrs 8) = a,(9)) } + e
= [Huw'|(s,() +7e.
Therefore, the one-stage value backup operator is a contraction mapping for a given (72, &, ). [

B.5 Proof of Lemma 4

Proof. By definition of the subroutine SAWTOOTH-A in Algorithm 1, for given ), W5, the func-
tion Y, (Ys, W, ) returns the z; for the j that makes v; — ¢Tb; > 0. Denote this j by j*. Let

ejo = (0,--,1/b;(V),--- ,O)T € RI®l be an all-zero vector except that the ¥-th element is
1/b;(19). Thus, the following equivalence relationship holds, i.e., for any V'

VSTU())S,WS,ZJ) — V<c b—|—m1n{ej 90lbj«( >O} 1+ —chJ ). (17)

The positivity of vj« — ¢?'b;« implies that (17) can then equivalently be written as
V<Y, (Vs Wisb) = V<c'bte)gb(vje —c'bje), VIE€O, (18)

which essentially describes |©| constraints that are linear in b. Note that the dependences of the
constraints (18) on W and ), are implicitly embedded in finding ¢ and (b;-, v;+ ), respectively.

Similarly, SAWTOOTH-D in Algorithm 1 returns the y; that makes w; — ¢T'(; < 0. Denoting this
7 by 5%, we have the following equivalent conditions

V> Ty (Vs Wi, Q) — V>c'C+dl gb (wy—c'¢), ¥We®, (19

where dj- 9 = (O, e, 1/¢G(9), - ,O)T € RI®! be an all-zero vector except that the ¥-th element
is 1/{;(¥9). Note that (19) describes |O| constraints that are linear in . This completes the proof. [

15



C Details of the NC-PBVI Algorithm

The experimental setup is as follows. We randomly generate attack graphs with sizes ranging from
6 to 10 nodes. Root nodes are assumed to be enabled initially. Furthermore, we limit the in-degree
and out-degree of nodes to be at most 3. For each graph of size n, we run an experiment on a finite
horizon of length nn. The intent parameter is uniformly chosen from a set of random intent parameters
of size |©| = 10. The attacker’s accumulated reward is collected at each stage and normalized by
the total reward across all nodes. To compare the average performance of N-CIRL and MA-IRL, we
run 20 graph instances for each size and plot the attackers’ average reward, see Figure 1. Note that in
MA-IRL, both players are playing a complete information game. The difference is that the defender
is playing Nash equilibrium strategies based on an intent parameter that is inferred from existing
attack data. The attacker, on the other hand, knows its true intent (which is in general different from
the defender’s inferred intent) and plays its corresponding Nash equilibrium strategies.

All the experiments were run on a machine with an AMD Ryzen 1950X Processor and 32GB of
RAM. We used GUROBI 8.1.1 to solve the LPs used in our algorithm and the probability of suc-
cess, By, is assumed to be 0.8. The detailed pseudocode of the proposed NC-PBVI algorithm is
summarized in Algorithm 1.
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Algorithm 1 Non-Cooperative Point-Based Value Iteration (NC-PBVI)

function NC-PBVI (bo, (o, N, T)
for pin {A, D} do
for s € S do
Initialize Y2, WP
end for
for N expansions do
for T iterations do
VP WP + UPDATE-p(Y?, WP)
end for
VP WP < EXPAND-p ()P, WP)
end for
end for
Compute 74, 72 by solving Pa4(s,b) and

Pp (s, ) for all s and finite sets of b (resp. ().

end function

function UPDATE-A (), W)
for s € S do
for (b,v) € Ys UW; do
update v by solving P4 (s, b)
end for
end for
return ), W
end function

function UPDATE-D (Y, W)
for s € S do
for (¢, w) € Ys UW, do
update w by solving Pp (s, ()
end for
end for
return ), W
end function

function EXPAND-A (), W)
for s € S do
for (b,v) € Vs UW; do
Qg
74« solve Pa(s,b)
for a € A(s) do
ba < 7(s,b,a)
Q<+ QUb,
end for
b+ argmax Y. |bg(9) — (V)|
ba€Q  YEO
if (b',-) ¢ Ys UW;, then
Vi pr < solve Pa(s,b)
V. = VU, Vay)
end if
end for
end for
return Y, W
end function

function EXPAND-D (), W)
for s € S do
for (¢,w) € Ys UW; do
¢" + solve Pp(s,()
if (¢',-) ¢ Vs UW, then
W, ¢ solve Pp(s, (')
y.s — y.s U (Clu WQ,C/)
end if
end for
end for
return ), W
end function

function SAWTOOTH-A (s, Ws, b)
for (b;,vi) € W, do
Ci < U;
end for
z; < c'b
for (b;,v;) € Vs do
if v; — c'b; > 0 then
¢ « min{b(J)/b; (9)|b; (9) > 0}

zj = xj + ¢(v; — b))
break
end if
end for
return x;
end function

function SAWTOOTH-D (Vs, Ws, ¢)
for ((i,vi) € W, do
Ci < V;
end for
yj ¢
for (¢, w;) € Vs do
if w; — c’'¢; < 0 then
¥ min{¢(9)/¢;(9)I¢; (9) > 0}

yj — yj + Y(w; — ''¢)
break
end if
end for
return y;
end function
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