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Abstract

We propose SmoothCruiser, a new planning algorithm for estimating the value
function in entropy-regularized Markov decision processes and two-player games,
given a generative model of the environment. SmoothCruiser makes use of the
smoothness of the Bellman operator promoted by the regularization to achieve
problem-independent sample complexity of order Õ(1/ε4) for a desired accuracy ε,
whereas for non-regularized settings there are no known algorithms with guaranteed
polynomial sample complexity in the worst case.

1 Introduction

Planning with a generative model is thinking before acting. An agent thinks using a world model that
it has built from prior experience [Sutton, 1991, Sutton and Barto, 2018]. In the present paper, we
study planning in two types of environments, Markov decision processes (MDPs) and two-player
turn-based zero-sum games. In both settings, agents interact with an environment by taking actions
and receiving rewards. Each action changes the state of the environment and the agent aims to choose
actions to maximize the sum of rewards. We assume that we are given a generative model of the
environment, that takes as input a state and an action and returns a reward and a next state as output.
Such generative models, called oracles, are typically built from known data and involve simulations,
for example, a physics simulation. In many cases, simulations are costly. For example, simulations
may require the computation of approximate solutions of differential equations or the discretization
of continuous state spaces. Therefore, a smart algorithm makes only a small the number of oracles
calls required to estimate the value of a state. The total number of oracle calls made by an algorithm
is referred to as sample complexity.

The value of a state s, denoted by V (s), is the maximum of the sum of discounted rewards that can
be obtained from that state. We want an algorithm that returns an estimate of precision ε of the V (s)
for any fixed s and has a low sample complexity, which should naturally be a function of ε. An agent
can then use this algorithm to predict the value of the possible actions at any given state and choose
the best one. The main advantage in estimating the value of a single given state s at a time instead of
the complete value function2 s 7→ V (s) is that we can have algorithms whose sample complexity
does not depend on the size of the state space, which is important when our state space is very large
or continuous. On the other hand, the disadvantage is that the algorithm must be run each time a new
state is encountered.
∗equal contribution
2as done by approximate dynamic programming
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Our main contribution is an algorithm that estimates the value function in a given state in planning
problems that satisfy specific smoothness conditions, which is the case when the rewards are regular-
ized by adding an entropy term. We exploit this smoothness property to obtain a polynomial sample
complexity of order Õ

(
1/ε4

)
that is problem independent.

Related work Kearns et al. [1999] came up with a sparse sampling algorithm (SSA) for planning
in MDPs with finite actions and arbitrary state spaces. SSA estimates the value of a state s by
building a sparse look-ahead tree starting from s. However, SSA achieves a sample complexity of
O
(
(1/ε)log(1/ε)

)
, which is non-polynomial in 1/ε. SSA is slow since its search is uniform, i.e., it

does not select actions adaptively. Walsh et al. [2010] gave an improved version of SSA with adaptive
action selection, but its sample complexity is still non-polynomial. The UCT algorithm [Kocsis
and Szepesvári, 2006], used for planning in MDPs and games, selects actions based on optimistic
estimates of their values and has good empirical performance in several applications. However, the
sample complexity of UCT can be worse than exponential in 1/ε for some environments, which is
mainly due to exploration issues [Coquelin and Munos, 2007]. Algorithms with sample complexities
of order O

(
1/εd

)
, where d is a problem-dependent quantity, have been proposed for deterministic

dynamics [Hren and Munos, 2008], and in an open-loop3 setting [Bubeck and Munos, 2010, Leurent
and Maillard, 2019, Bartlett et al., 2019], for bounded number of next states and a full MDP model
is known [Buşoniu and Munos, 2012], for bounded number of next states in a finite-horizon setting
[Feldman and Domshlak, 2014], for bounded number of next states [Szörényi et al., 2014], and for
general MDPs [Grill et al., 2016]. In general, when the state space is infinite and the transitions are
stochastic, the problem-dependent quantity d can make the sample complexity guarantees exponential.
For a related setting, when rewards are only obtained in the leaves of a fixed tree, Kaufmann and
Koolen [2017] and Huang et al. [2017] present algorithms to identify the optimal action in a game
based on best-arm identification tools.

Entropy regularization in MDPs and reinforcement learning have been employed in several commonly
used algorithms. In the context of policy gradient algorithms, common examples are the TRPO
algorithm [Schulman et al., 2015] which uses the Kullback-Leibler divergence between the current
and the updated policy to constrain the gradient step sizes, the A3C algorithm [Mnih et al., 2016]
that penalizes policies with low entropy to improve exploration, and the work of Neu et al. [2017]
presenting a theoretical framework for entropy regularization using the joint state-action distribution.
Formulations with entropy-augmented rewards, which is the case in our work, have been used to
learn multi-modal policies to improve exploration and robustness [Haarnoja et al., 2017, 2018] and
can also be related to policy gradient methods [Schulman et al., 2017]. Furthermore, Geist et al.
[2019] propose a theory of regularized MDPs which includes entropy as a special case. Summing
up, reinforcement learning knows how to employ entropy regularization. In this work, we tasked
ourselves to give insights on why.

2 Setting and motivation

Both MDPs and two-player games can be formalized as a tuple (S,A, P,R, γ), where S is the set
of states, A is the set of actions, P , {P (·|s, a)}s,a∈S×A is a set of probability distributions over
S, R : S ×A → [0, 1] is a (possibly random) reward function and γ ∈ [0, 1[ is the known discount
factor. In the MDP case, at each round t, an agent is at state s, chooses action a and observes a
reward R(s, a) and a transition to a next state z ∼ P (·|s, a). In the case of turn-based two-player
games, there are two agents and, at each round t, an agent chooses an action, observes a reward and a
transition; at round t+ 1 it’s the other player’s turn. This is equivalent to an MDP with an augmented
state space S+ , S × {1, 2} and transition probabilities such that P ((z, j)|(s, i), a) = 0 if i = j.
We assume that the action space A is finite with cardinality K and the state space S has arbitrary
(possibly infinite) cardinality.

Our objective is to find an algorithm that outputs a good estimate of the value V (s) for any given
state s as quickly as possible. An agent can then use this algorithm to choose the best action in an
MDP or a game. More precisely, for a state s ∈ S and given ε > 0 and δ > 0, our goal is to compute
an estimate V̂ (s) of V (s) such that P

[∣∣V̂ (s)− V (s)
∣∣ > ε

]
≤ δ with small number of oracle calls

3This means that the policy is seen as a function of time, not the states. The open-loop setting is particularly
adapted to environments with deterministic transitions.
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required to compute this estimate. In our setting, we consider the case of entropy-regularized MDPs
and games, where the objective is augmented with an entropy term.

2.1 Value functions

Markov decision process The policy π of an agent is a function from S to P(A), the set of
probability distributions over A. We denote by π(a|s) the probability of the agent choosing action
a at state s. In MDPs, the value function at a state s, V (s), is defined as the supremum over all
possible policies of the expected sum of discounted rewards obtained starting from s, which satisfies
the Bellman equations [Puterman, 1994],

∀s ∈ S, V (s) = max
π(·|s)∈P(A)

E[R(s, a) + γV (z)], a ∼ π(·|s), z ∼ P (·|s, a). (1)

Two-player turn-based zero-sum games In this case, there are two agents (1 and 2), each one
with its own policy and different goals. If the policy of Agent 2 is fixed, Agent 1 aims to find a policy
that maximizes the sum of discounted rewards. Conversely, if the policy of Agent 1 is fixed, Agent 2
aims to find a policy that minimizes this sum. Optimal strategies for both agents can be shown to exist
and for any (s, i) ∈ S+ , S × {1, 2}, the value function is defined as [Hansen et al., 2013]

V (s, i) ,

{
maxπ(·|s)∈P(A) E[R((s, i), a) + γV (z, j)], if i = 1,

minπ(·|s)∈P(A) E[R((s, i), a) + γV (z, j)], if i = 2,
(2)

with a ∼ π(·|s) and (z, j) ∼ P (·|(s, i), a). In this case, the function s 7→ V (s, i) is the optimal
value function for Agent i when the other agent follows its optimal strategy.

Entropy-regularized value functions Consider a regularization factor λ > 0. In the case of
MDPs, when rewards are augmented by an entropy term, the value function at state s is given by
[Haarnoja et al., 2017, Dai et al., 2018, Geist et al., 2019]

V (s) , max
π(·|s)∈P(A)

{
E[R(s, a) + γV (z)] + λH(π(·|s))

}
, a ∼ π(·|s), z ∼ P (·|s, a)

= λ log
∑
a∈A

exp
(
1
λE[R(s, a) + γV (z)]

)
, z ∼ P (·|s, a), (3)

whereH(π(·|s)) is the entropy of the probability distribution π(·|s) ∈ P(A).

The function LogSumExpλ : RK → R, defined as LogSumExpλ(x) , λ log
∑K
i=1 exp(xi/λ), is

a smooth approximation of the max function, since ‖max−LogSumExpλ‖∞ ≤ λ logK. Similarly,
the function −LogSumExp−λ is a smooth approximation of the min function. This allows us to
define the regularized version of the value function for turn-based two player games, in which both
players have regularized rewards, by replacing the max and the min in Equation 2 by their smooth
approximations.

For any state s, let Fs , LogSumExpλ or Fs , −LogSumExp−λ depending on s. Both for MDPs
and games, we can write the entropy-regularized value functions as

V (s) = Fs(Qs), with Qs(a) , E[R(s, a) + γV (z)], z ∼ P (·|s, a), (4)

where Qs , (Qs(a))a∈A, the Q function at state s, is a vector in RK representing the value of each
action. The function Fs is the Bellman operator at state s, which becomes smooth due to the entropy
regularization.

Useful properties Our algorithm exploits the smoothness property of Fs defined above. In particu-
lar, these functions are L-smooth, that is, for any Q,Q′ ∈ RK , we have

|Fs(Q)− Fs(Q′)− (Q−Q′)T∇Fs(Q′)| ≤ L‖Q−Q′‖22, with L = 1/λ· (5)

Furthermore, the functions Fs have two important properties: ∇Fs(Q)4 � 0 and ‖∇Fs(Q)‖1 = 1
for all Q ∈ RK . This implies that the gradient∇Fs(Q) defines a probability distribution.5

4∇Fs(Q) is the gradient of Fs(Q) with respect to Q.
5It is a Boltzmann distribution with temperature λ.
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Assumptions We assume that S ,A, λ, and γ are given to the learner. Moreover, we assume that we
can access a generative model, the oracle, from which we can get reward and transition samples from
arbitrary state-action pairs. Formally, when called with parameter (s, a) ∈ S ×A, the oracle outputs
a new random variable (R,Z) independent from any other outputs received from the generative
model so far such that Z ∼ P (·|s, a) and R has same distribution as R(s, a). We denote a call to the
oracle as R,Z ← oracle(s, a).

2.2 Using regularization for the polynomial sample complexity

To pave the road for SmoothCruiser, we consider two extreme cases, based on the strength of the
regularization:

1. Strong regularization In this case, λ → ∞ and L = 0, that is, Fs is linear for all s:
Fs(x) = wT

sx, with ‖ws‖1 = 1, ws ∈ Rk and ws � 0,
2. No regularization In this case, λ = 0 and L→∞, that is, Fs cannot be well approximated

by a linear function.6

In the strongly regularized case, we can approximate the value V (s) with Õ(1/ε2) oracle
calls. This is due to the linearity of Fs, since the value function can be written as V (s) =
E[
∑∞
t=0 γ

tR(St, At) | S0 = s] where At is distributed according to the probability vector wSt .
As a result, V (s) can be estimated by Monte-Carlo sampling of trajectories.

With no regularization, we can apply a simple adaptation of the sparse sampling algorithm of
Kearns et al. [1999] that we briefly describe. Assume that we have an subroutine that provides an
approximation of the value function with precision ε/

√
γ, denoted by V̂ε/√γ(s), for any s. We can

call this subroutine several times as well as the oracle to get improved estimate V̂ defined as

V̂ (s) = Fs

(
Q̂s

)
with Q̂s(a)← 1

N

N∑
i=1

[
ri(s, a) + γV̂ε/√γ(zi)

]
,

where ri(s, a) and zi are rewards and next states sampled by calling the oracle with parameters
(s, a). By Hoeffding’s inequality, we can choose N = O

(
1/ε2

)
such that V̂ (s) is an approximation

of V (s) with precision ε with high probability. By applying this idea recursively, we start with
V̂ = 0, which is an approximation of the value function with precision 1/(1− γ), and progressively
improve the estimates towards a desired precision ε, which can be reached at a recursion depth of
H = O(log(1/ε)). Following the same reasoning as Kearns et al. [1999], this approach has a sample
complexity of O

(
(1/ε)log(1/ε)

)
: to estimate the value at a given recursion depth, we make O

(
1/ε2

)
recursive calls and stop once we reach the maximum depth, resulting in a sample complexity of

1

ε2
× · · · × 1

ε2︸ ︷︷ ︸
O(log(1/ε)) times

=

(
1

ε

)O(log( 1
ε ))
·

In the next section, we provide SmoothCruiser (Algorithm 1), that uses the assumption that the
functions Fs are L-smooth with 0 < L <∞ to interpolate between the two cases above and obtain a
sample complexity of Õ

(
1/ε4

)
.

3 SmoothCruiser

We now describe our planning algorithm. Its building blocks are two procedures, sampleV (Algo-
rithm 2) and estimateQ (Algorithm 3) that recursively call each other. The procedure sampleV
returns a noisy estimate of V (s) with a bias bounded by ε. The procedure estimateQ averages the
outputs of several calls to sampleV to obtain an estimate Q̂s that is an approximation of Qs with
precision ε with high probability. Finally, SmoothCruiser calls estimateQ(s, ε) to obtain Q̂s and
outputs V̂ (s) = Fs(Q̂s). Using the assumption that Fs is 1-Lipschitz, we can show that V̂ (s) is an
approximation of V (s) with precision ε. Figure 1 illustrates a call to SmoothCruiser.

6This is the case of the max and min functions.
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Figure 1: Visualization of a call to SmoothCruiser(s0, ε0, δ
′).

3.1 Smooth sailing

Algorithm 1 SmoothCruiser

Input: (s, ε, δ′) ∈ S × R+× R+

Mλ ← sups∈S |Fs(0)| = λ logK
κ← (1−√γ)/(KL)
Set δ′, κ, and Mλ as global parameters
Q̂s ← estimateQ(s, ε)

Output: Fs
(
Q̂s
)

The most important part of the algorithm is the pro-
cedure sampleV, that returns a low-bias estimate
of the value function. Having the estimate of the
value function, the procedure estimateQ averages
the outputs of sampleV to obtain a good estimate of
the Q function with high probability. The main idea
of sampleV is to first compute an estimate of preci-
sionO(

√
ε) of the value of each action {Q̂s(a)}a∈A

to linearly approximate the function Fs around Q̂s.
The local approximation of Fs around Q̂s is subsequently used to estimate the value of s with a better
precision, of order O(ε), which is possible due to the smoothness of Fs.

Algorithm 2 sampleV

1: Input: (s, ε) ∈ S × R+

2: if ε ≥ (1 +Mλ)/(1− γ) then
3: Output: 0
4: else if ε ≥ κ then
5: Q̂s ← estimateQ(s, ε)

6: Output: Fs
(
Q̂s
)

7: else if ε < κ then
8: Q̂s ← estimateQ(s,

√
κε)

9: A← action drawn from∇Fs
(
Q̂s
)

10: (R,Z)← oracle(s,A)

11: V̂ ← sampleV(Z, ε/
√
γ)

12: Output:
13: Fs

(
Q̂s
)
− Q̂T

s∇Fs
(
Q̂s
)
+(R+ γV̂ )

14: end if

Algorithm 3 estimateQ

1: Input: (s, ε)

2: N(ε)←
⌈

18(1+Mλ)
2

(1−γ)4(1−√γ)2
log(2K/δ′)

ε2

⌉
3: for a ∈ A do
4: qi ← 0 for i ∈ 1, ..., N(ε)
5: for i ∈ 1, ..., N(ε) do
6: (R,Z)← oracle(s, a).
7: V̂ ← sampleV

(
Z, ε/

√
γ
)

8: qi ← R+ γV̂
9: end for

10: Q̂s(a)←mean(q1, . . . , qN )

11: // clip Q̂s(a) to [0, (1 +Mλ)/(1− γ)]
12: Q̂s(a)← max(0, Q̂s(a))

13: Q̂s(a)← min((1+Mλ)/(1−γ), Q̂s(a))
14: end for
15: Output: Q̂s

For a target accuracy ε at state s, sampleV distinguishes three cases, based on a reference threshold
κ , (1−√γ)/(KL), which is the maximum value of ε for which we can compute a good estimate
of the value function using linear approximations of Fs.

• First, if ε ≥ (1 + λ logK)/(1 − γ), then 0 is a valid output, since V (s) is bounded by
(1 + λ logK)/(1− γ). This case furthermore ensures that our algorithm terminates, since
the recursive calls are made with increasing values of ε.

• Second, if κ ≤ ε ≤ (1 +λ logK)/(1−γ), we run Fs(estimateQ(s, ε)) in which for each
action, both the oracle and sampleV are calledO

(
1/ε2

)
times in order to return V̂ (s) which

is with high probability an ε-approximation of V (s).
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• Finally, if ε < κ, we take advantage of the smoothness of Fs to compute an ε-approximation
of V (s) in a more efficient way than calling the oracle and sampleV O

(
1/ε2

)
times. We

achieve it by calling estimateQ with a precision
√
κε instead of ε, which requires O(1/ε)

calls instead.

3.2 Smoothness guarantee an improved sample complexity

In this part, we describe the key ideas that allows us to exploit the smoothness of the Bellman operator
to obtain a better sample complexity. Notice that when ε < κ, the procedure estimateQ is called to
obtain an estimate Q̂s such that

‖Q̂s −Qs‖2 = O
(√

ε/L
)
.

The procedure sampleV then continues with computing a linear approximation of Fs(Qs) around Q̂s.
Using the L-smoothness of Fs, we guarantee the ε-approximation,

|Fs(Qs)−
{
Fs(Q̂s) + (Qs − Q̂s)T∇Fs(Q̂s)

}
| ≤ L‖Q̂s −Qs‖22 = O(ε).

We wish to output this linear approximation, but we need to handle the fact that the vectorQs (the true
Q-function at s) is unknown. Notice that the vector∇Fs(Q̂s) represents a probability distribution.
The term QT

s∇Fs(Q̂s) in the linear approximation of Fs(Qs) above can be expressed as

QT

s∇Fs(Q̂s) = E
[
Qs(A)

∣∣∣Q̂s], with A ∼ ∇Fs(Q̂s).

Therefore, we can build a low-bias estimate of QT
s∇Fs(Q̂s) from estimating only Qs(A):

• sample action A ∼ ∇Fs(Q̂s)
• call the generative model to sample a reward and a next state Rs,A, Zs,A ← oracle(s,A)

• obtain an O(ε)-approximation of Qs(A): Q̃(A) = Rs,A + γsampleV
(
Zs,A, ε/

√
γ
)

• output V̂ (s) = Fs(Q̂s)− Q̂T
s∇Fs(Q̂s) + Q̃(A)

We show that V̂ (s) is an ε-approximation of the true value function V (s). The benefit of such
approach is that we can call estimateQ with a precisionO(

√
ε) instead ofO(ε), which thanks to the

smoothness of Fs, reduces the sample complexity. In particular, one call to sampleV(s, ε) will make
O(1/ε) recursive calls to sampleV(s,O(

√
ε)), and the total number of calls to sampleV behaves as

1

ε
× 1

ε1/2
× 1

ε1/4
× · · · ≤ 1

ε2
·

Therefore, the number of sampleV calls made by SmoothCruiser is of order O
(
1/ε2

)
, which

implies that the total sample complexity is of O(1/ε4).

3.3 Comparison to Monte-Carlo tree search

Algorithm 4 genericMCTS
Input: state s
repeat search(s, 0)
until timeout
Output: estimate of best action or value.

Several planning algorithms are based on Monte-
Carlo tree search (MCTS, Coulom, 2007, Kocsis and
Szepesvári, 2006). Algorithm 4 gives a template for
MCTS, which uses the procedure search that calls
selectAction and evaluateLeaf. Algorithm 5,
search, returns an estimate of the value function;
selectAction selects the action to be executed
(also called tree policy); and evaluateLeaf returns an estimate of the value of a leaf. We now
provide the analogies that make it possible to see SmoothCruiser as an MCTS algorithm:

• sampleV corresponds to the function search

6



• selectAction is implemented by calling estimateQ to compute Q̂s, followed by sam-
pling an action with probability proportional to∇Fs(Q̂s)

• evaluateLeaf is implemented using the sparse sampling strategy of Kearns et al. [1999],
if we see leaves as the nodes reached when ε ≥ κ

4 Theoretical guarantees
Algorithm 5 search

Input: state s, depth d
if d > dmax then

Output: evaluateLeaf(s)
end if
a← selectAction(s, d)
R,Z ← oracle(s, a)
Output: R+ γsearch(Z, d+ 1)

In Theorem 1 we bound the sample complexity.
Note that SmoothCruiser is non-adaptive, hence
its sample complexity is deterministic and problem
independent. Indeed, since our algorithm is agnostic
to the output of the oracle, it performs the same num-
ber of oracle calls for any given ε and δ′, regardless
of the random outcome of these calls.

Theorem 1. Let n(ε, δ′) be the number of oracle
calls before SmoothCruiser terminates. For any state s ∈ S and ε, δ′ > 0,

n(ε, δ′) ≤ c1
ε4

log
(c2
δ′

)[
c3 log

(c4
ε

)]log2(c5(log(
c2
δ′ )))

= Õ
(

1

ε4

)
,

where c1, c2, c3, c4, and c5 are constants that depend only on K, L, and γ.

The proof of Theorem 1 with the exact constants is in the appendix. In Theorem 2, we provide our
consistency result, stating that the output of SmoothCruiser applied to a state s ∈ S is a good
approximation of V (s) with high probability.

Theorem 2. For any s ∈ S , ε > 0, and δ > 0, there exists a δ′ that depends on ε and δ such that the
output V̂ (s) of SmoothCruiser(s, ε, δ′) satisfies

P
[∣∣V̂ (s)− V (s)

∣∣ > ε
]
≤ δ.

and such that n(ε, δ′) = O
(
1/ε4+c

)
for any c > 0.

More precisely, in the proof of Theorem 2, we establish that

P
[∣∣V̂ (s)− V (s)

∣∣ > ε
]
≤ δ′n(ε, δ′).

Therefore, for any parameter δ′ satisfying δ′n(ε, δ′) ≤ δ, SmoothCruiser with parameters ε and δ′
provides an approximation of V (s) which is (ε, δ) correct.

Impact of regularization constant For a regularization constant λ, the smoothness constant is
L = 1/λ. in Theorem 1 we did not make the dependence on L explicit to preserve simplicity.
However, it easy to analyze the sample complexity in the two limits:

strong regularization L→ 0 and Fs is linear

no regularization L→∞ and Fs is not smooth

As L→ 0, the condition κ ≤ ε ≤ (1+λ logK)/(1−γ) will be met less and eventually the algorithm
will sample N = O

(
1/ε2

)
trajectories, which implies a sample complexity of order O

(
1/ε2

)
. On

the other hand, as L goes to∞, the condition ε < κ will be met less and the algorithm eventually
runs a uniform sampling strategy of Kearns et al. [1999], which results in a sample complexity of
order O

(
(1/ε)log(1/ε)

)
, which is non-polynomial in 1/ε.

Let Vλ(s) be the entropy regularized value function and V0(s) be its non-regularized version. Since Fs
is 1-Lipschitz and ‖LogSumExpλ −max‖∞ ≤ λ logK, we can prove that sups |Vλ(s)− V0(s)| ≤
λ logK/(1 − γ). Thus, we can interpret Vλ(s) as an approximate value function which we can
estimate faster.
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Comparison to lower bound For non-regularized problems, Kearns et al. [1999] prove a sample
complexity lower bound of Ω

(
(1/ε)1/ log(1/γ)

)
, which is polynomial in 1/ε, but its exponent grows

as γ approaches 1. For regularized problems, Theorem 1 shows that the sample complexity is
polynomial with an exponent that is independent of γ. Hence, when γ is close to 1, regularization
gives us a better asymptotic behavior with respect to 1/ε than the lower bound for the non-regularized
case, although we are not estimating the same value.

5 Generalization of SmoothCruiser

Consider the general definition of value functions in Equation 4. Although we focused on the case
where Fs is the LogSumExp function, which arises as a consequence of entropy regularization,
our theoretical results hold for any set of functions {Fs}s∈S that for any s satisfy the following
conditions:

1. Fs is differentiable
2. ∀Q ∈ RK , 0 < ‖∇Fs(Q)‖1 ≤ 1

3. (nonnegative gradient) ∀Q ∈ RK ,∇Fs(Q) � 0

4. (L-smooth) there exists L ≥ 0 such that for any Q,Q′ ∈ RK

|Fs(Q)− Fs(Q′)− (Q−Q′)T∇Fs(Q′)| ≤ L‖Q−Q′‖22

For the more general definition above, we need to make two simple modifications of the procedure
sampleV. When ε < κ, the action A in sampleV is sampled according to

A ∼ ∇Fs(Q̂s)
‖∇Fs(Q̂s)‖1

and its output is modified to

Fs(Q̂s)− Q̂T

s∇Fs(Q̂s) + (R+ γv̂)‖∇Fs(Q̂)‖1.

In particular, SmoothCruiser can be used for more general regularization schemes, as long as the
Bellman operators satisfy the assumptions above. One such example is presented in Appendix E.

6 Conclusion

We provided SmoothCruiser, an algorithm that estimates the value function of MDPs and discounted
games defined through smooth approximations of the optimal Bellman operator, which is the case
in entropy-regularized value functions. More generally, our algorithm can also be used when value
functions are defined through any smooth Bellman operator with nonnegative gradients. We showed
that our algorithm has a polynomial sample complexity of Õ(1/ε4), where ε is the desired precision.
This guarantee is problem independent and holds for state spaces of arbitrary cardinality.

One interesting interpretation of our results is that computing entropy-regularized value functions,
which are commonly employed for reinforcement learning, can be seen as a smooth relaxation of a
planning problem for which we can obtain a much better sample complexity in terms of the required
precision ε. Unsurprisingly, when the regularization tends to zero, we recover the well-known
non-polynomial bound O

(
(1/ε)log(1/ε)

)
of Kearns et al. [1999]. Hence, an interesting direction for

future work is to study adaptive regularization schemes in order to accelerate planning algorithms.
Although SmoothCruiser makes large amount of recursive calls, which makes it impractical in most
situations, we believe it might help us to understand how regularization speeds planning and inspire
more practical algorithms. This might be possible by exploiting its similarities to Monte-Carlo tree
search that we have outlined above.
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A Preliminaries

A.1 General definition of value functions

We consider the general definition of value functions in Equation 4 and we assume that all the
functions Fs satisfy

1. Fs is differentiable,

2. ∀x ∈ RK , 0 < ‖∇Fs(x)‖1 ≤ 1,

3. (nonnegative gradient) ∀x ∈ RK ,∇Fs(x) � 0,

4. (L-smooth) There exists L ≥ 0 such that for any x0, x ∈ RK ,

|Fs(x)− Fs(x0)− (x− x0)T∇Fs(x0)| ≤ L‖x− x0‖22,

which is the case for the functions LogSumExpλ and −LogSumExp−λ that we study in the present
paper. In particular, the second requirement implies that Fs is 1-Lipschitz,

∀x, y ∈ RK , |Fs(x)− Fs(y)| ≤ ‖x− y‖∞.

For this more general definition, we modify the output of sampleV when ε < κ to

output = Fs

(
Q̂s

)
− (Q̂s)

T∇Fs
(
Q̂s

)
+ (R+ γv̂)‖∇Fs

(
Q̂
)
‖1

and the action sampled in sampleV is sampled according to

A ∼
∇Fs

(
Q̂s

)
‖∇Fs

(
Q̂s

)
‖1

instead of A ∼ ∇Fs
(
Q̂s

)
.

A.2 Other definitions

The constant Mλ is defined as
Mλ , sup

s∈S
|Fs(0)|.

For any c ∈ R, the function clipc : Rd → Rd is defined component-wise as

clipc(x)i =


0 if xi ≤ 0,

xi if − c < xi < c,

c if x ≥ c.

B Sample complexity

Theorem 1. Let n(ε, δ′) be the number of oracle calls before SmoothCruiser terminates. For any
state s ∈ S and ε, δ′ > 0,

n(ε, δ′) ≤ c1
ε4

log
(c2
δ′

)[
c3 log

(c4
ε

)]log2(c5(log(
c2
δ′ )))

= Õ
(

1

ε4

)
,

where c1, c2, c3, c4, and c5 are constants that depend only on K, L, and γ.

To bound the sample complexity, we make the following steps.

• Proposition 1 bounds the number of recursive calls of sampleV in the uniform sampling
phase (ε ≥ κ) and is similar to the results of Kearns et al. [1999].

• Lemma 1 bounds the number of recursive calls of sampleV when ε < κ.

• By noticing that the number of recursive calls of sampleV is equal to the number of oracle
calls, we bound the sample complexity of SmoothCruiser in Theorem 1.
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Let nsampleV(s, ε, δ′) be the total number of recursive calls to sampleV after an initial call with
parameters (s, ε), and including the initial call. Since this number does not depend on the state s, we
denote it by nsampleV(ε, δ′).

Proposition 1. Let ε ≥ κ. For all h ∈ N, ∀ε such that (1+Mλ)
√
γh

1−γ ≤ ε ≤ 1+Mλ

1−γ , we have

nsampleV(ε, δ
′) ≤ γ 1

2H(ε)(H(ε)−1)
(

2α(δ′)

ε2

)H(ε)

≤ γ 1
2H(κ)(H(κ)−1)

(
2α(δ′)

κ2

)H(κ)

where

H(ε) =

⌈
2 logγ

(
ε(1− γ)

1 +Mλ

)⌉
and

α(δ′) =
18(1 +Mλ)2K

(1− γ)4(1−√γ)2
log

(
2K

δ′

)

Proof. We want to prove that nsampleV(ε, δ′) ≤ G(ε), where

G(ε) = γ
1
2H(ε)(H(ε)−1)

(
2α(δ′)

ε2

)H(ε)

We proceed by induction on h.

Base case Let h = 0. We have ε = 1+Mλ

1−γ , which implies nsampleV(ε, δ′) = 1 and G(ε) = 1 (since
H(ε) = 0). Hence, the proposition is true for h = 0.

Induction hypothesis Assume true for h.

Induction step Let ε ≥ (1+Mλ)
√
γh+1

1−γ · Since ε√
γ ≥

(1+Mλ)
√
γh

1−γ
, we use the induction hypothesis

to obtain

nsampleV(ε, δ
′) = 1︸︷︷︸

current call
+KN(ε)nsampleV

(
ε
√
γ
, δ′
)

︸ ︷︷ ︸
calls in estimateQ

≤ 2α(δ′)

ε2
nsampleV

(
ε
√
γ
, δ′
)

≤ 2α(δ′)

ε2
γ

1
2 (H(ε)−1)(H(ε)−2)

(
γ2α(δ′)

ε2

)H(ε)−1

, since H
(

ε
√
γ

)
= H(ε)− 1

= γ
1
2H(ε)(H(ε)−1)

(
2α(δ′)

ε2

)H(ε)

,

which completes the proof.

Lemma 1. Let ε ≤ κ. For all h ∈ N, ∀ε ≥ κ√γh, we have

nsampleV(ε, δ
′) ≤ η1

[
log 1

γ

(
κ/γ

ε

)]η2(δ′) 1

ε2

12



where

κ =
1−√γ
KL

η1 = κ2nsampleV(κ, δ
′)

η2(δ′) = log2

(
γ

1− γ
2β(δ′)

κ

)
β(δ′) =

18(1 +Mλ)2K2L

(1− γ)4(1−√γ)3
log

(
2K

δ′

)
under the condition that

log2

(
γ

1− γ
2β(δ′)

κ

)
≥ 0, i.e., β(δ′) ≥

(1− γ)(1−√γ)

2γKL
(6)

which is satisfied by choosing δ′ small enough.

Proof. First, let us define some auxiliary quantities,

B1(ε) ,

[
log 1

γ

(
κ/γ

ε

)]η2(δ′)
, (7)

B2(ε) ,
η1
ε2

and (8)

B(ε) , B1(ε)B2(ε) (9)

We want to prove that nsampleV(ε, δ′) ≤ B(ε) and we proceed by induction on h.

Base case For h = 0, we have ε ≥ κ and, by assumption, ε ≤ κ. Therefore, ε = κ. It can be easily
verified that B(κ) = nsampleV(κ, δ

′), hence the lemma is true for h = 0.

Induction hypothesis Assume that the lemma is true for h.

Induction step Let ε ≥ κ√γh+1. We have that

nsampleV(ε, δ
′) = 1︸︷︷︸

current call
+ nsampleV

(
ε
√
γ
, δ′
)

︸ ︷︷ ︸
call in line 11 of sampleV

+KN(
√
κε)nsampleV

(√
κε

γ
, δ′
)

︸ ︷︷ ︸
calls in estimateQ

= 1 + nsampleV

(
ε
√
γ
, δ′
)

+
β(δ′)

ε
nsampleV

(√
κε

γ
, δ′
)

≤ nsampleV
(

ε
√
γ
, δ′
)

+
2β(δ′)

ε
nsampleV

(√
κε

γ
, δ′
)

Since ε ≥ κ√γh+1 and ε ≤ κ, we have
√

κε
γ ≥

ε√
γ ≥ κ

√
γh. This allows us to use our induction

hypothesis to get

nsampleV(ε, δ
′) ≤ B

(
ε
√
γ

)
+

2β(δ′)

ε
B

(√
κε

γ

)
·

We will need the equation bellow, which is easily verified as

log

 κ√
κε
γ γ

 =
1

2
log

(
κ/γ

ε

)
(10)
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We have that

B
(

ε√
γ

)
B(ε)

=
B1

(
ε√
γ

)
B1(ε)

B2

(
ε√
γ

)
B2(ε)

= γ

 log
(
κ/γ
ε

)
− 1

2 log 1
γ

log
(
κ/γ
ε

)


︸ ︷︷ ︸
<1

η2(δ
′)

≤ γ,
where we used the assumption that η2(δ′) ≥ 0.

Also we get that

B
(√

κε
γ

)
B(ε)

=
εγ

κ

B1

(√
κε
γ

)
B1(ε)

=
εγ

κ

 log 1
γ

(
κ√
κε
γ γ

)
log 1

γ

(
κ/γ
ε

)

η2(δ

′)

=
εγ

κ

 1
2 log 1

γ

(
κ/γ
ε

)
log 1

γ

(
κ/γ
ε

)
η2(δ

′)

=
εγ

κ

(
1

2

)η2(δ′)
=
εγ

κ

(1− γ)

γ

κ

2β(δ′)
=

(1− γ)ε

2β(δ′)

Finally, we obtain

nsampleV(ε, δ
′) ≤ B

(
ε
√
γ

)
+

2β(δ′)

ε
B

(√
κε

γ

)
≤ γB(ε) +

2β(δ′)

ε

(1− γ)ε

2β(δ′)
B(ε)

= B(ε),

which proves the lemma.

Now we can prove Theorem 1, which is restated below.
Theorem. Let n(ε, δ′) be the number of calls to the generative model (oracle) before the algorithm
terminates. For any state s ∈ S and ε, δ′ > 0,

n(ε, δ′) ≤ c1
ε4

log
(c2
δ′

)[
c3 log

(c4
ε

)]log2(c5(log(
c2
δ′ )))

= Õ
(

1

ε4

)
where c1, c2, c3, c4 and c5 are constants that depend only on K, L and γ.

Proof. First, notice that the number of calls to the generative model is smaller than the total number
of calls to sampleV. SmoothCruiser makes one call to estimateQ, which makes N(ε) calls to
sampleV. If ε ≥ κ, Proposition 1 shows that the sample complexity is bounded by a constant.
Lemma 1 bounds the sample complexity for ε ≤ κ, and we use it to bound n(ε, δ′):

n(ε, δ′) = N(ε)nsampleV(ε, δ
′)

≤ N(ε)η1

[
log 1

γ

(
κ/γ

ε

)]η2(δ′) 1

ε2

≤ c1
ε4

log
(c2
δ′

)[
c3 log

(c4
ε

)]log2(c5(log(
c2
δ′ )))

= Õ
(

1

ε4

)
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by using the definition of N(ε) for ε ≤ κ and the definition of η2(δ′) in Lemma 1.

The constants are given by:

• c1 =
18(1+Mλ)

2nsampleV(κ,δ
′)

K2L2(1−γ)4 ;

• c2 = 2K;

• c3 = [log(1/γ)]−1;

• c4 = (1−√γ)/(γKL);

• c5 = 36(1+Mλ)
2γK3L2

(1−γ)5(1−√γ)4 .

C Consistency

Theorem 2. For any s ∈ S , ε > 0, and δ > 0, there exists a δ′ that depends on ε and δ such that the
output V̂ (s) of SmoothCruiser(s, ε, δ′) satisfies

P
[∣∣V̂ (s)− V (s)

∣∣ > ε
]
≤ δ.

and such that n(ε, δ′) = O
(
1/ε4+c

)
for any c > 0.

To prove that our algorithm outputs a good estimate of the value function with high probability, we
proceed as follows:

• In Lemma 2, we prove that the output of sampleV, conditioned on an event A, is a low-bias
estimate of the true value function, and that A happens with high probability;

• Given Lemma 2, the proof of Theorem 2 is straightforward.

Throughout the proof, we will make distinctions between two cases:

• Case 1: κ ≤ ε < 1+Mλ

1−γ

• Case 2: ε < κ

C.1 Definitions

We define the function ζ(ε) as

ζ(ε) =


ε, if κ ≤ ε < 1+Mλ

1−γ ,√
κε, if ε < κ,

∞, otherwise.
(11)

Define params(s, ε) as the (random) set of parameters used to call sampleV after a call to
sampleV(s, ε), that is

params(s, ε) =

{(
Z(k)
s,a ,

ζ(ε)
√
γ

)
for k = 1, . . . , N(ε); a ∈ A

}
(12)

in case 1 and

params(s, ε) =

{(
Z(k)
s,a ,

ζ(ε)
√
γ

)
for k = 1, . . . , N(ε); a ∈ A

}⋃{(
Zs,A,

ε
√
γ

)}
(13)
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in case 2, where Z(k)
s,a are the next states sampled in estimateQ and Zs,A is the next state sampled

sampleV(s, ε).

A call to sampleV(s, ε) makes one call to estimateQ. Denote the output of this call to estimateQ

by Q̂εs. We define the event A(s, ε) as follows:

A(s, ε) =

{ {
‖Q̂εs −Qs‖∞ ≤ ζ(ε)

}⋂
B(s, ε), if 0 < ε < 1+Mλ

1−γ ,

Ω, if ε ≥ 1+Mλ

1−γ .
(14)

where Ω is the whole sample space and

B(s, ε) =
⋂

(z,e)∈params(s,ε)

A(z, e) (15)

Define Cγ as:

Cγ =
3(1 +Mλ)

(1− γ)2
(16)

C.2 Proofs

Lemma 2. Let V̂ε(s) = sampleV(s, ε). For all h ∈ N, s ∈ S, ε ≥ (1+Mλ)
√
γh

1−γ
,, we have:

(i) |E
[
V̂ε(s)

∣∣∣A(s, ε)
]
− V (s)| ≤ ε, and

(ii) P
[
|V̂ε(s)| ≤ Cγ

∣∣∣A(s, ε)
]

= 1

(iii) P[A(s, ε)] ≥ 1− δ′nsampleV(ε, δ′)
where

nsampleV(ε, δ
′) = 1 +

∑
(z,e)∈params(s,ε)

nsampleV(e, δ
′) (17)

is the total number of recursive calls to sampleV after an initial call with parameters (s, ε).

Proof. We proceed by induction over h.

(1) Base case. If h = 0, ε ≥ 1+Mλ

1−γ and A(s, ε) = Ω. The output is then V̂ε(s) = 0. Point (i) is
verified by using the fact that |V (s)| ≤ 1+Mλ

1−γ ≤ ε; points (ii) and (iii) are trivially verified.

(2) Induction hypothesis. Assume that (i), (ii) and (iii) are true for h.

(3) Induction step. Let ε ≥ (1+Mλ)
√
γh+1

1−γ . This implies that ε/
√
γ and ζ(ε)/

√
γ are both greater

than (1+Mλ)
√
γh

1−γ , which will allow us to use our induction hypothesis.

We start by proving (iii).

Let Q̂εs = estimateQ(s, ζ(ε)). Let the rewardR(k)
s,a and stateZ(k)

s,a be the random variables associated
to the k-th call to the generative model used to compute Q̂s in estimateQ, for k ∈ {1, · · · , N(ε)}.
Let

qks (a) := R(k)
s,a + γsampleV

(
Z(k)
s,a , ζ(ε)/

√
γ
)

(18)
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and let

Q
ε

s(a) =
1

N(ε)

N(ε)∑
k=1

qks (a) (19)

so that:

Q̂εs = clip(1+Mλ)(1−γ)−1

(
Q
ε

s(a)
)

(20)

Using Fact 2, we have:

|Q̂εs(a)−Qs(a)| ≤ |Qεs(a)−Qs(a)| (21)

≤ |Qεs(a)− E
[
Q
ε

s(a)|B(s, ε)
]
|︸ ︷︷ ︸

(I)

+ |E
[
Q
ε

s(a)|B(s, ε)
]
−Qs(a)|︸ ︷︷ ︸

(II)

(22)

We’d like to use Hoeffding’s inequality to bound (I) in probability. For that, we need to verify that
the random variables {qks (a)}N(ε)

k=1 are bounded and independent conditionally on B(s, ε).

Boundedness. By induction hypothesis (ii) In the event B(s, ε), the random variables
sampleV

(
Z

(k)
s,a , ζ(ε)/

√
γ
)

, for all k, are bounded by Cγ . Using the fact that the rewards are in

[0, 1] and that Cγ ≥ 1/(1− γ), we obtain qks (a) is also bounded by Cγ .

Independence. Let Ek = A
(
Zks,a, ζ(ε)/

√
γ
)
. For any t ∈ RN(ε), the characteristic function of

{qks (a)}N(ε)
k=1 conditionally on B(s, ε) is given by

E

[
exp

(
i
∑
k

tkq
k
s (a)

)∣∣∣B(s, ε)

]
(a)
= E

[
exp

(
i
∑
k

tkq
k
s (a)

)∣∣∣⋂
k

Ek

]

=
E
[
exp
(
i
∑
k tkq

k
s (a)

)∏
k I{Ek}

]
E
[∏

k I{Ek}
]

=
E
[∏

k exp
(
itkq

k
s (a)

)
I{Ek}

]
E
[∏

k I{Ek}
]

(b)
=

∏
k E
[
exp
(
itkq

k
s (a)

)
I{Ek}

]∏
k E
[
I{Ek}

]
=
∏
k

E
[
exp
(
itkq

k
s (a)

)∣∣∣Ek]
(c)
=
∏
k

E
[
exp
(
itkq

k
s (a)

)∣∣∣B(s, ε)
]

which is justified by

(a) Definition of B(s, ε) and the fact that {qks (a)}N(ε)
k=1 are independent of A

(
Zs,A,

ε√
γ

)
;

(b) The random variables {qks (a)}N(ε)
k=1 are independent and the events {Ek}N(ε)

i=1 are also
independent;

(c) The random variable qks (a) is independent of every Ej for j 6= k.

Since the characteristic function of {qks (a)}N(ε)
k=1 is the product of their characteristic functions, these

random variables are independent given B(s, ε).
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Now we can use Hoeffding’s inequality:

P
[
|Qεs(a)− E

[
Q
ε

s(a)
∣∣∣B(s, ε)

]
| ≥ (1−√γ)ζ(ε)

∣∣∣B(s, ε)
]

= P

| 1

N(ε)

N(ε)∑
k=1

qks (a)− E
[
qks (a)

∣∣∣B(s, ε)
]
| ≥ (1−√γ)ζ(ε)

∣∣∣B(s, ε)


≤ 2 exp

(
−
N(ε)(1−√γ)2ζ(ε)2

2C2
γ

)
≤ δ′

K

And (II) is bounded by using the induction hypothesis (i):

|E
[
qks (a)

∣∣∣B(s, ε)
]
−Qs(a)|

(a)
= γ|E

[
sampleV

(
Z(k)
s,a ,

ζ(ε)
√
γ

)∣∣∣B(s, ε)

]
− E

[
V (Z(k)

s,a )
∣∣∣B(s, ε)

]
|

(b)
= γ|E

[
sampleV

(
Z(k)
s,a ,

ζ(ε)
√
γ

)∣∣∣A(Z(k)
s,a ,

ζ(ε)
√
γ

)]
− E

[
V (Z(k)

s,a )
∣∣∣A(Z(k)

s,a ,
ζ(ε)
√
γ

)]
|

(c)
= γ|E

[
E
[
sampleV

(
Z(k)
s,a ,

ζ(ε)
√
γ

)∣∣∣Z(k)
s,a ,A

(
Z(k)
s,a ,

ζ(ε)
√
γ

)]
− V (Z(k)

s,a )
∣∣∣A(Z(k)

s,a ,
ζ(ε)
√
γ

)]
|

(d)

≤ γ
ζ(ε)
√
γ

=
√
γζ(ε)

which is justified by the following:

(a) E
[
R

(k)
s,a

∣∣∣B(s, ε)
]

= E
[
R

(k)
s,a

]
, since the reward depends only on s, a;

(b) The term
(
Z

(k)
s,a ,

ζ(ε)√
γ

)
depends on B(s, ε) only through A

(
Z

(k)
s,a ,

ζ(ε)√
γ

)
;

(c) Law of total expectation;

(d) Consequence of induction hypothesis (i).

Putting together the bounds for (I) and (II) and doing an union bound over all actions, we obtain:

P
[
‖Q̂εs −Qs‖∞ ≥ ζ(ε)

∣∣∣B(s, ε)
]
≤ δ′

We can now give a lower bound to the probability of the event A(s, ε). Let

E =
{
‖Q̂εs −Qs‖∞ < ζ(ε)

}
(23)

We have:
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P[A(s, ε)] ≥ P[E ∩ B(s, ε)]

= P
[
E
∣∣∣B(s, ε)

]
P[B(s, ε)]

=
(

1− P
[
E{
∣∣∣B(s, ε)

])
P[B(s, ε)]

≥ P[B(s, ε)]− δ′

≥ 1− δ′nsampleV(ε, δ′)
since

P[B(s, ε)] = 1− P
[
B(s, ε){

]
= 1− P

 ⋃
(z,e)∈params(s,ε)

A(z, e){


≥ 1−

∑
(z,e)∈params(s,ε)

P
[
A(z, e){

]
≥ 1− δ′

∑
(z,e)∈params(s,ε)

nsampleV(e, δ
′) by induction hypothesis (iii)

= 1− δ′(nsampleV(ε, δ′)− 1)

This proves (iii). Now, let’s prove (i).

For any event E , we write

EE [·] = E
[
·
∣∣∣E]

Case 1. We start with case 1, κ ≤ ε < 1+Mλ

1−γ , where ζ(ε) = ε and

V̂ε(s) = Fs(Q̂
ε
s) (24)

We have:

|EA(s,ε)

[
V̂ε(s)

]
− V (s)| = |EA(s,ε)

[
Fs(Q̂

ε
s)− Fs(Qs)

]
|

≤ EA(s,ε)

[
|Fs(Q̂εs)− Fs(Qs)|

]
≤ EA(s,ε)

[
‖Q̂εs(a)−Qs(a)‖∞

]
≤ ζ(ε) = ε

and (i) is verified for case 1.

Case 2. Consider now the case 2, ε < κ, where ζ(ε) =
√
κε.

Let A be the action following the distribution
∇Fs(Q̂εs)
‖∇Fs(Q̂εs)‖1

, and let the reward Rs,A and the state Zs,A

be the random variables associated to the call to the generative model with parameters (s,A). Let
v̂ = sampleV

(
Zs,A, ε/

√
γ
)
. The output in this case is given by

V̂ε(s) = Fs

(
Q̂εs

)
− (Q̂εs)

T∇Fs
(
Q̂εs

)
+ (R+ γv̂)‖∇Fs

(
Q̂εs

)
‖1 (25)
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Let

Qs(A) = EA(s,ε)

[
Rs,A + γV (Zs,A)|A, Q̂εs

]
= EA(s,ε)[Rs,A + γV (Zs,A)|A]

and let

Ṽ (s) = EA(s,ε)

[
Fs

(
Q̂εs

)
− (Q̂εs)

T∇Fs
(
Q̂εs

)
+Qs(A)‖∇Fs

(
Q̂εs

)
‖1
]

(26)

We have

|EA(s,ε)

[
V̂ε(s)

]
− Ṽ (s)|

(a)
= γ|EA(s,ε)

[
EA(s,ε)

[
sampleV

(
Zs,A,

ε
√
γ

)
− V (Zs,A)

∣∣∣A, Q̂εs, Zs,A]‖∇Fs(Q̂εs)‖1]|
(b)
= γ|EA(s,ε)

[(
EA(s,ε)

[
sampleV

(
Zs,A,

ε
√
γ

)∣∣∣A, Q̂εs, Zs,A]− V (Zs,A)

)]
‖∇Fs

(
Q̂εs

)
‖1|

(c)

≤ γEA(s,ε)

[
|EA(s,ε)

[
sampleV

(
Zs,A,

ε
√
γ

)∣∣∣A, Q̂εs, Zs,A]− V (Zs,A)|
]

(d)
= γEA(s,ε)

[
|EA(Zs,A,ε/

√
γ)

[
sampleV

(
Zs,A,

ε
√
γ

)∣∣∣Zs,A]− V (Zs,A)|
]

(e)

≤ γ
ε
√
γ

=
√
γε

which is justified by the following points:

(a) The reward depend only on s, a and law of total expectation;

(b) V (Zs,A) is a function of Zs,A and no other random variable;

(c) Jensen’s inequality and the fact that ‖∇Fs
(
Q̂εs

)
‖1 ≤ 1;

(d) Given Zs,A, the term sampleV
(
Zs,A,

ε√
γ

)
depends on A(s, ε) only through

A(Zs,A, ε/
√
γ);

(e) Induction hypothesis (i).

Now, EA(s,ε)

[
Qs(A)‖∇Fs

(
Q̂εs

)
‖1
]

can be written as

EA(s,ε)

[
Qs(A)‖∇Fs

(
Q̂εs

)
‖1
]

= EA(s,ε)

[
EA(s,ε)

[
Qs(A)

∣∣∣Q̂εs]‖∇Fs(Q̂εs)‖1]
= EA(s,ε)

[
QT

s∇Fs
(
Q̂εs

)]
so that Ṽ (s) is given by

Ṽ (s) = EA(s,ε)

[
Fs

(
Q̂εs

)
+ (Qs − Q̂εs)T∇Fs

(
Q̂εs

)]
(27)

Finally, we bound the difference between Ṽ (s) and V (s):

20



|Ṽ (s)− V (s)| ≤ EA(s,ε)

[
|Fs
(
Q̂εs

)
+ (Qs − Q̂εs)T∇Fs

(
Q̂εs

)
− V (s)|

]
≤ LEA(s,ε)

[
‖Qs − Q̂εs‖22

]
(a)

≤ KLEA(s,ε)

[
‖Qs − Q̂εs‖2∞

]
≤ KLζ(ε)2

= KLκε

= (1−√γ)ε

by using the fact that we are on A(s, ε) and (a) uses the fact that for all x ∈ RK , ‖x‖22 ≤ K‖x‖2∞.

We can now prove (i) for case 2:

|EA(s,ε)

[
V̂ε(s)

]
− V (s)| ≤ |EA(s,ε)

[
V̂ε(s)

]
− Ṽ (s)|+ |Ṽ (s)− V (s)| (28)

≤ √γε+ (1−√γ)ε = ε (29)

Finally, let’s prove (ii).

Case 1. In this case, V̂ε(s) = Fs(Q̂
ε
s) with ‖Q̂εs‖∞ ≤ (1 +Mλ)/(1− γ), since each component

of Q̂εs is clipped and lie in the interval
[
0, 1+Mλ

1−γ

]
. The assumptions on Fs imply that |V̂ε(s)| ≤

1+Mλ

1−γ ≤ Cγ .

Case 2. In this case, we have:

|V̂ε(s)| ≤ |Fs
(
Q̂εs

)
− (Q̂εs)

T∇Fs
(
Q̂εs

)
|+ |R+ γv̂|‖∇Fs

(
Q̂εs

)
‖1

≤ 2‖Q̂εs‖∞ +Mλ + 1 + γCγ

≤ 2(1 +Mλ)

1− γ
+Mλ + 1 + γCγ

≤ Cγ

since |v̂| ≤ Cγ by induction hypothesis (ii).

This proves (ii) for case 2:

P
[
|V̂ (s)| ≤ Cγ

∣∣∣A(s, ε)
]

= 1 (30)

Now, we can prove Theorem 2, which is restated as follows:

Theorem. Let V̂ (s) be the output of SmoothCruiser(s, ε, δ′). For any state s ∈ S and ε, δ′ > 0,

P
[
|V̂ (s)− V (s)| > ε

]
≤ δ′n(ε, δ′).

Proof. Let Q̂s = estimateQ(s, ε). We have V̂ (s) = Fs(Q̂s). As in the proof of Lemma 2, let the
reward R(k)

s,a and state Z(k)
s,a be the random variables associated to the k-th call to the generative model

used to compute Q̂s(a) in estimateQ, for k ∈ {1, · · · , N(ε)}.
We have:
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Q̂s(a) =
1

N(ε)

N(ε)∑
k=1

R(k)
s,a + γsampleV

(
Z(k)
s,a , ε/

√
γ
)

(31)

Consider the event E defined by:

E =

N(ε)⋂
k=1

A
(
Z(k)
s,a ,

ε
√
γ

)
(32)

By the same arguments as in the proof of Lemma 2, we have:

• In E , we have ‖Q̂s −Qs‖∞ ≤ ε;

• P[E ] ≥ 1− δ′N(ε)nsampleV(ε, δ
′) = 1− δ′n(ε, δ′).

This implies the result, since |V̂ (s)− V (s)| ≤ ‖Q̂s −Qs‖∞.

Now, for every ε > 0 and every δ > 0, we need to be able to find a value of δ′ such that δ′n(ε, δ′) ≤ δ.
That is, given ε and δ, we need to find δ′ such that

δ′
c1
ε4

log
(c2
δ′

)[
c3 log

(c4
ε

)]log2(c5(log(
c2
δ′ ))) ≤ δ. (33)

Such value exists, since the term on the LHS tends to 0 as δ′ → 0, and it depends on ε. We will show
that this dependence is polynomial when ε→ 0.

Let δ′ = ε5. There exists a value ε̃ that depends on δ such that:

∀ε ≤ ε̃, ε5
c1
ε4

log
( c2
ε5

)[
c3 log

(c4
ε

)]log2(c5(log(
c2
ε5

)))
≤ δ. (34)

since the term on the LHS tends to 0 as ε→ 0, as a consequence of Proposition 2.

Putting it all together, we can choose δ′ as folllows:

δ′ =

{
δ̃ such that δ̃ c1ε4 log

(
c2
δ̃

)[
c3 log

(
c4
ε

)]log2(c5(log(
c2
δ̃

))) ≤ δ, if ε > ε̃,

ε5, if ε ≤ ε̃
(35)

which is O
(
ε5
)
.

Proposition 3 implies that, for this choice of δ′, the sample complexity is still of order O
(
1/ε4+c

)
for any c > 0.

D Auxiliary results

Fact 1. For all s ∈ S and all x ∈ RK , we have Fs(x) ≤ ‖x‖∞ + sups |Fs(0)|.

Proof. By the assumptions on Fs, we have:

|Fs(x)| = |Fs(x)− Fs(0) + Fs(0)| ≤ |Fs(x)− Fs(0)|+ |Fs(0)| (36)
≤ ‖x− 0‖∞ + |Fs(0)| ≤ ‖x‖∞ + sup

s
|Fs(0)|. (37)
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Fact 2. Let x, q ∈ Rd be such that 0 ≤ qi ≤ c for all i. Let x̃ = clipc(x). Then, ‖x̃ − q‖∞ ≤
‖x− q‖∞.

Proof. For any i ∈ {1, . . . , d}, we have |x̃i − qi| ≤ |xi − qi|, since 0 ≤ qi ≤ c. The result
follows.

Proposition 2. ∀a, b, c > 0

lim
x→∞

1

xc
exp
(
a[log log(xb)]2

)
= 0

Proof. We have
1

xc
exp
(
a[log log(xb)]2

)
= exp

(
a[log log(xb)]2 − c log x

)
= exp

(
a[log u]2 − c

b
u
)
, by setting u = log(xb)

And, for any k > 0, we have

lim
u→∞

log2 u− ku = −∞. (38)

which allows us to conclude.

Proposition 3. If we set δ′ = δ′(ε) = ε5, we have:

n(ε, δ′(ε)) = O
(

1

ε4+c

)
, ∀c > 0

Proof. We have:

nsampleV(ε, δ
′(ε)) ≤ η1

[
log 1

γ

(
ε/γ

ε

)]η2(ε3) 1

ε2

=

[
log 1

γ

(
ε/γ

ε

)]log2(k log( 2K
ε3

))

︸ ︷︷ ︸
(A)

1

ε2

where k is a constant that does not depend on ε. The term (A) can be rewritten as:

[
log 1

γ

(
ε/γ

ε

)]log2(k log( 2K
ε3

))
=
[
c1 log

(c2
ε

)]c3 log[k log( c4
ε3

)]

= exp
{
c3 log

[
k log

( c4
ε3

)]
log
(
c1 log

(c2
ε

))}
which can be shown to be O

(
1
εc

)
for any c > 0 by applying proposition 2 after some algebraic

manipulations.

Hence,

nsampleV(ε, δ
′(ε)) =

1

ε2
O
(

1

εc

)
= O

(
1

ε2+c

)
, ∀c > 0.

Since we have

n(ε, δ′) = N(ε)nsampleV(ε, δ
′)

with N(ε) = Õ
(
1/ε2

)
, this proves the result.
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Corollary 1. If we set δ′ = δ′(ε) = ε5, we have:

lim
ε→0

δ′(ε)n(ε, δ′(ε)) = 0

Proof. It is an immediate consequence of proposition 3 by taking c ∈]0, 1[.

E On other smooth approximations of the max

In this paper we focus on the LogSumExpλ function as a smooth approximation to the maximum
function. Yet our proof is more general and can handle any approximation of the max function which
verifies the properties listed in Section 5. For instance let’s consider the following regularization of
the Bellman equation:

F(Q) = max
(πa)a∈A

∑
a∈A

(Qa · πa + λ
√
πa) (39)

This smooth function is particularly interesting because it approximates the distribution of pulled

armed of the UCB algorithm by taking λ = 2c ·
√

ln(n)
n (see 41 and notice that π?a · n approximates

na). We show that this smooth approximation of the maximum verifies the assumptions made in
Section 5. We have

F(Q) =
∑
a∈A

(
Qa · π?a + λ

√
π?a

)
(40)

and we can show that ∇QF(Q) = π?. Therefore point 1, 2 and 3 of Section 5 are verified. Now by
differentiating with respect to π this time:

∀a ∈ A Qa +
λ

2
√
π?a

= U (41)

where U is the Lagrange multiplier. Using the fact that
∑
a∈A π

?
a = 1, we get

∑
a∈A

(
λ/2

U −Qa

)2

= 1 (42)

Because U > maxa π
?
a the derivative of the left side with respect to U is positive for all Qa ∈

[0, (1 +Mλ)/(1− γ)]|A|. Using the inverse function theorem we get that U is differentiable with

respect to Q and that π?a =
(

λ/2
U−Qa

)2
is also differentiable with respect to Q. Finally because

[0, (1 +Mλ)/(1− γ)]|A| is compact we can conclude that F is L-smooth for some L ≥ 0 verifying
point 4 of Section 5.

F Experimental validation of the theoretical results

In this section, we present the experiments we made to verify the correctness of our sample complexity
bounds (Theorem 1) and of our consistency results (Theorem 2).

F.1 Checking the sample complexity guarantee

The key step for proving Theorem 1 is using Lemma 1, that bounds the number of calls to the
generative model made by a call to sampleV(s, ε).

Figure 2 shows the simulated number of calls to the generative model made by nsampleV(ε, δ′) as a
function of 1/ε and compares it to our theoretical bound in Lemma 1 and to the number of calls that
would be required by a Sparse Sampling strategy, which corresponds to the bound in Proposition 1
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extrapolated to all values of ε. The simulated values where obtained by computing the following
recurrence for several values of ε:

nsimsampleV(ε, δ
′) =

1 + nsimsampleV

(
ε√
γ , δ
′
)

+KN(
√
κε)nsimsampleV

(√
κε
γ , δ

′
)
, if ε < κ,

γ
1
2H(ε)(H(ε)−1)

(
2α(δ′)
ε2

)H(ε)

, otherwise.

Figure 3 shows the mumber of calls to the generative model made by nsampleV as a function of the
regularization parameter λ in order to achieve a relative error of 0.017 and its ratio with respect to
the number of calls that would be required by Sparse Sampling in the same setting. We see that
fewer samples are required as the regularization increases. We also see that, for small λ, there is no
advantage with respect to Sparse Sampling, but SmoothCruiser has a very large advantage when
the regularization λ grows.
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Figure 2: Simulated number of calls to the generative model made by nsampleV(ε, δ′) as a function of
1/ε compared to our theoretical bound (Lemma 1) and to the number of calls that would be required
by a Sparse Sampling strategy. The parameters used were: γ = 0.2, δ′ = 0.1, K = 2 and λ = 0.1.

F.2 Checking the consistency guarantee

Using our MCTS analogy in Section 3.3, the two most computationally costly operations of
SmoothCruiser are the selectAction and the evaluateLeaf functions. They both rely on
estimates of the Q function with some required accuracy. Hence, for a sanity-check, we implemented
the function sampleV by replacing its calls to estimateQ(s, accuracy) by the true Q function at
state s plus some accuracy-dependent noise, and we denote this simplified version of sampleV by
sampleVcheck . This allowed us to verify that our bounds for the bias of the sampleV outputs (Lemma
2) are correct. After Nsim calls to sampleVcheck(ε, δ′), we compute the error

∆̂(s, ε) =
1

Nsim

Nsim∑
i=1

(
V̂i(s, ε)− V (s)

)
(43)

7 We set ε = 0.01V max
λ , where V max

λ = (1 + λ logK)/(1− γ) is an upper bound on the regularized value
function.
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Figure 3: Number of calls to the generative model made by nsampleV as a function of the regularization
parameter λ in order to achieve a relative error of 0.01 (left) and its ratio with respect to the number
of calls that would be required by Sparse Sampling in the same setting (right). The parameters used
were: γ = 0.2, δ′ = 0.1 and K = 2.

where s is a reference state and V̂i(s, ε) is the output of the i-th call to sampleVcheck(s, ε). Lemma 2

states that, for some high probability event B, we have −ε ≤ E
[
∆̂(s, ε)|B

]
≤ ε. Hence, for large

Nsim, we should have −ε ≤ ∆̂(s, ε) ≤ ε approximately.

Table 1 shows simulated values of ∆̂(s, ε) and their standard deviations for different environments.
The value of Nsim was chosen so that ∆̂(s, ε) is close to its mean, by using Hoeffdings’s inequality
and assuming that V̂i(s, ε) is bounded by Cγ (which holds with high probability, by Lemma 2).

Environment ∆̂(s, ε)

5-Chain (−1.21± 1.65)× 10−2

10-Chain (−1.20± 1.63)× 10−2

5x5-GridWorld (−0.71± 2.04)× 10−2

10x10-GridWorld (−0.71± 2.03)× 10−2

Table 1: Simulated values of ∆̂(s, ε) and its standard deviation for different environments, for
ε = 0.35. The value of ε was chosen such that ε ≤ κ/4 in all environments. The parameters used
were: Nsim = 32723, γ = 0.2 and λ = 10. The n-Chain environments have K = 2 and n states and
the n× n-GridWorld environments have K = 4 and n2 states.

The code for the experiments is at https://github.com/omardrwch/smoothcruiser-check.
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