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Problem Description (1)

From supervised learning to weakly supervised learning:

Combating over-fitting issue: e.g., big data

The lack of fully supervised data: infeasible or labor-intensive1

Certain constraints: e.g., privacy2

The ubiquity of weakly labeled learning (WeLL): Semi-supervised
learning (SSL) and Multi-instance Learning (MIL)

Learning with bags: MIL and learning from label proportions (LLP)

1Z. Wang and J. Feng. “Multi-class learning from class proportions”. In: Neurocomputing 119.16 (2013), pp. 273–280.
2Z. Qi, B. Wang, F. Meng, et al. “Learning with label proportions via NPSVM”. In: IEEE Transactions on Cybernetics 47.10

(2017), pp. 3293–3305.
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Problem Description (2)
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Figure: An illustration of multi-class LLP.

The data belongs to three categories and is partitioned into four
non-overlapping groups.

The sizes of green, blue, and orange rectangles respectively denote
available label proportions in different categories.

We only know feature information and class proportions.
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Challenges

The uncertainty in label inference (proportional information in bags)

Strict assumption on data distribution (statistical approaches, e.g.,
MeanMap3 and Laplacian MeanMap4)

NP-hard combinatorial optimization issue (SVM-based methods, e.g.,
InvCal5 and alter-∝SVM6)

The lack of scalability (shallow models)

3N. Quadrianto, A. J. Smola, T. S. Caetano, et al. “Estimating labels from label proportions”. In: Journal of Machine
Learning Research 10.Oct (2009), pp. 2349–2374.

4G. Patrini et al. “(Almost) no label no cry”. In: Advances in Neural Information Processing Systems. 2014, pp. 190–198.
5S. Rueping. “SVM classifier estimation from group probabilities”. In: International Conference on Machine Learning. 2010,

pp. 911–918.
6F. X. Yu, D. Liu, S. Kumar, et al. “∝-SVM for learning with label proportions”. In: International Conference on Machine

Learning. 2013, pp. 504–512.
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Motivations

In this paper, we apply GANs to LLP in large scale scenarios.

GAN is an elegant recipe for solving WeLL problem7.

Generative models offer explicit or implicit representations for WeLL8.

LLP-GAN is free of strict assumptions through the adversarial scheme.

7T. Salimans, I. Goodfellow, W. Zaremba, et al. “Improved techniques for training GANs”. In: Advances in Neural
Information Processing Systems. 2016, pp. 2234–2242.

8D. P. Kingma and M. Welling. “Auto-encoding variational bayes”. In: arXiv preprint arXiv:1312.6114 (2013).
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Contributions

We propose a simple improvement based on entropy regularization for
the existing deep LLP solver.

We reveal relationship between prior class proportions and posterior
class likelihoods.

We offer a decomposition representation of the class likelihood with
respect to the prior class proportions, which verifies the existence of
the final classifier.

We empirically show that our method can achieve SOTA performance
on large-scale LLP problems with a low computational complexity.
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Problem Settings

All the bags are disjoint and let Bi ={x1
i , x

2
i ,· · ·, x

Ni
i }, i = 1, 2,· · ·, n be

the bags in training set.

Training data is D=B1 ∪ B2 ∪· · ·∪ Bn,Bi ∩ Bj =∅, ∀i 6= j , where the
total number of bags is n.

Assuming we have K classes, for Bi , let pi be a K -element vector,
where the kth element pki is the proportion of instances belonging to

the class k , with the constraint
∑K

k=1 p
k
i =1, i.e.,

pki :=
|{j ∈ [1 : Ni ]|xji ∈Bi , y

j∗
i =k}|

|Bi |
. (1)

Here, [1 :Ni ]={1, 2,· · ·,Ni} and y j∗i is the unaccessible ground-truth

instance-level label of xji .
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Deep LLP Appoach

Suppose that p̃ji =pθ(y|xji ) is the vector-valued DNNs output for xji ,
where θ is the network parameter.

The bag-level label proportion in the i th bag is to incorporate the
element-wise posterior probability:

pi =
1

Ni

Ni⊕
j=1

p̃ji =
1

Ni

Ni⊕
j=1

pθ(y|xji ). (2)

Entropy Regularization for DLLP9:

L = Lprop + λEin = −
n∑

i=1

pᵀi log(pi )− λ
n∑

i=1

Ni∑
j=1

(p̃ji )
ᵀlog(p̃ji ). (3)

9E. M. Ardehaly and A. Culotta. “Co-training for demographic classification using deep learning from label proportions”. In:
International Conference on Data Mining Workshops. IEEE. 2017, pp. 1017–1024.
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Adversarial Learning for LLP

We illustrate the LLP-GAN framework as follows.

DiscriminatorDiscriminator

C1 
C2

C3

GeneratorGeneratorNoise

C4 

Real Data

Fake Data

[5/9  2/9  2/9] [3/9  2/9  4/9][4/9  2/9  3/9][2/9  4/9  3/9]

Predicted 
Proportions

Adversarial Loss

Cross Entropy Loss

Figure: An illustration of our LLP-GAN framework.

(UCAS & UIBE) LLP-GAN December 5, 2019 13 / 31



The Objective of Discriminator (1)

We normalize the first K classes in PD(·|x) as instance-level posterior
probability p̃D(·|x) and compute p based on (2).

The ideal optimization problem for the discriminator of LLP-GAN is:

max
D

V (G ,D)=Lunsup+Lsup =Lreal +Lfake−λCEL(p,p)

=
n∑

i=1

Ex∼pid

[
logPD(y≤K |x)

]
+Ex∼pg

[
logPD(K+1|x)

]
+λ

n∑
i=1

pᵀi log(pi ).

(4)

Here, pg (x) is the distribution of the synthesized data.
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The Objective of Discriminator (2)

The Lower Bound Approximation:

− CEL(p,p) =
n∑

i=1

K∑
k=1

pi (k)log
[ 1

Ni

Ni∑
j=1

p̃D(k |xji )
]

w
n∑

i=1

K∑
k=1

pi (k)log
[∫

pid(x)p̃D(k|x)dx
]
>

n∑
i=1

K∑
k=1

pi (k)Ex∼pid

[
log p̃D(k |x)

]
.

(5)

The expectation in the last term can be approximated by sampling.
Similar to EM mechanism10 for mixture models, by approximating
−CEL(p,p) with its lower bound, we can perform gradient ascend
independently on every sample, e.g., SGD.

10T. K. Moon. “The expectation-maximization algorithm”. In: IEEE Signal processing magazine 13.6 (1996), pp. 47–60.
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The Optimity

Lemma

The maximization on lower bound in (5) induces optimal discriminator D∗

with a posterior distribution p̃D∗(y |x), which is consistent with the prior
distribution pi (y) in each bag.

Theorem

For fixed G , the optimal discriminator D∗ for Ṽ (G ,D) satisfies:

PD∗(y =k |x) =

∑n
i=1 pi (k)pid(x)∑n

i=1 p
i
d(x)+pg (x)

, k =1, 2, · · · ,K . (6)
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Beyond the Incontinuity of pg

The generator is a mapping from a low dimensional space to a high
dimensional one.

The density of pg (x) is infeasible11.

Based on the definition of p̃D(y |x), we have:

p̃D∗(y |x)=

∑n
i=1 pi (y)pid(x)∑n

i=1 p
i
d(x)

=
n∑

i=1

wi (x)pi (y). (7)

Our final classifier does not depend on pg (x).

(7) explicitly expresses the normalized weights of the aggregation with

wi (x)=
pid (x)∑n
i=1 p

i
d (x)

.

11M. Arjovsky and L. Bottou. “Towards principled methods for training generative adversarial networks”. In: International
Conference on Learning Representations. 2016.
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The Objective Function of Generator

Normally, we should solve the following optimization problem with
respect to pg for the generator.

min
G

Ṽ (G ,D∗)=min
G

Ex∼pg logPD∗(K + 1|x). (8)

However, a well-trained generator would lead to the inefficiency of
supervised information.

Hence, we apply feature matching (FM) to the generator and obtain
its alternative objective by matching the expected value of features
(statistics) on an intermediate layer of the discriminator:

L(G )=‖Ex∼ 1
n
pd
f (x)−Ex∼pg f (x)‖2

2 (9)
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LLP-GAN Algorithm

Algorithm 1: LLP-GAN Training Algorithm

Input: The training set L={(Bi ,pi )}ni=1; L: number of total
iterations; λ: weight parameter.

Output: The parameters of the final discriminator D.
Set m to the total number of training data points.
for i=1:L do

Draw m samples {z(1), z(2),· · ·, z(m)} from a simple-to-sample noise
prior p(z) (e.g., N(0, I )).

Compute {G (z(1)),G (z(2)), · · · ,G (z(m))} as sampling from pg (x).
Fix the generator G and perform gradient ascent on parameters of
D in Ṽ (G ,D) for one step.

Fix the discriminator D and perform gradient descent on
parameters of G in L(G ) for one step.

end
Return parameters of the discriminator D in the last step.
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Convergence Analysis

DLLP v.s. LLP-GAN (proposed)
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(d) Bag size: 128

Figure: The convergence curves on CIFAR-10 w/ different bag sizes.
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Generated Samples

To validate the effectiveness of generator in LLP-GAN, we compare the
generated samples of our model with that of the standard GAN with
feature matching.

(a) GANs with FM (b) 50 epochs (ours) (c) 60 epochs (ours) (d) 70 epochs (ours)

Figure: Generated samples on CIFAR-10.
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Hyperparameter Analysis

(a) λ on MNIST (b) λ on SVHN (c) λ on CIFAR-10

Figure: Analysis on hyperparameter.
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Error Rates Comparison(1)

The results are the average performances of four datasets: MNIST, SVHN,
CIFAR-10, and CIFAR-100.

16 32 64 128

Bag Size
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Figure: The average error rates w/ different bag sizes.
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Error Rates Comparison (2)

Table: Test error rates (%) on benchmark datasets w/ different bag sizes.

Dataset Algorithm
Bag Size Baseline

16 32 64 128 CNNs

MNIST
DLLP 1.23 (0.100) 1.33 (0.094) 1.57 (0.088) 3.55 (0.27)

0.36
LLP-GAN 1.10 (0.026) 1.23 (0.088) 1.40 (0.089) 3.49 (0.27)

SVHN
DLLP 4.45 (0.069) 5.29 (0.54) 5.80 (0.91) 39.73 (1.60)

2.35
LLP-GAN 4.03(0.021) 4.83(0.51) 5.42(0.59) 11.17(1.12)

CIFAR-10
DLLP 19.70 (0.77) 34.39 (0.82) 68.32 (1.34) 82.89 (2.66)

9.27
LLP-GAN 13.68 (0.35) 16.23 (0.43) 21.03 (1.82) 27.39 (4.31)

CIFAR-100
DLLP 53.24(0.77) 98.38(0.11) 98.65(0.09) 98.98(0.08)

35.68
LLP-GAN 50.95(0.67) 56.44(0.78) 64.37(1.52) 85.01(1.81)
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Error Rates Comparison (3)

Table: Binary test error rates (%) on benchmark datasets w/ different bag sizes.

Dataset Algorithm
Bag Size

16 32 64 128

MNIST

InvCal 0.50 0.55 1.25 0.1
alter-pSVM 0.20 0.20 0.25 0.2

DLLP 0.049 0.049 0.049 0.049
LLP-GAN 0.047 0.047 0.047 0.047

CIFAR-10

InvCal 28.95 29.16 26.47 31.84
alter-pSVM 24 26.74 30.32 27.95

DLLP 11.31 15.83 18.96 22.59
LLP-GAN 1.39 1.61 11.59 18.29

SVHN

InvCal 11.55 13.35 12.95 12.70
alter-pSVM 7.05 7.95 7.95 11.15

DLLP 1.38 1.7 3.77 24.45
LLP-GAN 1.49 1.8 3.46 9.23
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Error Rates Comparison (4)
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Figure: Multi-class test error rates (%) on benchmark w/ different bag sizes.
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Conclusion

This paper proposed a new algorithm LLP-GAN for LLP problem in
virtue of the adversarial learning based on GANs.

Our method is superior to existing methods in three aspects.

Nice theoretical properties

A probabilistic classifier

Scalability: e.g., image data applications
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Future Work

Learning complexity in the sense of PAC is not involved in this study.

There is no guarantee on algorithm robustness to data perturbations:
e.g., imprecise proportions.

Varying GANs are not considered in our current model and their
performance is unknown: e.g. WGAN12.

The performance of LLP-GAN on tabular data and structured
(non-random) data13 is not included.

12M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein generative adversarial networks”. In: ICML. 2017, pp. 214–223.
13G. Patrini et al. “(Almost) no label no cry”. In: Advances in Neural Information Processing Systems. 2014, pp. 190–198.
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