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Abstract

Reducing the model redundancy is an important task to deploy complex deep
learning models to resource-limited or time-sensitive devices. Directly regularizing
or modifying weight values makes pruning procedure less robust and sensitive
to the choice of hyperparameters, and it also requires prior knowledge to tune
different hyperparameters for different models. To build a better generalized and
easy-to-use pruning method, we propose AutoPrune, which prunes the network
through optimizing a set of trainable auxiliary parameters instead of original
weights. The instability and noise during training on auxiliary parameters will not
directly affect weight values, which makes pruning process more robust to noise
and less sensitive to hyperparameters. Moreover, we design gradient update rules
for auxiliary parameters to keep them consistent with pruning tasks. Our method
can automatically eliminate network redundancy with recoverability, relieving
the complicated prior knowledge required to design thresholding functions, and
reducing the time for trial and error. We evaluate our method with LeNet and VGG-
like on MNIST and CIFAR-10 datasets, and with AlexNet, ResNet and MobileNet
on ImageNet to establish the scalability of our work. Results show that our model
achieves state-of-the-art sparsity, e.g. 7%, 23% FLOPs and 310x, 75x compression
ratio for LeNet5 and VGG-like structure without accuracy drop, and 200M and
100M FLOPs for MobileNet V2 with accuracy 73.32% and 66.83% respectively.

1 Introduction

Deep neural networks (DNNs) have achieved a significant success in many applications, ranging from
image classification He et al. [2016] and object detection Ren et al. [2015] to self driving Maqueda et
al. [2018] and machine translation Sutskever et al. [2014]. However, the computationally expensive
and memory intensive properties of DNNs prevent their direct deployment to devices such as mobile
phones and auto-driving cars. To overcome these challenges, learning compressed light-weight DNNs
has attracted growing research attention Han et al. [2015]; Dong et al. [2017]; Zhuang et al. [2018].

For recent pruning methods, prior knowledge plays an important role in improving the performance
and reducing the training time, in which a large number of hyperparameters need to be individually
designed for different architectures and datasets. In magnitude-based pruning, where weights lower
than thresholds will be removed, the chosen thresholds majorly affect the pruning performance Han
et al. [2015]; Guo et al. [2016]. Moreover, for the layer-wise pruning Dong et al. [2017]; Aghasi
et al. [2017], the searching space for layer-wise threshold combinations can be exponential in the
number of layers. As another branch of pruning, sensitivity-based method Tartaglione et al. [2018]
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removes the less sensitive weights from the network, while further hyperparameter/function design is
required to avoid undesired weight shrinkage or updates.

Recently research on pruning Liu et al. [2019b] implies that the pruning process is actually finding the
right network structure, thus bridging the gap between pruning and neuron architecture search(NAS).
However, state-of-art NAS methods cannot be directly applied to pruning task. For example, gradient
based search algorithm DART Liu et al. [2019a] introduces auxiliary parameters acting as indicators
to select the appropriate network structure optimized through a gradient-descent procedure. But, dis-
crepancy between continuous over-parameterized graph and the discretized sub-graph is unavoidable
during the model evaluation procedure, and zero operation is eliminated in the search space. Our
method is similar to DART such that we employ smooth, approximated, gradient-based search to
pruning task, but the discrepancy is reduced by iteratively evaluating recoverable sub-graph during
the pruning procedure.

The advantage of introducing auxiliary parameters to pruning task is hyperparameter insensitive.
Instead of directly regularizing weights, our method regularizes auxiliary parameters which aggregate
gradient perturbations such as batch noise, dead neuron or dropout during pruning. In this way,
temporarily incorrect pruning induced by the instability and non-optimal hyperparameters can be
recovered, which greatly contributes to the pruning performance and efficiency. Different from
updating auxiliary parameters with vanilla unstable linear coarse gradient in Srinivas et al. [2017],
in order to stabilize the pruning procedure, we analyze and decouple the gradient between weight
parameters and auxiliary parameters. In contrast to Louizos et al. [2018], our method avoids
inefficient and high variance single-step Monte-Carlo sampling and places no assumptions on the
prior distribution. In comparison with Carreira-Perpinán and Idelbayev [2018], we add no constraints
on model parameters, maintaining the flexibility and capacity of the model. In addition, we design a
sparse regularizer working with the original loss function and weight decay. In order to evaluate the
proposed method, we conduct extensive experiments on different datasets and models, and the results
show that our method achieves state-of-the-art performance.

Contributions and novelty of our work are: 1) we offer a gradient based automatic network pruning
model; 2) we propose novel and weakly coupled update rule for auxiliary parameters to stabilize
pruning procedure; 3) we reduce the sub-graph discrepancy by iteratively evaluating recoverable
sub-graph; 4) we evaluate different smooth approximations of the derivative of the rectifier; 5) we
obtain the state-of-art results on both structure and weight pruning and our method is scalable on
modern models and datasets.

2 Related Work

Neural network pruning can be mainly classified into two categories: unstructured pruning and
structured pruning. Unstructured pruning compresses neural networks by dropping redundant/less-
meaningful weights, while structured pruning is by dropping neurons. Both pruning methods shrink
the storage space of the targeted neural network, but, comparatively speaking, structured pruning has
a directly benefit in reducing the computational cost of DNNs.

LeCun et al. [1990] pioneers neural network pruning and proposes optimal brain damage method
for shallow neural network unstructured pruning. For DNNs, Han et al. [2015] presents global
magnitude-based weight pruning and Guo et al. [2016] introduces recoverability into the global
pruning. Similar idea has then been applied to structured pruning. Hu et al. [2016] removes neurons
with high average zero output ratio and Li et al. [2017] prunes neurons with low absolute summation
values of incoming weights, which are all replying on predefined thresholds.

In order to further improve the compression rate, different layer-wise pruning methods have been
proposed, either by weighting connections based on a layer-wise loss function(Dong et al. [2017])
or by solving a specially designed convex optimization program(Aghasi et al. [2017]). These layer-
wise schemes provide theoretical error bounds for specific activation functions but leave many
hyperparameters to be carefully designed. Due to this issue, Li et al. [2018] presents a relatively
efficient comprehensive optimization algorithm for tuning layer-wise hyperparameters.

Besides layer-wise schemes, Gordon et al. [2018] scales efficient structured pruning on large networks
by applying resource weighted sparsifying regularizers on activations. Zhu et al. [2018] improves
neural network sparsity by explicitly forcing the network to learn a set of less correlated filters via
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decorrelation regularization. Zhuang et al. [2018] designs a discrimination-aware channel pruning
method to locate most discriminative channels. But after ranking the filters or channels, we still have
to pinpoint their optimal combinations for each layer, which highly relies on expertise. Gomez et al.
[2019] proposed to keep neurons with high magnitude and prune neurons with smaller magnitude in
a stochastic way. The accuracy is maintained by reducing the dependency of important neurons on
unimportant neurons.

Liu et al. [2019b] does comprehensive experiments showing that training-from-scratch on the right
sparse architecture yields better results than pruning from pre-trained models. Searching for a spare
architecture is more important than the weight values. Liu et al. [2019a] employs continuous indicator
parameters to relax the non-differentiable architecture searching problem. The relaxation is then
removed by dropping weak connections and selecting the single choice of the k options with the
highest weight. However, the gap between the continuous solution and the discretized architecture
remain unknown. More importantly, zero operations are omitted during the derivation process,
making is unsuitable for network pruning. Yu and Huang [2019a] implements greedy search for
width multipliers of slimmable network(Yu et al. [2018]) to reduce kernel number. Multiple batch
normalization layers are trained under different channel settings. However, a significant accuracy
drop is observed in extreme sparse cases.

3 Methods

In this section, we first formulate the problem and discuss the indicator function and auxiliary
parameters. Then, we introduce the update rule for auxiliary parameters for stable and efficient
network pruning. Without losing generality, our method is formulated on weight pruning, but it can
be directly extended to neuron pruning.

3.1 Problem Formulation

Let fw : Rm×n → Rd be a continuous and differentiable neural network parametrized by W
mapping input X ∈ Rm×n to target Y ∈ Rd. The pruning problem can be formulated as:

argmin
w

1

N

( N∑
i=1

L(f(xi,W ), yi)

)
+ µ||W ||0, (1)

where ||W ||0 denotes zero norm, or number of non-zero weights. The goal is to find the sparse archi-
tecture with minimum subset w ∈ W that preserves the model accuracy. However, the second term is
non-differentiable, making the problem not solvable using gradient descent. Direct regularization on
wij will lead to sensitivity on hyperparameter µ and instability with batched training. We relax this
problem by introducing a indicator function defined as:

hij =

{
0, if wij is pruned;
1, otherwise.

(2)

Instead of designing an indicator function for each wij manually, we propose to parameterized a uni-
versal indicator function by a set of trainable auxiliary parameters M . Due to the non-differentiable
property of the indicator function, we will discuss how to update auxiliary parameters in subsec-
tions 3.2 and 3.3. Then the network sparsification problem can be re-formulated as an optimization
problem:

argmin
w,m

1

N

( N∑
i=1

L(f(xi,W � h(M)), yi)

)
+ λR(W ) + µR(h(M)), (3)

where R(·) denotes a regularization function. We also denote the element-wise product T =
W �h(M) as the weight matrix after pruning. The advantage of regularizing on auxiliary parameters
instead of original weights is that any change in mij does not directly influence the gradient update
of wij , leading to a less sensitive pruning process with respect to hyperparameter µ.

As done by Han et al. [2015] and Carreira-Perpinán and Idelbayev [2018], in order to enhance the
stability and performance, we also implement a multi-step training through iteratively training the
sparsity structure and retraining the original weights. More specifically, we employ the bi-level
optimization used in Liu et al. [2019a] for the optimization problem. The training set will be split
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into Xtrain and Xval, and we can further re-formulate the problem from minimizing a single loss
function to minimizing the following loss functions iteratively.

min
w
L1 = min

w

N∑
i=1

L(f(xi,W � h(M)), yi) + λR(W ), xi ∈ Xtrain, (4)

min
m
L2 = min

m

N∑
i=1

L(f(xi,W � h(M)), yi) + µR(h(M)), xi ∈ Xval, (5)

The first term in both loss functions is the regular accuracy loss for neural network training. Note that
the regularization of W is not necessarily required but we add the term to show that our method is
consistent with traditional regularizers.

3.2 Coarse Gradient for Indicator Function

The indicator function hij contains only zero and one values and thus is non-smooth and non-
differentiable. Inspired by Hubara et al. [2016] where binary weights are represented using step
functions and trained with hard sigmoid straight through estimator (STE), we use a simple step
function for indicator function hij with trainable parameter mij .

Binarized neural networks (BNNs) with proper STE have been demonstrated to be quite effective in
finding optimal binary parameters and can achieve promising results in complex tasks. The vanilla
BNNs are optimized by updating continuous variables mij :

∂L
∂mij

=
∂L

∂σ(mij)

∂σ(mij)

∂mij
, where σ(mij) = max(0,min(1,

mij + 1

2
)). (6)

The output of each weight is the output of the hard sigmoid binary function. Note that the gradients
of ∂σ(mij)

∂mij
can be estimated in multiple ways.
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Figure 1: Coarse Gradients for STEs

Srinivas et al. [2017] discuss using BNNs to learn sparse networks, however, the authors suggest
using linear STE to quickly estimate the gradient of the heaviside function. Recent result Yin et
al. [2019] shows that ReLU or clipped ReLU STEs yield better convergence while linear STE is
unstable at minima. Unfortunately, as shown in Fig. 1, the gradient of ReLU is zero if the input m is
smaller than zero. In other words, if we apply auxiliary parameters directly to any weight, without
any regularization, the weight will permanently die once the corresponding weight has been pruned.
Considering the pruning recoverability, we suggest using Leaky ReLU or Softplus instead of ReLU.

3.3 Updating Auxiliary Parameters

Instead of directly applying the gradient update as described in Eq. 6, we propose a modified update
rule of auxiliary parameters to be consistent with (1) the magnitude of weights; (2) the change of
weights; and (3) the directions of BNN gradients. The update rule of mij is defined as:

mij := mij − η
(
∂Lacc

∂tij
sgn(wij)

∂h(mij)

∂mij

)
− µ∂h(mij)

∂mij
(7)

where Lacc denotes L(f(xi,W � h(M)), yi), η is the learning rate of mij , tij = wij � h(mij), the
second term can be considered as the gradient of mij , ∂tij

∂mij
, and the third term is related to the sparse

regularizer. The proposed update rule is motivated from three advantages:

Sensitivity Consistency: The gradient of a vanilla BNN is correlated with wij , i.e., ∂Lacc

∂mij
∝ 1

f(|wij |) ,
which means that mij is more sensitive if the magnitude of the corresponding wij is large. Such a
sensitive correlation is counter-intuitive since a larger wij is more likely to be pruned with a small
turbulence which reduces the robustness of the pruning. In the proposed update rule, we decouple
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such a correlation to increase the stability of the pruning procedure. Practically, in order to boost the
sensitivity of mij associated with smaller weight magnitude(i.e. sensitivity consistency), we use a
multiplier wij to Eq. 7.

Correlation Consistency: The second advantage of the update rule is that the direction of the
gradient of an arbitrary auxiliary parameter mij is the same as the direction of the gradient of its
corresponding |wij |, when ignoring the regularizers, i.e., sgn( ∂L2

∂mij
) = sgn( ∂L1

∂|wij | ).

Proof. We can expand the gradient for wij and mij as follows:

∂L1

∂wij
=
∂Lacc

∂tij

∂tij
∂wij

+ λ
∂R(wij)

∂wij
=
∂Lacc

∂tij
h(mij) + λ

∂R(wij)

∂wij
(8)

∂L2

∂mij
=
∂Lacc

∂tij

∂tij
∂mij

+ µ
∂R(h(mij))

∂mij
=
∂Lacc

∂tij
wij

∂h(mij)

∂mij
+ µ

∂h(mij)

∂mij
(9)

If we consider the direction of the first term of both gradients while ignoring the regularizers:

sgn(
∂L1

∂wij
) = sgn(

∂Lacc

∂tij
)sgn(h(mij))

sgn(
∂L2

∂mij
) = sgn(

∂Lacc

∂tij
)sgn(wij)sgn(

∂h(mij)

∂mij
). (10)

Given the conditions that h(mij) ≥ 0 and ∂h(mij)

∂mij
≥ 0, we can conclude that

sgn(
∂L2

∂mij
) = sgn(

∂L1

∂|wij |
). (11)

In other words, the auxiliary parameter mij tracks the changing of the magnitude of wij . For the
pruning task, when the absolute value of a weight/neuron keeps moving towards zero, we should
accelerate the pruning process of the weight/neuron.

Direction Consistency: The third advantage of the update rule is that the inner product between
the expected coarse and population gradients with respect to m is greater than zero, i.e., the update
gradient and the population gradient form an acute angle. Updating in this way actually reduces
the loss of vanilla BNNs. We refer to Eq. 5, Lemma4 and Lemma10 from Yin et al. [2019], where
the ReLU and linear STE form acute angle with population gradient. Since〈gσ, g〉 = σ′q(w,w∗),
where q(w,w∗) is a deterministic function for both cases and σ represent the STE function. Since
σ′relu ≤ σ′LeakyRelu ≤ σ′Linear, we can then retain 0 ≤ 〈grelu, g〉 ≤ 〈gLeakyRelu, g〉 ≤ 〈gLinear, g〉.

3.4 Recoverable Pruning

Pruning with recoverability is important to reduce the gap between the original network graph and the
sparse network graph, which helps to achieve better sparsity. We design the pruning step following the
idea of Dynamic Network Surgery(Guo et al. [2016]), that once some important weights are pruned
and a large discrepancy occurs, the incorrectly pruned weights will be recovered to compensate for the
increase of loss. Different from previous works with hard thresholding, for a specific weight/neuron,
its opportunity to be pruned is determined automatically during optimization. The pruning step in our
model is soft, the pruned weight will hold its value, and ready to be spliced back to the network if
large discrepancy is observed.

Based on the multi-step training framework, after mij is updated by Eq. 7, the unpruned network
parameters wij will be updated based on the newly learned structure. If no regularization is applied
on wij , the corresponding mij could be recovered by the accuracy loss. Note that a weight will be
recovered if the damage made by the pruned weight cannot be restored by updating other unpruned
weights. If weight decay is applied, any pruned weight will gradually lose recoverability with a fixed
rate. The weight decay will decrease the magnitude of wij and provide a negative gradient to mij ,
which reduces the recoverability. Whether a weight will be recovered under weight decay depends on
(1) the absolute value of wij , and (2) the damage it made when removing it from the network. More
specifically, recovering a weight wij requires the gradient of mij moving toward positive direction.
With L1 regularization, a weight will be permanently pruned when its absolute value drops to zero.
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Algorithm 1 AutoPrun

Input: Data set X and iter
Parameter: W , M , λ and µ
Output: Auxiliary parameter M and W

1: Randomly split X into Xtrain and Xval.
2: if Pre-trained then
3: Initialize M based on pre-trained W ;
4: else
5: Initialize M ∼ Gaussian(µ, σ2);
6: end if

7: while iter!=0 do
8: Sample a mini batch from Xval;
9: Compute gradw with L1;

10: Compute gradm and gradmr by Eq. 7;
11: Update M with gradm and gradmr;
12: Sample a mini batch from Xtrain;
13: Compute gradw with L1;
14: Update W with gradw;
15: Update iter, λ, µ (if scheduling);
16: end while
17: return solution;

3.5 Acceleration by Regularizers

3.5.1 Sparse Regularizer

Without any regularizer, our model can gradually converge to a sparse model, but with relatively
slow speed, especially when the weights are close to optimal and the gradients with respect to
T = W � h(M) are almost zero. In order to accelerate the pruning process, we bring in regularizers
to force the mask values to approach zero. The sparse regularizer is defined as:

R(h(M)) =
∑
i,j

|h(mij)| = count(h(M)). (12)

Note that the L1 regularizer applied on h(M) directly counts the number of gates that are open,
which is equivalent to applying L0 regularizer on h(M). With the regularizer, M will be pushed
towards zero since the gradient with respect to mij is the positive STE gradient. Another benefit of
this regularizer is to filter out the noise when updating W with SGD or dropout, i.e., µ∂L2/∂mij > 0
when ∆|w| < δ and mij still decreases when wij increases by only a small amount.

3.5.2 Working with Weight Decay Regularizer

Our model can also work with general 1-norm or 2-norm regularizers on weights W . Since the auxil-
iary parameters M follow |W |, any weight decay regularizer will help to increase the sparsification
speed. An important side effect of weight decay regularizer is that after pruning a certain weight, the
only source that can change |wij | ∈ |W | s.t. h(mij) = 0 will be the weight decay regularizers. A
large weight decay hyperparameter will decrease the pruned weight fast and hamper the recoverability
discussed in the previous subsection.

3.6 Hyperparameters Sensitivity and Robustness

By proposing auxiliary parameters and an indicator function, we introduce two new hyperparameters,
learning rate hyperparameter η and regularization hyperparameter µ. However, the pruning procedure
is not sensitive to those hyperparameters based on the following reasons: 1) We are not directly
regularizing W , so the bias of STE and hyperparameter will not directly influence weights; 2) The
indicator function is tolerant to the turbulence of auxiliary parameters mij ; and 3) The pruning is
recoverable when an incorrect pruning happens and the damage is made. Practically, as shown in the
experimental part, the learning rate η is scheduled to be the same as for learning the original weights
W , and the regularization hyperparameter µ is set to be the same in all test cases. To conclude, our
method reduces a set of hyperparameters to one single, non-sensitive hyperparameter.

3.7 Convergence Discussion

Similar to Gordon et al. [2018], our framework doesn’t guarantee convergence when optimized with
regularizers. But since the sparsification procedure is emperically fast and a good structure can be
obtained with fewer epochs, we do not always need to wait until convergence. But, in order to give a
guidance to hyperparameter tuning, we will briefly discuss the necessary condition for convergence.
At convergence, if no regularization is applied, ∂Lacc

∂tij
= 0. We can further conclude:

∂Lacc

∂tij
h(mij) =

∂Lacc

∂tij
sgn(wij)

∂h(mij)

∂mij
= 0. (13)

6



If both weight decay and sparse regularizers are applied, we need ∂L1

∂wij
= ∂L2

∂mij
= 0. Assuming that

pruned weights are sufficiently small and make no contribution to both gradients, we only consider
the gradients w.r.t. mij ∈M s.t. mij > 0, and h(M) = 1. When taking into account the learning
rate compensation, we have:

0 =
∂Lacc

∂tij
+ λ

∂R(wij)

∂wij
=
∂Lacc

∂tij
sgn(wij)

∂h(mij)

∂mij
+ µ

∂h(mij)

∂mij
. (14)

If L2 is applied, we have the necessary condition 2λ|wij | = cµ, where c is the non-linear factor by
different STEs. If L1 is applied, we have the necessary condition λ = cµ. Under both cases, λ and µ
should be reduced to the same level when convergence.

4 Experiments

In this section, we introduce our experiment settings, and compare the neuron pruning and weight
pruning performance with existing approaches.

4.1 Settings

To ensure a fair comparison, we follow the same backend packages as described in other papers.
Except for LeNets, all the other pre-trained parameters are downloaded from commonly available
sources and the auxiliary parameters are either initialized randomly or by pre-trained weights. All the
accuracy results are the average of 10 runs and the spare structure is picked from the best accurate
model. Our models are implemented by Tensorflow and run on Ubuntu Linux 16.04 with 32G memory
and a single NVIDIA Titan Xp GPU. To show the insensitivity of the introduced hyperparameter, we
set the learning rate of auxiliary parameters to 1.5e-2 and µ to 5e-2 for all test cases.

Table 1: Comparison of Different Neuron Pruning Techniques
Model Methods Base Error Error Epochs Neurons per Layer NCR FLOPs

LeNet-300-100 Louizos et al. [2017] 1.60% 1.80% - 278-98-13 3.04 11%
784-300-100 Louizos et al. [2018] - 1.40% 200 219-214-100 2.22 26%

Louizos et al. [2018] - 1.80% 200 266-88-33 3.06 10%
Our method 1.60% 1.82% 100 244-85-37 3.23 9%

LeNet5 Wen et al. [2016] - 1.00% - 3-12-800-500 1.04 25%
(MNIST) Neklyudov et al. [2017] - 0.86% - 2-18-284-283 2.33 9%

20-50- Louizos et al. [2017] 0.90% 1.00% - 5-10-76-16 12.8 7%
800-500 Louizos et al. [2018] - 0.90% 200 20-25-45-462 2.48 50%

Louizos et al. [2018] - 1.00% 200 9-18-65-25 11.71 17%
Our method 0.78% 0.80% 100 4-16-86-87 9.86 7%

VGG-like Li et al. [2017] 6.75% 6.60% 40 32-64-128-128-256-256-256-256-256-256-256-256-256-512 1.49 66%
(CIFAR-10) Neklyudov et al. [2017] 7.20% 7.50% - 64-62-128-126-234-155-31-79-73-9-59-73-56-27 4.03 43%
64x2-128x2- Neklyudov et al. [2017] 7.20% 9.00% - 44-54-92-115-234-155-31-76-55-9-34-35-21-280 3.83 32%
256x3-512x7 Our method 7.60% 8.50% 150 37-41-91-89-156-140-74-81-54-51-44-46-48-52 4.72 23%

4.2 LeNet-300-100 and LeNet5 on MNIST Database

We first use MNIST dataset to evaluate the performance. Layer structure of LeNet-300-100 is [784,
300, 100, 10] and of LeNet5 is two [20,50] convolution layers, followed by two FC layers. The total
number of trainable parameters of LeNet-300-100 and LeNet5 are 267K and 431K, respectively.
Similar to previous works, we train reference models with standard training method with SGD
optimizer, achieving accuracy of 1.72% and 0.78% respectively. In the pruning process, we use the
softplus STE. The learning rate for L1 is scheduled from 1e-2 to 1e-3. During the training procedure,
we observe that the final result is not sensitive to λ and µ but the sparsification speed relies on µ.

For neuron pruning, from Table 1, we can achieve the highest neuron compression rate(NCR) as 3.23
and the lowest FLOP usage percentage 9% comparing to original LeNet-300-100. For LeNet5, we
are taking the lead in both the model accuracy 99.20% and the FLOP reduction rate 93%. For weight
pruning, as we show in Table 4, our method applied to the LeNet-300-100 structure achieves the best
compression rate of up to 80x while a 0.06% error increase. Note that all the other methods with
compression rates greater than 60 have a minor accuracy drop while our method reaches the best
accuracy. For LeNet5 model, we compare existing works with two reference models. For the first
model with 0.78% error, we achieve 260x compression rate and 0.8% error. For the second model
with 0.91% error, our method obtains a 310x compression rate with no accuracy drop.
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Table 2: VGG-like CIFAR-10 Neuron Pruning

Layer Conv1 Conv2 Conv3 Conv4

Sparsity 57.03% 17.36% 20.95% 16.06%
FLOP 57% 37% 45% 49%

Conv5 Conv6 Conv7 Conv8 Conv9

10.76% 4.67% 5.30% 1.52% 0.39%
42% 33% 15% 4.50% 1.60%

Conv10 Conv11 Conv12 Conv13

0.35% 0.28% 0.27% 0.33%
1% 0.85% 0.77% 0.84%

Table 3: MobileNetV2(Top 1 Accuracy)
FLOPs Methods FLOPs Accuracy

100M

Sandler et al. [2018] 97M 65.40%
Yu et al. [2018] 97M 64.40%

Yu and Huang [2019b] 97M 65.10%
Our method 102M 66.83%

200M

Sandler et al. [2018] 209M 69.80%
Tan et al. [2019] 216M 71.5%

Yu and Huang [2019b] 209M 69.60%
Wu et al. [2019] 246M 73%

Yu and Huang [2019a] 207M 73%
Our method 209M 73.32%

300M
Sandler et al. [2018] 300M 69.80%

Tan et al. [2019] 317M 74%
Yu and Huang [2019a] 305M 74.20%

Our method 305M 74.0%

4.3 VGG-like on CIFAR-10

For VGG-like model, we use CIFAR-10 dataset to evaluate the performance. VGG-like is a standard
convolution neural network with 13 convolutional layers followed by 2 FC layers (512 and 10
respectively). The total number of trainable parameters is 15M. Similar to previous works, we use
the reference VGG-like model pre-trained with SGD with testing error 7.60%.

In this structure, we use L2-norm and L1-norm for L1 with hyperparameters 5e-5 and 1e-6, respec-
tively. We evaluate both Leaky ReLU and Softplus STEs. Leaky ReLU gives a fast sparsification
speed while Softplus shows a smooth convergence with approximately 1.5x running time. We suggest
selecting the proper STE based on the time constraint.

For neuron pruning task, as shown in Table 1, our method reaches 23% FLOPs within 150 epochs.
In Table 2, we show the layer-wise percentage FLOPs of VGG-16 structure. Our model achieves a
higher sparsity at any layer compared to Li et al. [2017]. For weight pruning, our model reaches the
highest 75x compression rate, with only moderate accuracy drop within 150 epochs of training.

4.4 AlexNet, ResNet-50 and MobileNet on ImageNet

Three models with ILSVRC12 dataset are also tested with our pruning method including 1M training
images and 0.5M validation and testing images. AlexNet can be considered as deep since it contains
5 convolution layers and 3 FC layers. ResNet-50 consists of 16 convolution blocks with structure
cfg=[3,4,6,3], plus one input and one output layer, and in total 25M parameters. For MobileNet, we

Table 4: Comparison of Different Weight Pruning Techniques

Model Methods Error CR

LeNet300-100 Dong et al. [2017] 1.76%→2.43% 66.7
(MNIST) Ullrich et al. [2017] 1.89%→1.94% 64

Molchanov et al. [2017] 1.64%→1.92% 68
Our method 1.72%→ 1.78% 80

LeNet5 Guo et al. [2016] 0.91%→0.91% 108
(MNIST) Ullrich et al. [2017] 0.88%→0.97% 162

Molchanov et al. [2017] 0.80%→ 0.75% 280
Li et al. [2018] 0.91%→0.91% 298

Our method 0.78%→0.80% 260
Our method 0.91%→0.91% 310

VGG-like Zhuang et al. [2018] 6.01%→5.43% 15.58
(CIFAR-10) Zhu et al. [2018] 6.42%→6.69% 8.5

Molchanov et al. [2017] 7.55%→7.55% 65
Our method 7.60%→7.82% 75

AlexNet Guo et al. [2016] 43.42%→43.09% 17.7
(ILSVRC12) Srinivas et al. [2017] 42.80%→43.04% 10.3

Dong et al. [2017] 43.30%→50.04% 9.1
Our method 43.26%→44.10% 18.5

ResNet50 Zhuang et al. [2018] 23.99%→25.05% 2.06
(ILSVRC12) Our method 25.10%→25.50% 2.2
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use its conventional MobileNet V2 (224×224) model with 310M FLOPs. The size of the dataset and
also the complexity of the model clearly reveals the scalability of our method.

ResNet-50 is trained with a learning rate schedule from 1e-5 to 1e-6. Only L2 norm is applied, with
λ = 1e− 5. Note that the identity connections alleviate the need to add layer-wise learning rate since
the gradient to the first several layers is enough to pull the auxiliary parameters. The learning rate for
AlexNet is 1e-3 and for MobileNet V2 is 1e-5. We split the training data into 1:1 for weight update
and auxiliary parameter update respectively. Once the desired FLOPs is reached, we use all training
data to fine tune the model.

For neuron pruning, we evaluate our method on compact MobileNet V2 with less redundancy, and
compare with the state-of-art methods in different FLOPs levels, in Table 3. Our method achieves
similar error at 300M level and outperforms others at extreme level(200M and 100M). For ResNet
at 600M FLOPs, the top-1 error is 27.6%. For weight pruning, the results in Table 4 show that our
method on AlexNet model achieves 18.5x compression rate and 0.84% accuracy drop. For ResNet-50,
we get 2.2x compression rate with only 0.4% accuracy drop.

4.5 Ablation Study

We show the sparsity and accuracy are not sensitive to hyperparameters, taking weight pruning with
VGG-like on CIFAR-10 as an example. In Fig. 2(a), we set the learning rate of auxiliary parameters to
1e-2, 1e-1 and 5e-1. From the result we observe that all three settings converge to similar compression
ratio with different sparsification speed. In Fig. 2(b), the accuracy with higher learning rate drops
faster, but the final gap is less than 0.1%. In Fig. 2(c), we show the compression ratio versus accuracy
plot with proposed update in Eq. 7 and regular BNN update. The regular BNN update becomes
non-stable after 30x CR, and accuracy drops sharply afterward. With the proposed update rule,
accuracy is more stable and with lower variance until 80x. We’ve also included the comparison on
choosing different STE functions and learning rates for VGG like model on CIFAR10 in Fig. 2(d).
Softplus STE achieves the best result while converges slower than LeakyReLU STE, which achieves
slightly lower CR. The linear STE however, yields worst CR and slower convergence speed.
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Figure 2: Illustration of Hyperparameter Sensitivity

4.6 Training From Scratch

Apart from sparsification on pre-trained models, our method can support training sparse network from
scratch. We evaluate our method through training LeNet5 from scratch. All the weights are randomly
initialized as usual while the auxiliary parameters are initialized as mij ∼ Gaussian(0.1, 0.05). The
initial learning rate is set to 1e-3 and gradually decreased to 1e-5. The final model we obtain has an
error of 0.95% with a 168x compression rate.

5 Conclusions

In this paper, we propose to automatically prune deep neural networks by regularizing auxiliary
parameters instead of original weights values. The auxiliary parameters are not sensitive to hyperpa-
rameters and are more robust to noise during training. We also design a gradient-based update rule
for auxiliary parameters and analyze the benefits. In addition, we combine sparse regularizers and
weight regularization to accelerate the sparsification process. Extensive experiments show that our
method achieves the state-of-the-art sparsity in both weight pruning and neuron pruning compared
with existing approaches. Moreover, our model also supports training from scratch and can reach a
comparable sparsity.
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