
Online Prediction of Switching Graph Labelings with
Cluster Specialists

Mark Herbster
Department of Computer Science

University College London
London

United Kingdom
m.herbster@cs.ucl.ac.uk

James Robinson
Department of Computer Science

University College London
London

United Kingdom
j.robinson@cs.ucl.ac.uk

Abstract

We address the problem of predicting the labeling of a graph in an online setting
when the labeling is changing over time. We present an algorithm based on a
specialist [11] approach; we develop the machinery of cluster specialists which
probabilistically exploits the cluster structure in the graph. Our algorithm has
two variants, one of which surprisingly only requires O(log n) time on any trial
t on an n-vertex graph, an exponential speed up over existing methods. We
prove switching mistake-bound guarantees for both variants of our algorithm.
Furthermore these mistake bounds smoothly vary with the magnitude of the change
between successive labelings. We perform experiments on Chicago Divvy Bicycle
Sharing data and show that our algorithms significantly outperform an existing
algorithm (a kernelized Perceptron) as well as several natural benchmarks.

1 Introduction

We study the problem of predicting graph labelings that evolve over time. Consider the following
game for predicting the labeling of a graph in the online setting. Nature presents a graph G; Nature
queries a vertex i1 2 V = {1, 2, . . . , n}; the learner predicts the label of the vertex ŷ1 2 {�1, 1};
Nature presents a label y1; Nature queries a vertex i2; the learner predicts ŷ2; and so forth. The
learner’s goal is to minimize the total number of mistakes M = |{t : ŷt 6= yt}|. If Nature is
strictly adversarial, the learner will incur a mistake on every trial, but if Nature is regular or
simple, there is hope that the learner may incur only a few mistakes. Thus, a central goal of
mistake-bounded online learning is to design algorithms whose total mistakes can be bounded relative
to the complexity of Nature’s labeling. This (non-switching) graph labeling problem has been
studied extensively in the online learning literature [16, 15, 7, 34, 17]. In this paper we generalize
the setting to allow the underlying labeling to change arbitrarily over time. The learner has no
knowledge of when a change in labeling will occur and therefore must be able to adapt quickly to
these changes.

Consider an example of services placed throughout a city, such as public bicycle sharing stations.
As the population uses these services the state of each station–such as the number of available
bikes–naturally evolves throughout the day, at times gradually and others abruptly, and we might
want to predict the state of any given station at any given time. Since the location of a given station
as well as the state of nearby stations will be relevant to this learning problem it is natural to use a
graph-based approach. Another setting might be a graph of major road junctions (vertices) connected
by roads (edges), in which one wants to predict whether or not a junction is congested at any given
time. Traffic congestion is naturally non-stationary and also exhibits both gradual and abrupt changes
to the structure of the labeling over time [24].

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

The structure of this paper is as follows. In Section 2 we discuss the background literature. In
Section 3 we present the SWITCHING CLUSTER SPECIALISTS algorithm (SCS), a modification of the
method of specialists [11] with the novel machinery of cluster specialists, a set of specialists that in a
rough sense correspond to clusters in the graph. We consider two distinct sets of specialists, Bn and
Fn, where Bn ⇢ Fn. With the smaller set of specialists the bound is only larger by factor of log n.
On the other hand, prediction is exponentially faster per trial, remarkably requiring only O(log n)
time to predict. In Section 4 we provide experiments on Chicago Divvy Bicycle Sharing data. In
Section 5 we provide some concluding remarks. All proofs are contained in the technical appendices.

1.1 Notation

We first present common notation. Let G = (V,E) be an undirected, connected, n-vertex graph with
vertex set V = {1, 2, . . . , n} and edge set E. Each vertex of this graph may be labeled with one of
two states {�1, 1} and thus a labeling of a graph may be denoted by a vector u 2 {�1, 1}n where ui

denotes the label of vertex i. The underlying assumption is that we are predicting vertex labels from
a sequence u1, . . . ,uT 2 {�1, 1}n of graph labelings over T trials. The set K := {t 2 {2, . . . , T} :
ut 6= ut�1} [{1} contains the first trial of each of the |K| “segments” of the prediction problem.
Each segment corresponds to a time period when the underlying labeling is unchanging. The cut-size
of a labeling u on a graph G is defined as �G(u) := |{(i, j) 2 E : ui 6= uj}|, i.e., the number of
edges between vertices of disagreeing labels.

We let rG(i, j) denote the resistance distance (effective resistance) between vertices i and j when the
graph G is seen as a circuit where each edge has unit resistance (e.g., [26]). The effective resistance
for an unweighted graph G can be written as

rG(i, j) =
1

min
u2Rn

P
(p,q)2E

(up � uq)2 : ui � uj = 1

The resistance diameter of a graph is RG := max
i,j2V

rG(i, j). The resistance weighted cut-size of a

labeling u is �r
G(u) :=

P
(i,j)2E:ui 6=uj

rG(i, j). Let�n = {µ 2 [0, 1]n :
Pn

i=1 µi = 1} be the n-dimensional

probability simplex. For µ 2 �n we define H(µ) :=
Pn

i=1 µi log2
1
µi

to be the entropy of µ.
For µ,! 2 �n we define d(µ,!) =

Pn
i=1 µi log2

µi

!i
to be the relative entropy between µ and !.

For a vector ! and a set of indices I let !(I) :=
P

i2I !i. For any positive integer N we define
[N] := {1, 2, . . . , N} and for any predicate [PRED] := 1 if PRED is true and equals 0 otherwise.

2 Related Work

The problem of predicting the labeling of a graph in the batch setting was introduced as a foundational
method for semi-supervised (transductive) learning. In this work, the graph was built using both the
unlabeled and labeled instances. The seminal work by [3] used a metric on the instance space and then
built a kNN or ✏-ball graph. The partial labeling was then extended to the complete graph by solving
a mincut-maxflow problem where opposing binary labels represented sources and sinks. In practice
this method suffered from very unbalanced cuts. Significant practical and theoretical advances
were made by replacing the mincut/maxflow model with methods based on minimising a quadratic
form of the graph Laplacian. Influential early results include but are not limited to [39, 2, 38]. A
limitation of the graph Laplacian-based techniques is that these batch methods–depending on their
implementation–typically require ⇥(n2) to ⇥(n3) time to produce a single set of predictions.

Predicting the labeling of a graph in the online setting was introduced by [20]. The authors proved
bounds for a Perceptron-like algorithm with a kernel based on the graph Laplacian. Since this
work there has been a number of extensions and improvements in bounds including but not limited
to [16, 6, 15, 18, 17, 32]. Common to all of these papers is that a dominant term in their mistake
bounds is the (resistance-weighted) cut-size.

From a simplified perspective, the methods for predicting the labeling of a graph (online) split into
two approaches. The first approach works directly with the original graph and is usually based on a
graph Laplacian [20, 15, 17]; it provides bounds that utilize the additional connectivity of non-tree
graphs, which are particularly strong when the graph contains uniformly-labeled clusters of small

2

(resistance) diameter. The drawbacks of this approach are that the bounds are weaker on graphs with
large diameter, and that computation times are slower.

The second approach is to approximate the original graph with an appropriately selected tree or “line”
graph [16, 7, 6, 34]. This enables faster computation times, and bounds that are better on graphs with
large diameters. These algorithms may be extended to non-tree graphs by first selecting a spanning
tree uniformly at random [7] and then applying the algorithm to the sampled tree. This randomized
approach induces expected mistake bounds that also exploit the cluster structure in the graph (see
Section 2.2). Our algorithm takes this approach.

2.1 Switching Prediction

In this paper rather than predicting a single labeling of a graph we instead will predict a (switching)
sequence of labelings. Switching in the mistake- or regret-bound setting refers to the problem of
predicting an online sequence when the “best comparator” is changing over time. In the simplest of
switching models the set of comparators is structureless and we simply pay per switch. A prominent
early result in this model is [21] which introduced the fixed-share update which will play a prominent
role in our main algorithm. Other prominent results in the structureless model include but are not
limited to [36, 4, 12, 28, 27, 5]. A stronger model is to instead prove a bound that holds for any
arbitrary contiguous sequence of trials. Such a bound is called an adaptive-regret bound. This type
of bound automatically implies a bound on the structureless switching model. Adaptive-regret was
introduced in [13]1 other prominent results in this model include [1, 5, 9].

The structureless model may be generalized by introducing a divergence measure on the set of
comparators. Thus, whereas in the structureless model we pay for the number of switches, in the
structured model we instead pay in the sum of divergences between successive comparators. This
model was introduced in [22]; prominent results include [25, 5].

In [12, 23, 13] meta-algorithms were introduced with regret bounds which convert any “black-box”
online learning algorithm into an adaptive algorithm. Such methods could be used as an approach
to predict switching graph labelings online, however these meta-algorithms introduce a factor of
O(log T) to the per-trial time complexity of the base online learning algorithm. In the online
switching setting we will aim for our fastest algorithm to have O(log n) time complexity per trial.

In [18] the authors also consider switching graph label prediction. However, their results are not
directly comparable to ours since they consider the combinatorially more challenging problem of
repeated switching within a small set of labelings contained in a larger set. That set-up was a problem
originally framed in the “experts” setting and posed as an open problem by [10] and solved in [4]. If
we apply the bound in [18] to the case where there is not repeated switching within a smaller set, then
their bound is uniformly and significantly weaker than the bounds in this paper and the algorithm
is quite slow requiring ✓(n3) time per trial in a typical implementation. Also contained in [18] is
a baseline algorithm based on a kernel perceptron with a graph Laplacian kernel. The bound of
that algorithm has the significant drawback in that it scales with respect to the “worst” labeling in
a sequence of labelings. However, it is simple to implement and we use it as a benchmark in our
experiments.

2.2 Random Spanning Trees and Linearization

Since we operate in the transductive setting where the entire unlabeled graph is presented to the
learner beforehand, this affords the learner the ability to perform any reconfiguration to the graph
as a preprocessing step. The bounds of most existing algorithms for predicting a labeling on a graph
are usually expressed in terms of the cut-size of the graph under that labeling. A natural approach
then is to use a spanning tree of the original graph which can only reduce the cut-size of the labeling.

The effective resistance between vertices i and j, denoted rG(i, j), is equal to the probability that
a spanning tree of G drawn uniformly at random (from the set of all spanning trees of G) includes
(i, j) 2 E as one of its n� 1 edges (e.g., [30]). As first observed by [6], by selecting a spanning tree
uniformly at random from the set of all possible spanning trees, mistake bounds expressed in terms of
the cut-size then become expected mistake bounds now in terms of the effective-resistance-weighted
cut-size of the graph. That is, if R is a random spanning tree of G then E[�R(u)] = �r

G(u) and thus

1However, see the analysis of WML in [29] for a precursory result.

3

�r
G(u)  �G(u). A random spanning tree can be sampled from a graph efficiently using a random

walk or similar methods (see e.g., [37]).

To illustrate the power of this randomization consider the simplified example of a graph with two
cliques each of size n

2 , where one clique is labeled uniformly with ‘+1’ and the other ‘-1’ with an
additional arbitrary n

2 “cut” edges between the cliques. This dense graph exhibits two disjoint clusters
and �G(u) =

n
2 . On the other hand �r

G(u) = ⇥(1), since between any two vertices in the opposing
cliques there are n

2 edge disjoint paths of length  3 and thus the effective resistance between any
pair of vertices is ⇥(1n). Since bounds usually scale linearly with (resistance-weighted) cut-size, the
cut-size bound would be vacuous but the resistance-weighted cut-size bound would be small.

We will make use of this preprocessing step of sampling a uniform random spanning tree, as well
as a linearization of this tree to produce a (spine) line-graph, S. The linearization of G to S as
a preprocessing step was first proposed by [16] and has since been applied in, e.g., [7, 31]. In
order to construct S, a random-spanning tree R is picked uniformly at random. A vertex of R is
then chosen and the graph is fully traversed using a depth-first search generating an ordered list
VL =

�
il1 , . . . , il2m+1

of vertices in the order they were visited. Vertices in V may appear multiple

times in VL. A subsequence VL0 ✓ VL is then chosen such that each vertex in V appears only once.
The line graph S is then formed by connecting each vertex in VL0 to its immediate neighbors in
VL0 with an edge. We denote the edge set of S by ES and let �t := �(ut), where the cut � is
with respect to the linear embedding S. Surprisingly, as stated in the lemma below, the cut on this
linearized graph is no more than twice the cut on the original graph.

Lemma 1 ([16]). Given a labeling u 2 {�1, 1}n on a graph G, for the mapping G ! R! S, as
above, we have �S(u)  2�R(u)  2�G(u).

By combining the above observations we may reduce the problem of learning on a graph to that
of learning on a line graph. In particular, if we have an algorithm with a mistake bound of the
form M  O(�G(u)) this implies we then may give an expected mistake bound of the form
M  O(�r

G(u)) by first sampling a random spanning tree and then linearizing it as above. One
caveat of this however depends on the whether Nature is oblivious or adaptive. If Nature is
oblivious we assume that learner’s predictions have no effect on the labels chosen by Nature (or
equivalently all labelings are chosen beforehand). Conversely if Nature is adaptive then Nature’s
labelings are assumed to be adversarially chosen in response to learner’s predictions. In this paper
we will only state the deterministic mistake bounds in terms of cut-size which will hold for oblivious
and adaptive adversaries, while the expected bounds in terms of resistance-weighted cut-sizes will
hold for an oblivious adversary.

3 Switching Specialists

In this section we present a new method based on the idea of specialists [11] from the prediction
with expert advice literature [29, 35, 8]. Although the achieved bounds are slightly worse than other
methods for predicting a single labeling of a graph, the derived advantage is that it is possible to
obtain “competitive” bounds with fast algorithms to predict a sequence of changing graph labelings.

Our inductive bias is to predict well when a labeling has a small (resistance-weighted) cut-size. The
complementary perspective implies that the labeling consists of a few uniformly labeled clusters.
This suggests the idea of maintaining a collection of basis functions where each such function is
specialized to predict a constant function on a given cluster of vertices. To accomplish this technically
we adapt the method of specialists [11, 27]. A specialist is a prediction function " from an input space
to an extended output space with abstentions. So for us the input space is just V = [n], the vertices
of a graph; and the extended output space is {�1, 1,⇤} where {�1, 1} corresponds to predicted
labels of the vertices, but ‘⇤’ indicates that the specialist abstains from predicting. Thus a specialist
specializes its prediction to part of the input space and in our application the specialists correspond to
a collection of clusters which cover the graph, each cluster uniformly predicting �1 or 1.

In Algorithm 1 we give our switching specialists method. The algorithm maintains a weight vector
!t over the specialists in which the magnitudes may be interpreted as the current confidence we have
in each of the specialists. The updates and their analyses are a combination of three standard methods:
i) Halving loss updates, ii) specialists updates and iii) (delayed) fixed-share updates.

4

input : Specialists set E
parameter : ↵ 2 [0, 1]
initialize : !1 1

|E|1, !̇0 1
|E|1, p 0, m 0

for t = 1 to T do
receive it 2 V
set At := {" 2 E : "(it) 6= ⇤}
foreach " 2 At do // delayed share update

!t," (1� ↵)m�p" !̇t�1," +
1� (1� ↵)m�p"

|E| (1)

predict ŷt sign(
P

"2At
!t," "(it))

receive yt 2 {�1, 1}
set Yt := {" 2 E : "(it) = yt}
if ŷt 6= yt then // loss update

!̇t,"

8
><

>:

0 " 2 At \ Ȳt

!̇t�1," " 62 At

!t,"
!t(At)
!t(Yt)

" 2 Yt

(2)

foreach " 2 At do
p" m

m m+ 1
else

!̇t !̇t�1

Algorithm 1: SWITCHING CLUSTER SPECIALISTS

The loss update (2) zeros the weight components of incorrectly predicting specialists, while the
non-predicting specialists are not updated at all. In (1) we give our delayed fixed-share style update.

A standard fixed share update may be written in the following form:

!t," = (1� ↵)!̇t�1," +
↵

|E|
. (3)

Although (3) superficially appears different to (1), in fact these two updates are exactly the same
in terms of predictions generated by the algorithm. This is because (1) caches updates until the
given specialist is again active. The purpose of this computationally is that if the active specialists
are, for example, logarithmic in size compared to the total specialist pool, we may then achieve an
exponential speedup over (3); which in fact we will exploit.

In the following theorem we will give our switching specialists bound. The dominant cost of switching
on trial t to t+ 1 is given by the non-symmetric JE(µt,µt+1) := |{" 2 E : µt," = 0, µt+1," 6= 0}|,
i.e., we pay only for each new specialist introduced but we do not pay for removing specialists.
Theorem 2. For a given specialist set E , let ME denote the number of mistakes made in predicting
the online sequence (i1, y1), . . . , (iT , yT) by Algorithm 1. Then,

ME 
1

⇡1
log |E|+

TX

t=1

1

⇡t
log

1

1� ↵
+

|K|�1X

i=1

JE
�
µki ,µki+1

�
log

|E|

↵
, (4)

for any sequence of consistent and well-formed comparators µ1, . . . ,µT 2 �|E| where K :=
{k1 = 1< · · · < k|K|} :={t2 [T] :µt 6= µt�1} [{1}, and ⇡t := µt(Yt).

The bound in the above theorem depends crucially on the best sequence of consistent and well-
formed comparators µ1, . . . ,µT . The consistency requirement implies that on every trial there is no
active incorrect specialist assigned “mass” (µt(At \ Yt) = 0). We may eliminate the consistency
requirement by “softening” the loss update (2). A comparator µ 2 �|E| is well-formed if 8 v 2 V ,
there exists a unique " 2 E such that "(v) 6= ⇤ and µ" > 0, and furthermore there exists a ⇡ 2 (0, 1]
such that 8" 2 E : µ" 2 {0,⇡}, i.e., each specialist in the support of µ has the same mass ⇡ and
these specialists disjointly cover the input space (V). At considerable complication to the form of the
bound the well-formedness requirement may be eliminated.

The above bound is “smooth” in that it scales with a gradual change in the comparator. In the next
section we describe the novel specialists sets that we’ve tailored to graph-label prediction so that a
small change in comparator corresponds to a small change in a graph labeling.

5

3.1 Cluster Specialists

In order to construct the cluster specialists over a graph G = (V = [n], E), we first construct a
line graph as described in Section 2.2. A cluster specialist is then defined by "l,ry (·) which maps
V ! {�1, 1,⇤} where "l,ry (v) := y if l  v  r and "l,ry (v) := ⇤ otherwise. Hence cluster
specialist "l,ry (v) corresponds to a function that predicts the label y if vertex v lies between vertices l
and r and abstains otherwise. Recall that by sampling a random spanning tree the expected cut-size
of a labeling on the spine is no more than twice the resistance-weighted cut-size on G. Thus, given
a labeled graph with a small resistance-weighted cut-size with densely interconnected clusters and
modest intra-cluster connections, this implies a cut-bracketed linear segment on the spine will in
expectation roughly correspond to one of the original dense clusters. We will consider two basis sets
of cluster specialists.

Basis Fn: We first introduce the complete basis set Fn := {"l,ry : l, r 2 [n], l  r; y 2 {�1, 1}}.
We say that a set of specialists Cu ✓ E ✓ 2{�1,1,⇤}n

from basis E covers a labeling u 2 {�1, 1}n if
for all v 2 V = [n] and " 2 Cu that "(v) 2 {uv,⇤} and if v 2 V then there exists " 2 Cu such that
"(v) = uv . The basis E is complete if every labeling u 2 {�1, 1}n is covered by some Cu ✓ E . The
basis Fn is complete and in fact has the following approximation property: for any u 2 {�1, 1}n

there exists a covering set Cu ✓ Fn such that |Cu| = �S(u) + 1. This follows directly as a line with
k � 1 cuts is divided into k segments. We now illustrate the use of basis Fn to predict the labeling of
a graph. For simplicity we illustrate by considering the problem of predicting a single graph labeling
without switching. As there is no switch we will set ↵ := 0 and thus if the graph is labeled with
u 2 {�1, 1}n with cut-size �S(u) then we will need �S(u) + 1 specialists to predict the labeling
and thus the comparators may be post-hoc optimally determined so that µ = µ1 = · · · = µT and
there will be �S(u) + 1 components of µ each with “weight” 1

(�S(u)+1) , thus 1
⇡1

= �S(u) + 1,
since there will be only one specialist (with non-zero weight) active per trial. Since the cardinality
of Fn is n2 + n, by substituting into (4) we have that the number of mistakes will be bounded by
(�S(u) + 1) log (n2 + n). Note for a single graph labeling on a spine this bound is not much worse
than the best known result [16, Theorem 4]. In terms of computation time however it is significantly
slower than the algorithm in [16] requiring ⇥(n2) time to predict on a typical trial since on average
there are ⇥(n2) specialists active per trial.

Basis B1,n: We now introduce the basis Bn which has ⇥(n) specialists and only requires O(log n)
time per trial to predict with only a small increase in bound. The basis is defined as

Bp,q :=

(
{"p,q�1, "

p,q
1 } p = q,

{"p,q�1, "
p,q
1 }[Bp,b p+q

2 c [Bb p+q
2 c+1,q p 6= q

and is analogous to a binary tree. We have the following approximation property for Bn := B1,n,
Proposition 3. The basis Bn is complete. Furthermore, for any labeling u 2 {�1, 1}n there exists
a covering set Cu ✓ Bn such that |Cu|  2(�S(u) + 1)dlog2

n
2 e for n > 2.

From a computational perspective the binary tree structure ensures that there are only ⇥(log n)
specialists active per trial, leading to an exponential speed-up in prediction. A similar set of specialists
were used for obtaining adaptive-regret bounds in [9, 23] and data-compression in [33]. In those
works however the “binary tree” structure is over the time dimension (trial sequence) whereas in this
work the binary tree is over the space dimension (graph) and a fixed-share update is used to obtain
adaptivity over the time dimension.2

In the corollary that follows we will exploit the fact that by making the algorithm conservative we
may reduce the usual log T term in the mistake bound induced by a fixed-share update to log log T .
A conservative algorithm only updates the specialists’ weights on trials on which a mistake is made.
Furthermore the bound given in the following corollary is smooth as the cost per switch will be
measured with a Hamming-like divergence H on the “cut” edges between successive labelings,
defined as

H(u,u0) :=
X

(i,j)2ES

[[[ui 6= uj] _ [u0
i 6= u0

j]] ^ [[ui 6= u0
i] _ [uj 6= u0

j]]] .

2An interesting open problem is to try to find good bounds and time-complexity with sets of specialists over
both the time and space dimensions.

6

Observe that H(u,u0) is smaller than twice the hamming distance between u and u0 and is often
significantly smaller. To achieve the bounds we will need the following proposition, which upper
bounds divergence J by H , a subtlety is that there are many distinct sets of specialists consistent
with a given comparator. For example, consider a uniform labeling on S. One may “cover” this
labeling with a single specialist or alternatively n specialists, one covering each vertex. For the sake
of simplicity in bounds we will always choose the smallest set of covering specialists. Thus we
introduce the following formal definitions of consistency and minimal-consistency.
Definition 4. A comparator µ 2 �|E| is consistent with the labeling u 2 {�1, 1}n if µ is well-
formed and µ" > 0 implies that for all v 2 V that "(v) 2 {uv,⇤}.
Definition 5. A comparator µ 2 �|E| is minimal-consistent with the labeling u 2 {�1, 1}n if it
is consistent with u and the cardinality of its support set |{µ" : µ" > 0}| is the minimum of all
comparators consistent with u.
Proposition 6. For a linearized graph S , for comparators µ,µ0

2 �|Fn| that are minimal-consistent
with u and u0 respectively,

JFn(µ,µ
0)  min (2H(u,u0),�S(u

0) + 1) .

A proof is given in Appendix C. In the following corollary we summarize the results of the SCS
algorithm using the basis sets Fn and Bn with an optimally-tuned switching parameter ↵.
Corollary 7. For a connected n-vertex graph G and with randomly sampled spine S, the number
of mistakes made in predicting the online sequence (i1, y1), . . . , (iT , yT) by the SCS algorithm with
optimally-tuned ↵ is upper bounded with basis Fn by

O

0

@�1 log n+

|K|�1X

i=1

H(uki ,uki+1) (log n+ log |K|+ log log T)

1

A

and with basis Bn by

O

0

@

0

@�1 log n+

|K|�1X

i=1

H(uki ,uki+1) (log n+ log |K|+ log log T)

1

A log n

1

A

for any sequence of labelings u1, . . . ,uT 2 {�1, 1}n such that ut,it = yt for all t 2 [T].

Thus the bounds are equivalent up to a factor of log n although the computation times vary dramat-
ically. See Appendix D for a technical proof of these results, and details on the selection of the
switching parameter ↵.

On the lower bound side, tight upper and lower bounds were proven for graph label prediction when
the graph was a tree in [6]. We now give a sketch of a simple argument for a lower bound on the
number of mistakes made for predicting a switching sequence of labelings on S. We first describe
how introducing and removing cuts can force mistakes in the simplest case.

Given a single graph-labeling problem on an unlabeled line graph S , an adversary may force⇥(log n)
mistakes with a resultant cut-size �(u) = 1. In the switching case if S is uniformly labelled
(�(u) = 0) and up to two cuts are introduced, then the learner can be forced to make O(log n)
mistakes. On the other hand if we have cut-size of �(u0) = 2 an adversary when a “switch” occurs
can force a single mistake with the outcome that the cut-size �(u00) 2 {0, 1, 2}.

Now for a switching sequence of graph labelings, u1, . . . ,uT , let �(ut) ⌧ n for all t. For a
labeling u, S can be divided into �(u) + 1 segments of length n

�(u)+1 . Each segment can be made
independent of one another by fixing the boundary vertices between segments. We therefore have
�(u) + 1 independent learning problems and an adversary can force ⇥(log (n

�(u))) mistakes for
every two cuts introduced and 1 mistake for every 2 cuts removed.

While the bounds in Corollary 7 reflect the smoothness of the sequence of labelings, we pay O(log n+
log |K| + log log T) for every cut removed and introduced for basis set Fn, with an additional
logarithmic factor for basis Bn. There is therefore an interesting gap between these bounds and the
sketched lower bound, not least of which caused by the log log T term, which we conjecture should
be possible to remove.

7

Table 1: Mean error ± std over 25 iterations on a 404-vertex graph for all algorithms and benchmarks,
and for all ensemble sizes of SCS-F and SCS-B.

Ensemble Size
Algorithm 1 3 5 9 17 33 65

SCS-F 1947 ± 49 1597 ± 32 1475 ± 30 1364 ± 28 1293 ± 26 1247 ± 21 1218 ± 19
SCS-B 1438 ± 32 1198 ± 27 1127 ± 25 1079 ± 24 1050 ± 23 1032 ± 22 1021 ± 18
Kernel Perceptron 3326 ± 43 - - - - - -
Local 3411 ± 55 - - - - - -
Global 4240 ± 44 - - - - - -
Temporal (Local) 2733 ± 42 - - - - - -
Temporal (Global) 3989 ± 44 - - - - - -

Note that we may avoid the issue of needing to optimally tune ↵ using the following method proposed
by [14] and by [28]. We use a time-varying parameter and on trial t we set ↵t =

1
t+1 . We have the

following guarantee for this method, see Appendix E for a proof.
Proposition 8. For a connected n-vertex graph G and with randomly sampled spine S, the SCS
algorithm with bases Fn and Bn in predicting the online sequence (i1, y1), . . . , (iT , yT) now with
time-varying ↵ set equal to 1

t+1 on trial t achieves the same asymptotic mistake bounds as in
Corollary 7 with an optimally-tuned ↵, under the assumption that�S(u1) 

P|K|�1
i=1 JE(µki ,µki+1).

4 Experiments

In this section we present results of experiments on real data. The City of Chicago currently contains
608 public bicycle stations for its “Divvy Bike” sharing system. Current and historical data is
available from the City of Chicago3 containing a variety of features for each station, including
latitude, longitude, number of docks, number of operational docks, and number of docks occupied.
The latest data on each station is published approximately every ten minutes.

We used a sample of 72 hours of data, consisting of three consecutive weekdays in April 2019. The
first 24 hours of data were used for parameter selection, and the remaining 48 hours of data were used
for evaluating performance. On each ten-minute snapshot we took the percentage of empty docks of
each station. We created a binary labeling from this data by setting a threshold of 50%. Thus each
bicycle station is a vertex in our graph and the label of each vertex indicates whether that station is
‘mostly full’ or ‘mostly empty’. Due to this thresholding the labels of some ‘quieter’ stations were
observed not to switch, as the percentage of available docks rarely changed. These stations tended to
be on the ‘outskirts’, and thus we excluded these stations from our experiments, giving 404 vertices
in our graph.

Using the geodesic distance between each station’s latitude and longitudinal position a connected
graph was built using the union of a k-nearest neighbor graph (k = 3) and a minimum spanning
tree. For each instance of our algorithm the graph was then transformed in the manner described
in Section 2.2, by first drawing a spanning tree uniformly at random and then linearizing using
depth-first search.

As natural benchmarks for this setting we considered the following four methods. 1.) For all vertices
predict with the most frequently occurring label of the entire graph from the training data (“Global”).
2.) For each vertex predict with its most frequently occurring label from the training data (“Local”).
3.) For all vertices at any given time predict with the most frequently occurring label of the entire
graph at that time from the training data (“Temporal-Global”) 4.) For each vertex at any given time
predict with that vertex’s label observed at the same time in the training data (“Temporal-Local”). We
also compare our algorithms against a kernel Perceptron proposed by [18] for predicting switching
graph labelings (see Appendix F for details).

Following the experiments of [7] in which ensembles of random spanning trees were drawn and
aggregated by an unweighted majority vote, we tested the effect on performance of using ensem-
bles of instances of our algorithms, aggregated in the same fashion. We tested ensemble sizes in
{1, 3, 5, 9, 17, 33, 65}, using odd numbers to avoid ties.

For every ten-minute snapshot (labeling) we queried 30 vertices uniformly at random (with replace-
ment) in an online fashion, giving a sequence of 8640 trials over 48 hours. The average performance

3
https://data.cityofchicago.org/Transportation/Divvy-Bicycle-Stations-Historical/eq45-8inv

8

+

−

Leaflet	(http://leafletjs.com)

+

−

Leaflet	(http://leafletjs.com)

Figure 1: Left: Mean cumulative mistakes over 25 iterations for all algorithms and benchmarks over 48 hours
(8640 trials) on a 404-vertex graph. A comparison of the mean performance of SCS with bases Fn and Bn

(SCS-F and SCS-B respectively) using an ensemble of size 1 and 65 is shown. Right: An example of two binary
labelings taken from the morning and evening of the first 24 hours of data. An ‘orange’ label implies that station
is < 50% full and a ‘black’ label implies that station is � 50% full.

over 25 iterations is shown in Figure 1. There are several surprising observations to be made from
our results. Firstly, both SCS algorithms performed significantly better than all benchmarks and
competing algorithms. Additionally basis Bn outperformed basis Fn by quite a large margin, despite
having the weaker bound and being exponentially faster. Finally we observed a significant increase
in performance of both SCS algorithms by increasing the ensemble size (see Figure 1 and Table 1),
additional details on these experiments and results of all ensemble sizes are given in Appendix G.

Interestingly when tuning ↵ we found basis Bn to be very robust, while Fn was very sensitive. This
observation combined with the logarithmic per-trial time complexity suggests that SCS with Bn has
promise to be a very practical algorithm.

5 Conclusion

Our primary result was an algorithm for predicting switching graph labelings with a per-trial prediction
time of O(log n) and a mistake bound that smoothly tracks changes to the graph labeling over time. In
the long version of this paper we plan to extend the analysis of the primary algorithm to the expected
regret setting by relaxing our simplifying assumption of the well-formed comparator sequence that is
minimal-consistent with the labeling sequence. From a technical perspective the open problem that
we found most intriguing is to eliminate the log log T term from our bounds. The natural approach to
this would be to replace the conservative fixed-share update with a variable-share update [21]; in our
efforts however we found many technical problems with this approach. On both the more practical
and speculative side; we observe that the specialists sets Bn, and Fn were chosen to “prove bounds”.
In practice we can use any hierarchical graph clustering algorithm to produce a complete specialist
set and furthermore multiple such clusterings may be pooled. Such a pooled set of subgraph “motifs”
could be then be used for example in a multi-task setting (see for example, [27]).

References
[1] D. Adamskiy, W. M. Koolen, A. Chernov, and V. Vovk. A closer look at adaptive regret. In

Proceedings of the 23rd International Conference on Algorithmic Learning Theory, ALT’12,
pages 290–304, 2012.

[2] M. Belkin and P. Niyogi. Semi-supervised learning on riemannian manifolds. Machine learning,
56(1-3):209–239, 2004.

[3] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In
Proceedings of the Eighteenth International Conference on Machine Learning, ICML ’01, pages
19–26, 2001.

9

[4] O. Bousquet and M. K. Warmuth. Tracking a small set of experts by mixing past posteriors.
Journal of Machine Learning Research, 3(Nov):363–396, 2002.

[5] N. Cesa-Bianchi, P. Gaillard, G. Lugosi, and G. Stoltz. Mirror descent meets fixed share (and
feels no regret). In Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1, NIPS ’12, pages 980–988, 2012.

[6] N. Cesa-Bianchi, C. Gentile, and F. Vitale. Fast and optimal prediction on a labeled tree. In
Proceedings of the 22nd Annual Conference on Learning Theory, pages 145–156. Omnipress,
2009.

[7] N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. Random spanning trees and the
prediction of weighted graphs. Journal of Machine Learning Research, 14(1):1251–1284, 2013.

[8] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
New York, NY, USA, 2006.

[9] A. Daniely, A. Gonen, and S. Shalev-Shwartz. Strongly adaptive online learning. In Proceedings
of the 32nd International Conference on International Conference on Machine Learning -
Volume 37, ICML’15, pages 1405–1411, 2015.

[10] Y. Freund. Private communication, 2000. Also posted on http://www.learning-theory.org.

[11] Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth. Using and combining predictors
that specialize. In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of
Computing, STOC ’97, pages 334–343, 1997.

[12] A. Gyorgy, T. Linder, and G. Lugosi. Efficient tracking of large classes of experts. IEEE
Transactions on Information Theory, 58(11):6709–6725, Nov 2012.

[13] E. Hazan and C. Seshadhri. Adaptive algorithms for online decision problems. Electronic
Colloquium on Computational Complexity (ECCC), 14(088), 2007.

[14] M. Herbster. Tracking the best expert II. Unpublished manuscript, 1997.

[15] M. Herbster and G. Lever. Predicting the labelling of a graph via minimum p-seminorm
interpolation. In COLT 2009 - The 22nd Conference on Learning Theory, 2009.

[16] M. Herbster, G. Lever, and M. Pontil. Online prediction on large diameter graphs. In Proceedings
of the 21st International Conference on Neural Information Processing Systems, NIPS ’08,
pages 649–656, 2008.

[17] M. Herbster, S. Pasteris, and S. Ghosh. Online prediction at the limit of zero temperature. In
Proceedings of the 28th International Conference on Neural Information Processing Systems -
Volume 2, NIPS’15, pages 2935–2943, 2015.

[18] M. Herbster, S. Pasteris, and M. Pontil. Predicting a switching sequence of graph labelings.
Journal of Machine Learning Research, 16(1):2003–2022, 2015.

[19] M. Herbster and M. Pontil. Prediction on a graph with a perceptron. In Proceedings of the 19th
International Conference on Neural Information Processing Systems, NIPS’06, pages 577–584,
2006.

[20] M. Herbster, M. Pontil, and L. Wainer. Online learning over graphs. In Proceedings of the 22nd
International Conference on Machine Learning, ICML ’05, pages 305–312, 2005.

[21] M. Herbster and M. Warmuth. Tracking the best expert. Machine Learning, 32(2):151–178,
1998.

[22] M. Herbster and M. K. Warmuth. Tracking the best linear predictor. Journal of Machine
Learning Research, 1:281–309, 2001.

[23] K. Jun, F. Orabona, S. Wright, and R. Willett. Improved strongly adaptive online learning using
coin betting. In Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, volume 54 of Proceedings of Machine Learning Research, pages 943–951. PMLR,
2017.

10

[24] B. S. Kerner. Experimental features of self-organization in traffic flow. Phys. Rev. Lett.,
81:3797–3800, 1998.

[25] J. Kivinen, A. Smola, and R. Williamson. Online learning with kernels. Trans. Sig. Proc.,
52(8):2165–2176, 2004.

[26] D. J. Klein and M. Randić. Resistance distance. Journal of mathematical chemistry, 12(1):81–95,
1993.

[27] W. M. Koolen, D. Adamskiy, and M. K. Warmuth. Putting bayes to sleep. In Proceedings of the
25th International Conference on Neural Information Processing Systems - Volume 1, NIPS ’12,
pages 135–143, 2012.

[28] W. M. Koolen and S. Rooij. Combining expert advice efficiently. In 21st Annual Conference on
Learning Theory - COLT 2008, pages 275–286, 2008.

[29] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

[30] R. Lyons and Y. Peres. Probability on Trees and Networks. Cambridge University Press, New
York, NY, USA, 1st edition, 2017.

[31] O. H. M. Padilla, J. Sharpnack, J. G. Scott, and R. J. Tibshirani. The dfs fused lasso: Linear-time
denoising over general graphs. Journal of Machine Learning Research, 18(1):1–36, 2018.

[32] A. Rakhlin and K. Sridharan. Efficient online multiclass prediction on graphs via surrogate
losses. In Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, AISTATS 2017, pages 1403–1411, 2017.

[33] J. Veness, M. White, M. Bowling, and A. György. Partition tree weighting. In Data Compression
Conference, pages 321–330. IEEE, 2013.

[34] F. Vitale, N. Cesa-Bianchi, C. Gentile, and G. Zappella. See the tree through the lines: The
shazoo algorithm. In Advances in Neural Information Processing Systems 23, pages 1584–1592,
2011.

[35] V. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop on Computa-
tional Learning Theory, COLT ’90, pages 371–386, 1990.

[36] V. Vovk. Derandomizing stochastic prediction strategies. Machine Learning, 35(3):247–282,
1999.

[37] D. B. Wilson. Generating random spanning trees more quickly than the cover time. In
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96,
pages 296–303, 1996.

[38] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and
global consistency. In Proceedings of the 16th International Conference on Neural Information
Processing Systems, NIPS ’03, pages 321–328, 2003.

[39] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using gaussian fields and
harmonic functions. In Proceedings of the Twentieth International Conference on International
Conference on Machine Learning, ICML ’03, pages 912–919, 2003.

11

Appendix

A Proof of Theorem 2

Proof. Recall that the cached share update (1) is equivalent to performing (3). We thus simulate the
latter update in our analysis. We first argue the inequality

[ŷt 6= yt] 
1

µt(Yt)
(d(µt,!t)� d(µt, !̇t)) , (5)

as this is derived by observing that

d(µt,!t)� d(µt, !̇t) =
X

"2E
µt," log

!̇t,"

!t,"

=
X

"2Yt

µt," log
!̇t,"

!t,"

� µt(Yt)[ŷt 6= yt] ,

where the second line follows the fact that µt," log
!̇t,"

!t,"
= 0 if " 62 Yt as either the specialist "

predicts ‘⇤’ and !̇t," = !t," or it predicts incorrectly and hence µt," = 0. The third line follows as
for " 2 Yt,

!̇t,"

!t,"
� 2 if there has been a mistake on trial t and otherwise the ratio is � 1. Indeed,

since Algorithm 1 is conservative, this ratio is exactly 1 when no mistake is made on trial t, thus
without loss of generality we will assume the algorithm makes a mistake on every trial.

For clarity we will now use simplified notation and let ⇡t := µt(Yt). We now prove the following
inequalities which we will add to (5) to create a telescoping sum of relative entropy terms and entropy
terms.

1

⇡t
[d(µt, !̇t)� d(µt,!t+1)] � �

1

⇡t
log

1

1� ↵
, (6)

1

⇡t
d(µt,!t+1)�

1

⇡t+1
d(µt+1,!t+1) � �

1

⇡t
H(µt) +

1

⇡t+1
H(µt+1)� JE (µt,µt+1) log

|E|

↵
.

(7)

Firstly (6) is proved with the following

d(µt, !̇t)� d(µt,!t+1) =
X

"2E
µt," log

!t+1,"

!̇t,"
�

X

"2E
µt," log

✓
(1� ↵)!̇t,"

!̇t,"

◆
= log (1� ↵) ,

where the inequality has used !t+1," � (1� ↵)!̇t," from (3).

To prove (7) we first define the following sets.

⇥t := {" 2 E : µt�1," 6= 0, µt," = 0} ,

 t := {" 2 E : µt�1," 6= 0, µt," 6= 0} ,

⌦t := {" 2 E : µt�1," = 0, µt," 6= 0} .

12

We now expand the following
1

⇡t
d(µt,!t+1)�

1

⇡t+1
d(µt+1,!t+1)

=
1

⇡t
d(µt,!t+1)�

1

⇡t
d(µt+1,!t+1) +

1

⇡t
d(µt+1,!t+1)�

1

⇡t+1
d(µt+1,!t+1)

=
1

⇡t

X

"2E
µt," log

µt,"

!t+1,"
�

1

⇡t

X

"2E
µt+1," log

µt+1,"

!t+1,"

+
1

⇡t

X

"2E
µt+1," log

µt+1,"

!t+1,"
�

1

⇡t+1

X

"2E
µt+1," log

µt+1,"

!t+1,"

= �
1

⇡t
H(µt) +

1

⇡t
H(µt+1) +

X

"2E

✓
µt,"

⇡t
�

µt+1,"

⇡t

◆
log

1

!t+1,"

�
1

⇡t
H(µt+1) +

1

⇡t+1
H(µt+1) +

X

"2E

✓
µt+1,"

⇡t
�

µt+1,"

⇡t+1

◆
log

1

!t+1,"
. (8)

Recall that a comparator µ 2 �|E| is well-formed if 8 v 2 V , there exists a unique " 2 E such that
"(v) 6= ⇤ and µ" > 0, and furthermore there exists a ⇡ 2 (0, 1] such that 8" 2 E : µ" 2 {0,⇡}, i.e.,
each specialist in the support of µ has the same mass ⇡ and these specialists disjointly cover the input
space (V). Thus, by collecting terms into the three sets ⇥t+1, t+1, and ⌦t+1 we have
X

"2E

✓
µt,"

⇡t
�

µt+1,"

⇡t

◆
log

1

!t+1,"

=
X

"2⇥t+1

µt,"

⇡t
log

1

!t+1,"
+

X

"2 t+1

✓
µt,"

⇡t
�

µt+1,"

⇡t

◆
log

1

!t+1,"
�

X

"2⌦t+1

µt+1,"

⇡t
log

1

!t+1,"

=
X

"2⇥t+1

µt,"

⇡t
log

1

!t+1,"
+

X

"2 t+1

✓
1�

µt+1,"

⇡t

◆
log

1

!t+1,"
�

X

"2⌦t+1

µt+1,"

⇡t
log

1

!t+1,"
,

(9)
and similarly

X

"2E

✓
µt+1,"

⇡t
�

µt+1,"

⇡t+1

◆
log

1

!t+1,"

=
X

"2 t+1

✓
µt+1,"

⇡t
� 1

◆
log

1

!t+1,"
+

X

"2⌦t+1

✓
µt+1,"

⇡t
� 1

◆
log

1

!t+1,"
. (10)

Substituting (9) and (10) into (8) and simplifying gives
1

⇡t
d(µt,!t+1)�

1

⇡t+1
d(µt+1,!t+1)

= �
1

⇡t
H(µt) +

1

⇡t+1
H(µt+1) +

X

"2⇥t+1

µt,"

⇡t
log

1

!t+1,"
�

X

"2⌦t+1

log
1

!t+1,"

� �
1

⇡t
H(µt) +

1

⇡t+1
H(µt+1)� |⌦t+1| log

|E|

↵
, (11)

where the inequality has used the fact that ↵
|E|  !t+1,"  1 from (3).

Summing over all trials then leaves a telescoping sum of relative entropy terms, a cost of 1
⇡t

log 1
1�↵

on each trial, and |⌦t+1| log
|E|
↵ for each switch. Thus,

TX

t=1

[ŷt 6= yt] 
1

⇡1
d(µ1,!1) +

1

⇡1
H(µ1) +

TX

t=1

1

⇡t
log

1

1� ↵
+

|K|�1X

i=1

JE
�
µki ,µki+1

�
log

|E|

↵
,

(12)
where JE(µki ,µki+1) = |⌦ki+1 |, and since !1 = 1

|E|1, we can combine the remaining entropy and
relative entropy terms to give 1

⇡1
d(µ1,!1) +

1
⇡1
H(µ1) =

1
⇡1

log |E|, concluding the proof.

13

B Proof of Proposition 3

We recall the proposition:

The basis Bn is complete. Furthermore, for any labeling u 2 {�1, 1}n there exists a covering set
Cu ✓ Bn such that |Cu|  2(�S(u) + 1)dlog2

n
2 e.

We first give a brief intuition of the proof; any required terms will be defined more completely later.
For a given labeling u 2 {�1, 1}n of cut-size �S(u), the spine S can be cut into �S(u)+1 clusters,
where a cluster is a contiguous segment of vertices with the same label. We will upper bound the
maximum number of cluster specialists required to cover a single cluster, and therefore obtain an
upper bound for |Cu| by summing over the �S(u) + 1 clusters.

Without loss of generality we assume n = 2r for some integer r and thus the structure of Bn is
analogous to a perfect binary tree of depth d = log2 n. Indeed, for a fixed label parameter y we will
adopt the terminology of binary trees such that for instance we say specialist "i,jy for i 6= j has a

so-called left-child "
i,b i+j

2 c
y and right-child "

d i+j
2 e,j

y . Similarly, we say that "i,b
i+j
2 c

y and "
d i+j

2 e,j
y are

siblings, and "i,jy is their parent. Note that any specialist is both an ancestor and a descendant of itself,
and a proper descendant of a specialist is a descendant of one of its children. Finally the depth of
specialist "i,jy is defined to be equal to the depth of the corresponding node in a binary tree, such that
"1,ny is of depth 0, "1,

n
2

y and "
n
2 +1,n
y are of depth 1, etc.

The first claim of the proposition is easy to prove as {"i,i�1, "
i,i
1 : i 2 [n]} ⇢ Bn and thus any labeling

u 2 {�1, 1}n can be covered. We now prove the second claim of the proposition.

We will denote a uniformly-labeled contiguous segment of vertices by the pair (l, r), where l, r 2 [n]
are the two end vertices of the segment. For completeness we will allow the trivial case when
l = r. Given a labeling u 2 {�1, 1}n, let Lu := {(l, r) : 1  l  r  n;ul = . . . = ur;ul�1 6=
ul;ur+1 6= ur} be the set of maximum-sized contiguous segments of unifmormly-labeled vertices.
Note that ul�1 or ur+1 may be vacuous. When the context is clear, we will also describe (l, r) as a
cluster, and as the set of vertices {l, . . . , r}.

For a given u 2 {�1, 1}n and cluster (l, r) 2 Lu, we say B(l,r) ✓ Bn is an (l, r)-covering set with
respect to u if for all "i,jy 2 B(l,r) we have l  i, j  r, and if for all k 2 (l, r) there exists some
"i,jy 2 B(l,r) such that i  k  j and y = uk. That is, every vertex in the cluster is ‘covered’ by at
least one specialist and no specialists cover any vertices k /2 (l, r). We define D

(l,r) to be the set of
all possible (l, r)-covering sets with respect to u.

We now define
�(B(l,r)) := |B(l,r)|

to be the complexity of B(l,r) 2 D
(l,r).

For a given u 2 {�1, 1}n and cluster (l, r) 2 Lu, we wish to produce an (l, r)-covering set of
minimum complexity, which we denote B

⇤
(l,r) := argmin

B(l,r)2D(l,r)

�(B(l,r)). Note that an (l, r)-covering

set of minimum complexity cannot contain any two specialists which are siblings, since they can be
removed from the set and replaced by their parent specialist.
Lemma 9. For any u 2 {�1, 1}n, for any (l, r) 2 Lu, the (l, r)-covering set of minimum complexity,
B
⇤
(l,r) = argmin

B(l,r)2D(l,r)

�(B(l,r)) contains at most two specialists of each unique depth.

Proof. We first give an intuitive sketch of the proof. For a given u 2 {�1, 1}n and cluster (l, r) 2 Lu

assume that there are at least three specialists of equal depth in B
⇤
(l,r), then any of these specialists

that are in the ‘middle’ may be removed, along with any of their siblings or proper descendants that
are also members of B⇤

(l,r) without creating any ‘holes’ in the covering, decreasing the complexity of
B
⇤
(l,r).

We use a proof by contradiction. Suppose for contradiction that for a given u 2 {�1, 1}n and
(l, r) 2 Lu, the (l, r)-covering set of minimum complexity, B⇤

(l,r), contains three distinct specialists
of the same depth, "a,by , "c,dy , "e,fy . Without loss of generality let a, b < c, d < e, f . Note that we have

14

l  a < f  r. We consider the following two possible scenarios: when two of the three specialists
are siblings, and when none are.

If "a,by and "c,dy are siblings, then we have "a,dy 2 Bn and thus {"a,dy } [B
⇤
(l,r) \ {"a,by , "c,dy } is an

(l, r)-covering set of smaller complexity, leading to a contradiction. The equivalent argument holds if
"c,dy and "e,fy are siblings.

If none are siblings, then let "c
0,d0

y be the sibling of "c,dy and let "C,D
y be the parent of "c,dy and "c

0,d0

y .
Note that a, b < c0, d0, c, d and c0, d0, c, d < e, f and hence l < C < D < r. If an ancestor of
"C,D
y is in B

⇤
(l,r), then B

⇤
(l,r) \ {"c,dy } is an (l, r)-covering set of smaller complexity, leading to a

contradiction. Alternatively, if no ancestor of "C,D
y is in B

⇤
(l,r), then "c

0,d0

y or some of its proper
descendants must be in B

⇤
(l,r), otherwise there exists some vertex k0 2 (c0, d0) such that there exists

no specialist "i,jy 2 B
⇤
(l,r) such that i  k0  j, and therefore B

⇤
(l,r) would not be an (l, r)-covering

set. Let "p,qy be a descendant of "c
0,d0

y which is contained in B
⇤
(l,r). Then {"C,D

y }[B
⇤
(l,r) \{"

c,d
y , "p,qy }

is an (l, r)-covering set of smaller complexity, leading to a contradiction.

We conclude that there can be no more than 2 specialists of the same depth in B
⇤
(l,r) for any

u 2 {�1, 1}n and any (l, r) 2 Lu.

We now prove an upper bound on the maximum minimum-complexity of an (l, r)-covering set under
any labeling u.
Corollary 10. For all u 2 {�1, 1}n,

max
(l,r)2Lu

min
B(l,r)2D(l,r)

�(B(l,r))  2 log
n

2
. (13)

Proof. For any u 2 {�1, 1}n, and (l, r) 2 Lu, since B
⇤
(l,r) can contain at most 2 specialists of the

same depth (Lemma 9) an (l, r)-covering set of minimum-complexity can have at most two specialists
of depths 2, 3, . . . , d. This set cannot contain two specialists of depth 1 as they are siblings. This upper
bounds the maximum minimum-complexity of any (l, r)-covering set by 2(d� 2) = 2 log n

2 .

Finally we conclude that for any labeling u 2 {�1, 1}n of cut-size �S(u), there exists Cu ✓ Bn

such that |Cu|  2 log2 (
n
2)(�S(u) + 1).

C Proof of Proposition 6

First recall the proposition statement.
Proposition 11. For a linearized graph S, for comparators µ,µ0

2 �|Fn| that are minimal-
consistent with u and u0 respectively,

JFn(µ,µ
0)  min (2H(u,u0),�S(u

0) + 1) .

Proof. We prove both inequalities separately. We first prove JFn(µ,µ
0)  �S(u0) + 1. This

follows directly from the fact that JE(µ,µ0) := |{" 2 E : µ" = 0, µ0
" 6= 0}| and therefore

JFn(µ,µ
0)  |{" 2 Fn : µ0

" 6= 0}| = �S(u0) + 1.

We now prove JFn(µ,µ
0)  2H(u,u0). Recall that if u 6= u0 then by definition of the minimal-

consistent comparators µ and µ0, the set {" 2 Fn : µ" = 0, µ0
" 6= 0} corresponds to the set of

maximum-sized contiguous segments of vertices in S sharing the same label in the labeling u0 that
did not exist in the labeling u. From here on we refer to a maximum-sized contiguous segment as
just a contiguous segment.

When switching from labeling u to u0, we consider the following three cases. First when a non-cut
edge (with respect to u) becomes a cut edge (with respect to u0), second when a cut edge (with
respect to u) becomes a non-cut edge (with respect to u0), and lastly when a cut edge remains a cut
edge, but the labeling of the two corresponding vertices are ‘swapped’.

15

Formally then, for an edge (i, j) 2 ES such that [ui = uj] ^ [u0
i 6= u0

j] there exists two new
contiguous segments of vertices sharing the same label that did not exist in the labeling u, their
boundary being the edge (i, j).

Conversely for an edge (i, j) 2 ES such that [ui 6= uj] ^ [u0
i = u0

j] there exists one new contiguous
segment of vertices sharing the same label that did not exist in the labeling u, that segment will
contain the edge (i, j).

Finally for an edge (i, j) 2 ES such that [[ui 6= uj]^ [u0
i 6= u0

j]]^ [[ui 6= u0
i]_ [uj 6= u0

j]] there exists
two new contiguous segments of vertices sharing the same label that did not exist in the labeling u,
their boundary being the edge (i, j).

We conclude that the number of new contiguous segments of vertices sharing the same label that did
not exist in the labeling u is upper bounded by

2
X

(i,j)2ES

[[ui 6= uj] _ [u0
i 6= u0

j]] ^ [[ui 6= u0
i] _ [uj 6= u0

j]] .

D Proof of Corollary 7

First recall the corollary statement.
Corollary 11. For a connected n-vertex graph G and with randomly sampled spine S, the number
of mistakes made in predicting the online sequence (i1, y1), . . . , (iT , yT) by the SCS algorithm with
optimally-tuned ↵ is upper bounded with basis Fn by

O

0

@�1 log n+

|K|�1X

i=1

H(uki ,uki+1) (log n+ log |K|+ log log T)

1

A

and with basis Bn by

O

0

@

0

@�1 log n+

|K|�1X

i=i

H(uki ,uki+1) (log n+ log |K|+ log log T)

1

A log n

1

A

for any sequence of labelings u1, . . . ,uT 2 {�1, 1}n such that ut,it = yt for all t 2 [T].

Proof. Since Algorithm 1 has a conservative update, we may ignore trials on which no mistake is
made and thus from the point of view of the algorithm a mistake is made on every trial, we will
therefore assume that T = M . This will lead to a self-referential mistake bound in terms of the
number of mistakes made which we will then iteratively substitute into itself.

Let c := log2 e, we will use the fact that log2 (
1

1� x
y+x

)  cxy for x, y > 0. We will first optimally
tune ↵ to give our tuned mistake bound for a general basis set E , and then derive the bounds for bases
Fn and Bn respectively. The value of ↵ that minimizes (4) is

↵ =

|K|�1P
i=1

JE
�
µki ,µki+1

�

TP
t=1

1
⇡t

+
|K|�1P
i=1

JE
�
µki ,µki+1

�
, (14)

which when substituted into the second term of (4) gives

ME 
1

⇡1
log |E|+ c

|K|�1X

i=1

JE
�
µki ,µki+1

�
+

|K|�1X

i=1

JE
�
µki ,µki+1

�
log

|E|

↵
. (15)

We now upper bound 1
↵ for substitution in the last term of (15) for bases Fn and Bn separately.

16

Basis Fn : For Fn observe that |E| = n2 + n, and since any labeling ut 2 {�1, 1}n of cut-size
�S(ut) is covered by �S(ut) + 1 specialists, we have that ⇡t = 1/(�S(ut) + 1) on all trials. We
let the number of mistakes made by SCS with basis Fn be denoted by MFn . Thus (15) immediately
becomes

MFn  (�1 + 1) log |Fn|+ c

|K|�1X

i=1

JFn

�
µki ,µki+1

�
+

|K|�1X

i=1

JFn

�
µki ,µki+1

�
log

|Fn|

↵
. (16)

To upper bound 1
↵ we note that if µki 6= µki+1 then JFn

�
µki ,µki+1

�
� 1, and that for Fn,

1
⇡i

= �ki + 1  n, thus from (14) we have

1

↵
= 1 +

TP
t=1

1
⇡t

|K|�1P
i=1

JFn

�
µki ,µki+1

�
 1 +

nT

|K|� 1


nT + |K|� 1

|K|� 1


(n+ 1)T

|K|� 1
.

Substituting 1
↵ 

(n+1)T
|K|�1 into (16) gives

MFn  (�1 + 1) log |Fn|+

|K|�1X

i=1

JFn

�
µki ,µki+1

� 
log (e|Fn|) + log (n+ 1) + log

T

|K|� 1

�

(17)

We now show our method to reduce the log T term in our bound to log log T by substituting the
self-referential mistake bound into itself. We first simplify (17) and substitute T = MFn ,

MFn  (�1 + 1) log |Fn|+

|K|�1X

i=1

JFn

�
µki ,µki+1

�
log

✓
e|Fn|(n+ 1)

|K|� 1

◆

| {z }
=:Z

+

|K|�1X

i=1

JFn

�
µki ,µki+1

�

| {z }
=:J

logMFn

 Z + J log (Z + J logMFn)

 Z + J logZ + J logJ + J log logMFn ,

using log (a+ b)  log (a) + log (b) for a, b � 2. We finally use the fact that J = O(n|K|) to give
J logJ = O(J log (n|K|)) and similarly

J logZ = O(J log (�1 log n+ J log n))

= O(J log ((n+ J) log n)))

= O(J log (n+ J))

= O(J log (n|K|)) ,

to give

MFn  O

0

@�1 log n+

|K|�1X

i=1

JFn

�
µki ,µki+1

�
(log n+ log |K|+ log log T)

1

A .

Basis Bn: For Bn we apply the same technique as above, but first observe the following. Without
loss of generality assume n = 2r for some integer r, we then have |E| = 4n� 2. We let the number
of mistakes made by SCS with basis Bn be denoted by MBn . Thus for basis Bn (15) becomes

MBn  2 log
n

2
(�1 + 1) log |Bn|+ c

|K|�1X

i=1

JBn

�
µki ,µki+1

�
+

|K|�1X

i=1

JBn

�
µki ,µki+1

�
log

|Bn|

↵
.

(18)

17

Recall proposition 3 (that |Cu|  2 log2 (
n
2)(�S(u) + 1)) and since ⇡t =

1
|Cu| , then for any labeling

ut 2 {�1, 1}n of cut-size �S(ut) we have 1
2(�S(ut)+1) log n

2
 ⇡t 

1
�S(ut)+1 . We then apply the

same argument upper bounding 1
↵ ,

1

↵
= 1 +

TP
t=1

1
⇡t

|K|�1P
i=1

JBn

�
µki ,µki+1

�

 1 +
2n log

�
n
2

�
T

|K|� 1


2n log
�
n
2

�
T + |K|� 1

|K|� 1


�
2n log

�
n
2

�
+ 1

�
T

|K|� 1
,

and substituting 1
↵ 

(2n log (n
2)+1)T

|K|�1 into the last term of (18) gives

MBn  2 log2
n

2
(�1 + 1) log |Bn|+

|K|�1X

i=1

JBn

�
µki ,µki+1

� 
c+ log |Bn|+ ln 2n+ log

T

|K|� 1
+ log log n

�
.

Applying the same recursive technique as above yields a bound of

MBn  O

0

@�1 (log n)
2 +

|K|�1X

i=1

JBn

�
µki ,µki+1

�
(log n+ log |K|+ log log T)

1

A .

Using the same argument given in proposition 3 for any two labelings u,u0
2 {�1, 1}n, for

two consistent well-formed comparators µ,µ0
2 �|Bn| respectively, and for two consistent well-

formed comparators µ̂, µ̂0
2 �|Fn|, we have that JBn(µ,µ

0)  2 log n
2 JFn(µ̂, µ̂

0). Finally we use
JFn  2H(u,u0) from Proposition 6 to complete the proof.

E Proof of Proposition 8

Proof. Using a time-dependent ↵ we can re-write (4) as

ME 
1

⇡1
log |E|+

TX

t=1

1

⇡t
log

1

1� ↵t
+

|K|�1X

i=1

JE
�
µki ,µki+1

�
log

|E|

↵ki+1

, (19)

and letting ↵t :=
1

t+1 , and letting c := log2 e, gives the following,

ME 
1

⇡1
log |E|+

TX

t=1

1

⇡t
log

1

1� 1
t+1

+

|K|�1X

i=1

JE
�
µki ,µki+1

�
log (|E| (ki+1 + 1)) (20)


1

⇡1
log |E|+ c

TX

t=1

1

⇡t

1

t
+

|K|�1X

i=1

JE
�
µki ,µki+1

�
log (|E|T) (21)


1

⇡1
log |E|+ c

✓
max
t2[T]

1

⇡t

◆ TX

t=1

1

t
+

|K|�1X

i=1

JE
�
µki ,µki+1

�
log (|E|T) (22)


1

⇡1
log |E|+

✓
max
t2[T]

1

⇡t

◆
log (eT) +

|K|�1X

i=1

JE
�
µki ,µki+1

�
log (|E|T) (23)

where the step from (20) to (21) has used log2 (1 + x)  cx for x > 0, and the step from (22) to (23)
has used

P
t2[T]

1
t <

R T
1

1
t dt+ 1 = ln (eT) = 1

c log2 (eT).

18

We now use the following upper bound on max
t2[T]

1
⇡t

,

max
t2[T]

1

⇡t


1

⇡1
+

|K|�1X

i=1

JE(µki ,µki+1) ,

and the assumption that
|K|�1P
i=1

JE(µki ,µki+1) �
1
⇡1

, to give

max
t2[T]

1

⇡t
 2

|K|�1X

i=1

JE(µki ,µki+1) . (24)

Substituting (24) into (23) then gives

ME 
1

⇡1
log |E|+ 2

|K|�1X

i=1

JE
�
µki ,µki+1

�✓
log (eT) +

1

2
log (|E|T)

◆

=
1

⇡1
log |E|+ 2

|K|�1X

i=1

JE
�
µki ,µki+1

�✓1

2
log (|E|) + log (e) +

3

2
log (T)

◆

Using a conservative update (see section 3.1), we similarly set ↵t :=
1

m+1 , where m is the current
number of mistakes of the algorithm. We next use the same ‘recursive trick’ as that in the proof of
Corollary 7. The proof follows analogously, leaving

MFn  O

0

@�1 log n+

|K|�1X

i=1

JFn

�
µki ,µki+1

�
(log n+ log |K|+ log log T)

1

A

for the basis set Fn, and

MBn  O

0

@�1 (log n)
2 +

|K|�1X

i=1

JBn

�
µki ,µki+1

�
(log n+ log |K|+ log log T)

1

A

for the basis set Bn.

F The Switching Graph Perceptron

In this section for completeness we provide the kernelized Perceptron algorithm for switching graph
prediction. The algorithm is described and a mistake bound given for the switching-graph labeling
problem in [18, Sec. 6.2].

The key to the approach is to use the following graph kernel (introduced by [19]) K := L+
G +RL11>

with RL := maxi(e>i L
+
G ei), where L+

G denotes the pseudo-inverse of the graph Laplacian, and for
i 2 [n], we let ei denote the i-th unit basis vector, i.e., ei,i0 = 0 if i 6= i0 and equals 1 if i0 = i. The
norm induced by this kernel is denoted kukK :=

p

u>K�1u.

G Further Details on Experiments

In this section we give further details on the experimental methods of Section 4. Data was collected
spanning 72 hours from 4 : 55am on 8th April 2019 to 4 : 55am on 11th April 2019. Any stations
that were not in service during any of the 72 hours were removed (in this case there was only one
such station).

As described in Section 4, the variable measured was the percentage of occupied docks in each station,
and a threshold of 50% was set to induce a binary labeling. Any stations whose induced labeling did
not change over the 72 hours were also removed from the dataset. This left a graph of 404 stations.

The first 24 hours of data were used for parameter selection. Parameters were tuned using exhaustive
search over the ranges specified in Table 2, taking the mean minimizer over 10 iterations.

19

input : Graph G

parameter : � > 0
initialize : w1 0
K L+

G +maxi2[n](e
>
i L

+
G ei)11

>

for t = 1 to T do
receive it 2 V
predict ŷt sign(wt,it)
receive yt 2 {�1, 1}
if ŷt 6= yt then

ẇt wt + yt
Keit
Kit,it

if kẇtkK > � then
wt+1

ẇt
kẇtkK

�

else
wt+1 ẇt

Algorithm 2: SWITCHING GRAPH PERCEPTRON

Table 2: Parameter ranges used for optimizing the three algorithms with tunable parameters.

Algorithm Parameter Parameter Range Optimized Parameter

Kernel Perceptron � 3.5� 5 3.89
SCS-F ↵ 1⇥ 10�12

� 1⇥ 10�6 7.4⇥ 10�10

SCS-B ↵ 1⇥ 10�5
� 5⇥ 10�4 3.0⇥ 10�4

20

