
We thank all reviewers for their comments and suggestions!1

2

Reviewer 1: Q1. About the benefits of the newly-proposed algorithms.3

A. First of all, we emphasize that our goal is not to develop an algorithm for solving `0 norm constrained problem4

and prove an exact recovery result, but rather to analyze stochastic proximal gradient (SPG) for handling a general5

non-convex regularizer under minimal assumptions about the problem. The benefits of the newly-proposed algorithms6

is that it is applicable to a much broader family of problems. First, we are not restricted to `0 norm constrained or7

regularized problems. As long as the regularizer’s proximal mapping can be efficiently computed, our algorithms and8

their convergence guarantee are applicable (c.f. our experiments for learning with quantization). Second, we do not9

impose stringent condition on the data matrix or the loss function, such as restricted isometry property or restricted10

eigenvalue or restricted strong convexity that is typical for traditional sparse recovery algorithms (e.g., IHT, StoIHT).11

Third, our results are applicable to any smooth loss functions even if they are non-convex, while most previous results12

are restricted to convex loss. We believe adding such stringent conditions one could derive much stronger result of SPG13

for `0 norm constrained problems following existing works (e.g., [R1,R2]). But it is not the focus of this paper.14

Reviewer 1: Q2. About Theorem 5 and convergence.15

A. Thanks for this great question! Please note that this is not an error. We will make the statement of Theorem 5 more16

clear in the revision (somehow the current upper bound in Thm. 5 is to capture the online setting). In fact, for the17

finite-sum setting, the second term (γ + 4θL)σ2/(2θL|S1|) will disappear in the upper bound since it is caused by the18

variance of stochastic gradient ∇fS1
(xt) (c.f. Line 440 of supplement). We have briefly explained in the proof of19

Corollary 6 for the finite-sum setting (c.f. Line 478 of supplement) and will add more details. We will present Theorem20

5 in a better way by considering the online and finite-sum setting separately. For the online setting, the current bound21

holds without any change, for the finite-sum setting the upper bound only includes the first term. Thanks again!22

23

Reviewer 2: Q. How to justify the Assumption 1 (ii)?24

A. This assumption is quite standard and has been used in many non-convex literatures (see references [18, 19, 29, 31,25

35, 41]). As long as the objective function is lower bounded, the assumption holds without assuming a compact domain.26

In most machine learning applications the objective function is non-negative, i.e., F (x) ≥ 0. Hence, one can simply set27

∆ = F (x0).28

Reviewer 2: Specific Comments and Improvements.29

A. We thank the reviewer for all comments. We will improve the paper following on the reviewer’s comments and add30

more discussion on the bounded variance assumption in connection with [29]. Thanks for the positive rating!31

32

Reviewer 3: Q. About the constant learning rate with a large mini-batch size vs decreasing learning rate with a33

small mini-batch size.34

A. While we agree with the reviewer that an algorithm with a decreasing learning rate and small mini-batch size is35

interesting, it might be unfair to say that an algorithm with large mini-batch size and constant learning rate is not36

practical. At least, in the distributed setting it is more natural to consider a large mini-batch size rather than a small37

batch size [R3]. Indeed, we have presented a variant with an increasing sequence of mini-batch sizes rather than a38

large mini-batch size from the beginning. It is still an open problem to prove the non-asymptotic convergence of SPG39

without using a large mini-batch size for a non-convex regularized problem (An asymptotic analysis of SPG without a40

large batch size is presented in [15]).41

Reviewer 3: Improvements.42

A. We will formally define the practical algorithm. Thanks for the positive rating!43
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