N S R W N =

10

11

12
13

A Slow Caratheodory Implementation

Algorithm 8 CARATHEODORY (P, u)

Input : A weighted set (P, u) of n points in R%.
Output: A Caratheodory set (S, w) for (P, u) in O(n?d?) time.

if n < d+ 1 then
| return (P, u)
Identifyp - {p17"' 7pn}
for everyi € {2,--- ,n} do
a; *=Pi —P1
A:=(ag |- |ap)// AcRXr-1

Compute v = (vo, -+ ,v,)T # 0 such that Av = 0.

n
v = — E V;
=2

o= Inin{E |ie{l,---,n} and v; > 0}

Vi

w; := u; — av; forevery i € {1,--- ,n}.

S:={p;|w;>0andie {1, --- ,n}}
if |S| > d + 1 then

| (S, w):= CARATHEODORY (S, w)
return (S, w)

Overview of Algorithm 8 and its correctness. The input is a weighted set (P, u) whose points are
denoted by P = {p1,--- ,pn}. We assume n > d + 1, otherwise (S,w) = (P, u) is the desired
coreset. Hence, the n.— 1 > d points py — p1, p3 —p1, - . .. Pp —p1 € R? must be linearly dependent.

This implies that there are reals va, - - - , v,,, Which are not all zeros, such that
n
> wilpi —p1) = 0. 2
i=2

These reals are computed in Line 7 by solving system of linear equations. This step dominates the
running time of the algorithm and takes O(nd?) time using e.g. SVD. The definition

w=-3u @
=2

in Line 8, guarantees that
vj < 0 for some j € [n], @)

and that

n

n n n n
> vipi =vipr+ Y vipi = <— Z%) pr+ > vipi =Y vi(pi —p1) =0,)
i=1 i=2 i=2 i=2

=2

where the second equality is by (3), and the last is by (2). Hence, for every a € R, the weighted

mean of P is
n

n n n
Z Uip; = Z UiP; — Z VP = Z (u; — ovy) ps, (6)
i=1 i=1 i=1 i=1

where the first equality holds since Z?zl v;p; = 0 by (5). The definition of « in Line 9 guarantees
that av;» = u;« for some i* € [n], and that u; — av; > 0 for every i € [n]. Hence, the set S that is
defined in Line 11 contains at most n — 1 points, and its set of weights {u; — aw; } is non-negative.
Notice that if a = 0, we have that w; = u; > 0 for some j € [n]. Otherwise, if o > 0, by (4) there
is j € [n] such that v; < 0, which yields that w; = u; — av; > 0. Hence, in both cases there is
w; > 0 for some j € [n]. Therefore, |S| # 0.

13

The sum of the positive weights is thus the total sum of weights,

n n n n
E wizg (ui—avi):g ui—a-g v; =1,
i=1 i=1

p;€ES i=1

where the last equality hold by (3), and since w sums to 1. This and (6) proves that (S, w) is a
Caratheodory set of size n — 1 for (P, u); see Definition 2.1. In Line 12 we repeat this process
recursively until there are at most d + 1 points left in S. For O(n) iterations, the overall time is thus
O(nd?).

B Faster Caratheodory Set

Theorem B.1 (Thecorem 3.1). Let (P,u) be a weighted set of n points in R% such that
dopept(p) = 1, and k > d + 2 be an integer. Let (C.w) be the output of a call to
FAST-CARATHEODORY-SET(P, u, k); See Algorithm 1. Let t(k,d) be the time it takes to com-
pute a Caratheodory Set for k points in R%, as in Theorem 2.2. Then (C,w) is a Caratheodory set
of (P,u) that is computed in time

0 (nd+t(k,d)~b:(%>.

Proof. We use the notation and variable names as defined in Algorithm 1 from Section 3.

First, at Line 1 we remove all the points in P which have zero weight, since they do not contribute
to the weighted sum. Therefore, we now assume that u(p) > 0 for every p € P and that |P| = n.
Identify the input set P = {p1,- - ,p, } and the set C that is computed at Line 9 of Algorithm 1 as
C = {cl, RN Tol } We will first prove that the weighted set (C, w) that is computed in Lines 9-11
at an arbitrary iteration is a Caratheodory set for (P, u), i€, > cpu(p) - p = > ccw(p) - p,

Ypep (D) =2 cow(p) and [C] < (d+1) - [}].

Let (fi,w) be the pair that is computed during the execution the current iteration at Line 8.
By Theorem 2.2 and Algorithm 8, the pair (fi,w@) is a Caratheodory sct of the weighted set

({m1,-- . p},u'). Hence,

k
o) =1, Y W(pa)pm =Y u'(p) - psand il <d+1. @)
Wi €M Wi €L i=1
By the definition of p;, forevery i € {1,--- ,k}
k 1 k
Zu p) - s = (q) - Tl dou)p| = up=> upp. @®
i=1 Hi pEP; =1 peP; peP

‘We now have that

Z p— Z Z 11’(,u = lb(/‘l) Z u(p) p= Z ZD(,UIZ'),UQ'

!
peC 1€ pEP; pi€fL pepr; " (1) Wi€R
& 9
=Y (i)=Y u(p)p,
i=1 peEP

where the first equality holds by the definitions of C' and w, the third equality holds by the definition
of p; at Line 5, the fourth equality is by (7), and the last equality is by (8).

The new sum of weights is equal to

Z w(p Z Z ,uz)u p) Z % Z t(p) Z ~(NZ:) -u/(lh‘) = Z 1[)(/%) =1,

u
peC wi€fL pEP; pi€R pEP; pi €L (1) wi€Q
(10)

14

where the last equality is by (7).

Combining (9) and (10) yields that the weighted (C,w) computed before the recursive call at
Line 13 of the algorithm is a Carathcodory sct for the weighted input set (P, u). Since at each
iteration we either return such a Caratheodory set (C,w) at Line 13 or return the input weighted
set (P,u) itsell at Line 3, by induction we conclude that the output weighted set of a call to
FAST-CARATHEODORY-SET(P, u, k) is a Caratheodory set for the original input (P, u).

By (7) we have that C' contains at most (d + 1) clusters from P and at most |C| < (d + 1) - [%]
points. Hence, there are at most logﬁ (n) recursive calls before the stopping condition in line 2 is

satisfied. The time complexity of each iteration is n’ + ¢(k, d) where n’ = | P| - d is the number of
points in the current iteration. Thus the total running time of Algorithm 1 is

logn
log(k/(d + 1)) '“’“‘”) '
[

Theorem B.2 (Theorem 3.2). Let A € R™*% be a matrix, and k > d? + 2 be an integer. Let
S € R@WHD*d pe the output of a call to CARATHEODORY-MATRIX (A, k); see Algorithm 2. Let
t(k,d) be the computation time of CARATHEODORY given k point in RY. Then S satisfies that
AT A = ST'S. Furthermore, S can be computed in O(nd* + t(k,d?) - m) time.

(“_d t(k, d)) < 2nd +log__(n) -t(k,d) € O (nd+

Proof. We use the notation and variable names as defined in Algorithm 2 from Section 3.

Since (C, w) atLine 5 of Algorithm 2 is the output of a call to FAST-CARATHEODORY-SET(P, u, k),
by Theorem 3.1 we have that: (i) the weighted means of (C, w) and (P, u) are equal, i.e.,

> ulp) p=> wp) -p, (1n

peP peC
(i) |C| < d2 + 1 since P € R(@"), and (iii) C is computed in O(nd? + log_x_(n) - t(k,d?)) time.
d<+41

Combining (11) with the fact that p; is simply the concatenation of the entries of a;a., we have that

Y ulpaal = Y w(p) - aiay (12)
piEP pi€C
By the definition of .S in Line 6, we have that
sTS = Z(n-w(p;) - a;)(v/n-wp;) - a;) Z a; . (13)
p;€C p.eC
We also have that
n
ATA = Zaiazr Z (1/n)aa; =n- Z u(p;)aal (14)
i=1 pi€EP piEP

where the second derivation holds since w = 1/n. Theorem 3.2 now holds by combining (12), (13)

and (14) as
STs=n. Z w(p;) aa =n- Z pzaa = AT A.
pi€C p.EP

Running time: Computing the weighted set (P, u) at Lines 1— 4 takes O(nd?) time, since it takes
O(d?) time to compute each of the n points in P.

By Theorem 3.1, Line 5 takes O(nd? + t(k, d?) - logk(”%) to compute a CARATHEODORY for the
the weighted set (P,), and finally Line 6 takes O(d?) for building the matrix S. Hence, the overall

running time of Algorithm 2 is O(nd? + t(k, d?) - logl‘(’%)]

15

