
Limitations of the Empirical Fisher Approximation
for Natural Gradient Descent

Supplementary Material

A Details on natural gradient descent

We give an expanded version of the introduction to natural gradient descent provided in Section 3.1

A.1 Measuring distance in Kullback-Leibler divergence

Gradient descent minimizes the objective function by updating in the “direction of steepest descent”.
But what, precisely, is meant by the direction of steepest descent? Consider the following definition,

limε→0
1
ε

(
arg minδ f(θ + δ)

)
s.t. d(θ, θ + δ) ≤ ε, (20)

where d(·, ·) is some distance function. We are looking for the update step δ which minimizes f
within an ε distance around θ, and let the radius ε go to zero (to make δ finite, we have to divide
by ε). This definition makes clear that the direction of steepest descent is intrinsically tied to the
geometry we impose on the parameter space by the definition of the distance function. If we choose
the Euclidean distance d(θ, θ′) = ‖θ − θ′‖2, Eq. (20) reduces to the (normalized) negative gradient.

Now, assume that θ parameterizes a statistical model pθ(z). The parameter vector θ is not the
main quantity of interest; the distance between θ and θ′ would be better measured in terms of
distance between the distributions pθ and pθ′ . A common function to measure the difference
between probability distributions is the Kullback–Leibler (KL) divergence. If we choose d(θ, θ′) =
DKL

(
pθ′ ‖ pθ

)
, the steepest descent direction becomes the natural gradient, F(θ)−1∇L(θ), where

F(θ) = ∇2
θ′ DKL

(
pθ ‖ pθ′

)
|θ′=θ, (21)

the Hessian of the KL divergence, is the Fisher information matrix of the statistical model and

F(θ) := Epθ(z)
[
∇ log pθ(z)∇ log pθ(z)

T
]

= Epθ(z)
[
−∇2 log pθ(z)

]
(22)

To see why, apply the chain rule on the log to split the equation in terms of the Hessian and the outer
product of the gradients of pθ w.r.t. θ,

Epθ(z)
[
−∇2

θ log pθ(z)
]

= Epθ(z)
[
− 1
pθ(z)
∇2
θpθ(z)

]
+ Epθ(z)

[
1

pθ(z)2
∇θpθ(z)∇θpθ(z)>

]
. (23)

The first term on the right-hand side is zero, since

Epθ(z)
[
− 1
pθ(z)
∇2
θpθ(z)

]
:= −

∫
z

1

pθ(z)
∇2
θpθ(z)pθ(z) dz =

∫
z

∇2
θpθ(z) dz,

= ∇2
θ

∫
pθ(z) dz = ∇2

θ[1] = 0. (24)

The second term is the expected outer-product of the gradients, as ∂θ log f(θ) = 1
f(θ)∂θf(θ),

1
pθ(z)2

∇θpθ(z)∇θpθ(z)> =
(

1
pθ(z)
∇θpθ(z)

)(
1

pθ(z)
∇θpθ(z)

)>
,

= ∇θ log pθ(z)∇θ log pθ(z)
>. (25)

The same technique also shows that if the empirical distribution over the data is equal to the model
distribution pθ(y|f(x, θ), then the Fisher, empirical Fisher and Hessian are all equal.

13

A.2 The Fisher for common loss functions

For a probabilistic conditional model of the form p(y|f(x, θ)) where p is an exponential family
distribution, the equivalence between the Fisher and the generalized Gauss-Newton leads to a
straightforward way to compute the Fisher without expectations, as

F(θ) =
∑
n(Jθf(xn, θ))

>(∇2 log p(yn|f(xn, θ)))(Jθf(xn, θ)) =
∑
n J
>
n HnJn, (26)

where Jn = Jθf(xn, θ) and Hn = ∇2 log p(yn|f(xn, θ)) often has an exploitable structure.

The squared-loss used in regression, 1
2

∑
n

∥∥yn − f(xn, θ)
∥∥2, can be cast in a probabilistic setting

with a Gaussian distribution with unit variance, p(yn|f(xn, θ)) = N
(
yn; f(xn, θ), 1

)
,

p(yn|f(xn, θ)) = exp
(
− 1

2

∥∥yn − f(xn, θ)
∥∥2) . (27)

The Hessian of the negative log-likelihood w.r.t. f is then

∇2
f − log p(yn|f) = ∇2

f

[
− log exp

(
− 1

2‖yn − f‖
2
)]

= ∇2
f

[
1
2‖yn − f‖

2
]

= 1. (28)

And as the function f is scalar-valued, the Fisher reduces to an outer-products of gradients,

F(θ) =
∑
n∇θf(xn, θ)∇θf(xn, θ)

>. (29)

We stress that this is difference to the outer product of gradients of the overall loss;

F(θ) 6= ∑n∇θ log p(yn|f(xn, θ))∇θ log p(yn|f(xn, θ))
>. (30)

The cross-entropy loss used inC-class classification can be cast as an exponential family distribution
by using the softmax function on the mapping f(xn, θ),

p(yn = c|f(xn, θ)) = [softmax(f)]c = efc∑
i e
fi

= πc, (31)

The Hessian of the negative log-likelihood w.r.t. f is independent of the class label c,

∇2
f (− log p(y = c|f)) = ∇2

f [−fc + log
(∑

i e
fi
)
] = ∇2

f [log
(∑

i e
fi
)
]. (32)

A close look at the partial derivatives shows that

∂2

∂f2
i

log
(∑

c e
fc
)

= efi

(
∑
c e
fc)
− efi

2

(
∑
c e
fc)2

, and ∂2

∂fi∂fj
log
(∑

c e
fc
)

= − efiefj

(
∑
c e
fc)2

, (33)

and the Hessian w.r.t. f can be written in terms of the vector of predicted probabilities π as

∇2
f (− log p(y|f)) = diag(π)− ππ>. (34)

Writing πn the vector of probabilities associated with the nth sample, the Fisher becomes

F(θ) =
∑
n[Jθf(xn, θ)]

>(diag(πn)− πnπ>n)[Jθf(xn, θ)]. (35)

A.3 The generalized Gauss-Newton as a linear approximation of the model

In Section 3.3, we mentioned that the generalized Gauss-Newton with a split L(θ) =
∑
n an(bn(θ))

can be interpreted as an approximation of L where the second-order information of an is conserved
but the second-order information of bn is ignored. To make this connection explicit, see that if bn is a
linear function, the Hessian and the GGN are equal as the Hessian of bn w.r.t. to θ is zero,

∇2 L(θ) =
∑
n(Jθbn(θ))> ∇2

ban(bn(θ)) (Jθbn(θ))︸ ︷︷ ︸
GGN

+
∑
n,m[∇ban(bn(θ))]m∇2

θb
(m)
n (θ)︸ ︷︷ ︸
=0

. (36)

This corresponds to the Hessian of a local approximation of L where the inner function b is linearized.
We write the first-order Taylor approximation of bn around θ as a function of θ′,

b̄n(θ, θ′) := bn(θ) + Jθbn(θ)(θ′ − θ),
and approximate L(θ′) by replacing bn(θ′) by its linear approximation b̄n(θ, θ′). The generalized
Gauss-Newton is the Hessian of this approximation, evaluated at θ′ = θ,

G(θ) = ∇2
θ′
∑
n an(b̄n(θ, θ′))|θ′=θ =

∑
n(Jθbn(θ))> ∇2

ban(bn(θ)) (Jθbn(θ)) (37)

14

B Computational aspects

The empirical Fisher approximation is often motivated as an easier-to-compute alternative to the
Fisher. While there is some merit to this argument, we argued in the main text that it computes the
wrong quantity. A Monte Carlo approximation to the Fisher has the same computational complexity
and a similar implementation: sample one output ỹn from the model distribution p(y|f(xn, θ)) for
each input xn and compute the outer product of the gradients∑

n∇ log p(ỹn|f(xn, θ))∇ log p(ỹn|f(xn, θ))
>. (38)

While noisy, this one-sample estimate is unbiased and does not suffer from the problems mentioned
in the main text. This is the approach used by Martens and Grosse [2015] and Zhang et al. [2018].

As a side note, some implementations use a biased estimate by using the most likely output ŷn =
arg maxy p(y|f(xn, θ)) instead of sampling ỹn from p(y|f(xn, θ)). This scheme could be beneficial
in some circumstances as it reduces variance, but it can backfire by increasing the bias. For the
least-squares loss, p(y|f(xn, θ)) is a Gaussian distribution centered as f(xn, θ) and the most likely
output is f(xn, θ). The gradient∇θ log p(y|f(xn, θ))|y=f(xn,θ) is then always zero.

For high quality estimates, sampling additional outputs and averaging the results is inefficient. If M
MC samples ỹ1, . . . , ỹM per input xn are used to compute the gradients gm = ∇ log p(ỹm|f(xn, θ)),
most of the computation is repeated. The gradient gm is

gm = ∇ log p(ỹm|f(xn, θ)) = −(Jθf(xn, θ))
>∇f log p(ỹm|f), (39)

where the Jacobian of the model output, Jθf , does not depend on ỹm. The Jacobian of the model
is typically more expensive to compute than the gradient of the log-likelihood w.r.t. the model
output, especially when the model is a neural network. This approach repeats the difficult part of the
computation M times. The expectation can instead be computed in closed form using the generalized
Gauss-Newton equation (Eq. 26, or Eq. 10 in the main text), which requires the computation of the
Jacobian only once per sample xn.

The main issue with this approach is that computing Jacobians is currently not well supported by
deep learning auto-differentiation libraries, such as TensorFlow or Pytorch. However, the current the
implementations relying on the empirical Fisher also suffer from this lack of support, as they need
access to the individual gradients to compute their outer-product. Access to the individual gradients is
equivalent to computing the Jacobian of the vector [− log p(y1|f(x1, θ)), ...,− log p(yN |f(xN , θ)]

>.
The ability to efficiently compute Jacobians and/or individual gradients in parallel would drastically
improve the practical performance of methods based on the Fisher and empirical Fisher, as most of
the computation of the backward pass can be shared between samples.

C Additional proofs

C.1 Proof of Propositon 1

In Section 3.4, Proposition 1, we stated that the Fisher and the generalized Gauss-Newton are
equivalent for the problems considered in the introduction;

Proposition 1 (Martens [2014], §9.2). If p(y|f) is an exponential family distribu-
tion with natural parameters f , then the Fisher information matrix coincides with
the GGN of Eq. (1) using the split

an(b) = − log p(yn|b), bn(θ) = f(xn, θ),

and reads F(θ) = G(θ) =
∑
n[Jθf(xn, θ)]

> ∇2
f log p(yn|f(xn, θ)) [Jθf(xn, θ)].

Plugging the split into the definition of the GGN (Eq. 10) yields G(θ), so we only need to show that
the Fisher coincides with this GGN. By the chain rule, we have

∇θ log p(y|f(xn, θ)) = Jθf(xn, θ)
> ∇f log p(y|f(xn, θ)), (40)

and we can then apply the following steps.
F(θ) =

∑
n Ey∼pθ(y|xn)

[
Jθf(xn, θ)

> ∇f log p(y|fn)∇f log p(y|fn)>Jθf(xn, θ)
]
, (41)

=
∑
n Jθf(xn, θ)

> Ey∼pθ(y|xn)
[
∇f log p(y|fn)∇f log p(y|fn)>

]
Jθf(xn, θ), (42)

=
∑
n Jθf(xn, θ)

> Ey∼pθ(y|xn)
[
−∇2

f log p(y|fn)
]

Jθf(xn, θ), (43)

15

Eq. (41) rewrites the Fisher using the chain rule, Eq. (42) take the Jacobians out of the expectation as
they do not depend on y and Eq. (43) is due to the equivalence between the expected outer product of
gradients and expected Hessian shown in the last section.

If p is an exponential family distribution with natural parameters (a linear combination of) f , its log
density has the form log p(y|f) = fTT (y)−A(f) + log h(y) where T are the sufficient statistics,
A is the cumulant function, and h is the base measure. Its Hessian w.r.t. f is independent of y,

F(θ) =
∑
n Jθf(xn, θ)

>∇2
f (− log p(yn|fn))Jθf(xn, θ), (44)

C.2 Proof of Proposition 2

In §3.4, Prop. 2, we show that the difference between the Fisher (or the GNN) and the Hessian can be
bounded by the residuals and the smoothness constant of the model f ;

Proposition 2. Let L(θ) be defined as in Eq. (1) with F = RM . Denote by f (m)
n

the m-th component function of f(xn, ·) : RD → RM and assume each f (m)
n is

β-smooth. Let G(θ) be the GGN (Eq. 10). Then,∥∥∇2 L(θ)−G(θ)
∥∥2
2
≤ r(θ)β, (45)

where r(θ) =
∑N
n=1 ‖∇f log p(yn|f(xn, θ))‖1 and ‖ · ‖2 denotes the spectral

norm.

Dropping θ from the notation for brevity, the Hessian can be expressed as

∇2 L = G+
∑N
n=1

∑M
m=1 r

(m)
n ∇2

θf
(m)
n , where r

(m)
n = ∂ log p(yn|f)

∂f(m) |f=fn(θ) (46)

is the derivative of − log p(y|f) w.r.t. the m-th component of f , evaluated at f = fn(θ).

If all f (m)
n are β-smooth, their Hessians are bounded by −βI � ∇2

θf
(m)
n � βI and

−
∣∣∣∑n,m r

(m)
n

∣∣∣β I � ∇2 L−G �
∣∣∣∑n,m r

(m)
n

∣∣∣β I . (47)

Pulling the absolute value inside the double sum gives the upper bound∣∣∣∑n,m r
(m)
n

∣∣∣ ≤∑n

∑
m

∣∣∣∂ log p(yn|f)
∂f(m) |f=fn(θ)

∣∣∣ =
∑
n ‖∇f log p(yn|fn(θ))‖1, (48)

and the statement about the spectral norm (the largest singular value of the matrix) follows.

D Experimental details

In contrast to the main text of the paper, which uses the sum formulation of the loss function,
L(θ) =

∑
n log p(yn|f(xn, θ)),

the implementation—and thus the reported step sizes and damping parameters—apply to the average,
L(θ) = 1

N

∑
n log p(yn|f(xn, θ)).

The Fisher and empirical Fisher are accordingly rescaled by a 1/N factor.

D.1 Vector field of the empirical Fisher preconditioning

The problem used for Fig. 1 is a linear regression on N = 1000 samples from
xi ∼ Lognormal

(
0, 3/4

)
, εi ∼ N (0, 1) , yi = 2 + 2xi + εi. (49)

To be visible and of a similar scale, the gradient, natural gradient and empirical Fisher-preconditioned
gradient were relatively rescaled by 1/3, 1 and 3, respectively. The trajectories of each method is
computed by running each update,

GD: θt+1 = θt − γ∇L(θt). (50)

NGD: θt+1 = θt − γ(F(θt) + λ I)−1∇L(θt), (51)

EFGD: θt+1 = θt − γ(F̃(θt) + λ I)−1∇L(θt), (52)
using a step size of γ = 10−4 and a damping parameter of λ = 10−8 to ensure stability for 50′000
iterations. The vector field is computed using the same damping parameter. The starting points are[

2 4.5
]
,

[
1 0

]
,

[
4.5 3

]
,

[
−0.5 3

]
.

16

D.2 EF as a quadratic approximation at the minimum for misspecified models

The problems are optimized using using the Scipy [Jones et al., 2001] implementation of BFGS4.
The quadratic approximation of the loss function using the matrix M (the Fisher or empirical
Fisher) used is L(θ) ≈ 1

2 (θ − θ?)M(θ − θ?), for ‖θ − θ?‖2 = 1. The datasets used for the
logistic regression problem of Fig. 2 are described in Table 2. Fig. 4 shows additional examples of
model misspecification on a linear regression problem using the datasets described in Table 3. All
experiments used N = 1′000 samples.

Table 2: Datasets used for Fig. 2. For all datasets, p(y = 0) = p(y = 1) = 1/2.
Model p(x|y = 0) p(x|y = 1)

Correct model: N
([

1
1

]
,

[
2 0
0 2

])
N
([
−1
−1

]
,

[
2 0
0 2

])

Misspecified (A): N
([

1.5
1.5

]
,

[
3 0
0 3

])
N
([
−1.5
−1.5

]
,

[
1 0
0 1

])

Misspecified (B): N
([
−1
−1

]
,

[
1.5 −0.9
−0.9 1.5

])
N
([

1
1

]
,

[
1.5 0.9
0.9 1.5

])

Table 3: Datasets used for Fig. 4. For all datasets, x ∼ N (0, 1).
Model y ε

Correct model: y = x+ ε ε ∼ N (0, 1)
Misspecified (A): y = x+ ε ε ∼ N (0, 2)
Misspecified (B): y = x+ 1

2x
2 + ε ε ∼ N (0, 1)

D.3 Optimization with the empirical Fisher as preconditioner

The optimization experiment uses the update rules described in §D.1 by Eq. (50, 51, 52). The step
size and damping hyperparameters are selected by a gridsearch, selecting for each optimizer the run
with the minimal loss after 100 iterations. The grid used is described in Table 5 as a log-space5.
Table 4 describes the datasets used and Table 6 the hyperparameters selected by the gridsearch. The
cosine similarity is computed between the gradient preconditioned with the empirical Fisher and the
Fisher, without damping, at each step along the path taken by the empirical Fisher optimizer.

The problems are initialized at θ0 = 0 and run for 100 iterations. This initialization is favorable to the
empirical Fisher for the logistic regression problems. Not only is it guaranteed to not be arbitrarily
wrong, but the empirical Fisher and the Fisher coincide when the predicted probabilities are uniform.
For the sigmoid activation of the output of the linear mapping, σ(f), the gradient and Hessian are

− ∂
∂f log p(y|f) = σ(f) − ∂2

∂f2 log p(y|f) = σ(f)(1− σ(f)). (53)

They coincide when σ(f) = 1
2 , at θ = 0, or when σ(f) ∈ {0, 1}, which require infinite weights.

4https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html
5https://docs.scipy.org/doc/numpy/reference/generated/numpy.logspace.html

17

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.logspace.html

Table 4: Datasets
Dataset # Features # Samples Type Figure

a1a6 1′605 123 Classification Fig. 3
BreastCancer7 683 10 Classification Fig. 3
Boston Housing8 506 13 Regression Fig. 3
Yacht Hydrodynamics9 308 7 Regression Fig. 5
Powerplant10 9′568 4 Regression Fig. 5
Wine11 178 13 Regression Fig. 5
Energy12 768 8 Regression Fig. 5

Table 5: Grid used for the hyperparameter search for the opti-
mization experiments, in log10. The number of samples to gen-
erate was selected as to generate a smooth grid in base 10, e.g.,
100, 10.25, 10.5, 10.75, 101, 101.25, . . .

Parameter Grid

Step size γ logspace(start=-20, stop=10, num=241)
Damping λ logspace(start=-10, stop=10, num=41)

Table 6: Selected hyperparameters, given in log10.
Dataset Algorithm γ λ

Boston GD −5.250
NGD 0.125 −10.0
EFGD −1.250 −8.0

BreastCancer GD −5.125
NGD 0.125 −10.0
EFGD −1.250 −10.0

a1a GD 0.250
NGD 0.250 −10.0
EFGD −0.375 −8.0

Dataset Algorithm γ λ

Wine GD −5.625
NGD 0.000 −8.5
EFGD −1.375 −6.0

Energy GD −5.500
NGD 0.000 −7.5
EFGD 0.875 −3.0

Powerplant GD −5.750
NGD −0.625 −8.0
EFGD 3.375 −1.0

Yacht GD −1.500
NGD −0.750 −7.5
EFGD 1.625 −6.5

6www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#a1a
7www.csie.ntu.edu.tw/c̃jlin/libsvmtools/datasets/binary.html#breast-cancer
8scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
9archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics

10archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
11archive.ics.uci.edu/ml/datasets/Wine
12archive.ics.uci.edu/ml/datasets/Energy+efficiency

18

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a1a
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#breast-cancer
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
https://archive.ics.uci.edu/ml/datasets/Wine
https://archive.ics.uci.edu/ml/datasets/Energy+efficiency

E Additional plots

Fig. 4 repeats the experiment described in Fig. 2 (§4.2), on the effect of model misspecification on the
Fisher and empirical Fisher at the minimum, on linear regression problems instead of a classification
problem. Similar issues in scaling and directions can be observed.

Fig. 5 repeats the experiment described in Fig. 3 (§4.3) on additional linear regression problems.
Those additional examples show that the poor performance of empirical Fisher-preconditioned
updates compared to NGD is not isolated to the examples shown in the main text.

Fig. 6 show the linear regression problem on the Boston dataset, originally shown in Fig. 3, where
each line is a different starting point, using the same hyperparameters as in Fig. 3. The starting points
are selected from [−θ?, θ?], where θ? is the optimum. When the optimization starts close to the
minimum (low loss), the empirical Fisher is a good approximation to the Fisher and there are very
few differences with NGD. However, when the optimization starts far from the minimum (high loss),
the individual gradients, and thus the sum of outer product gradients, are large, which leads to very
small steps, regardless of curvature, and slow convergence. While this could be counteracted with a
larger step size in the beginning, this large step size would not work close to the minimum and would
lead to oscillations. The selection of the step size therefore depends on the starting point, and would
ideally be on a decreasing schedule.

D
a
ta

se
t

Correct Misspecified (A) Misspecified (B)

Q
u

a
d

ra
ti

c
a
p

p
ro

x
im

a
ti

o
n

Loss contour Fisher emp. Fisher Minimum

Figure 4: Quadratic approximations of the loss function using the Fisher and the empirical Fisher on
a linear regression problem. The EF is a good approximation of the Fisher at the minimum if the data
is generated by y ∼ N (xθ∗ + b∗, 1), as the model assumes (left panel), but can be arbitrarily wrong
if the assumption is violated, even at the minimum and with large N. In (A), the model is misspecified
as it under-estimates the observation noise (data is generated by y ∼ N (xθ∗ + b∗, 2)). In (B), the
model is misspecified as it fails to capture the quadratic relationship between x and y.

19

10−1

L
o
ss

Wine

0 20 40 60 80 100
Iteration

-1

1

C
o
si

n
e

(N
G

D
,E

F
G

)

101

102

L
o
ss

Energy

0 20 40 60 80 100
Iteration

-1

1

C
o
si

n
e

(N
G

D
,E

F
G

)

103

L
o
ss

Powerplant

0 20 40 60 80 100
Iteration

-1

1

C
o
si

n
e

(N
G

D
,E

F
G

)

102

L
o
ss

Yacht

0 20 40 60 80 100
Iteration

-1

1

C
o
si

n
e

(N
G

D
,E

F
G

)

Figure 5: Comparison of the Fisher (NGD) and the empirical Fisher (EFGD) as preconditioners
on additional linear regression problems. The second row shows the cosine similarity between the
EF-preconditioned gradient and the natural gradient at each step on the path taken by EFGD.

0 20Iteration
101

102

Boston NGD

EFGD

Figure 6: Linear regression on the Boston dataset
with different starting points (each line is a differ-
ent initialization). When the optimization starts
close to the minimum (low initial loss), the empir-
ical Fisher is a good approximation to the Fisher
and there are very few differences with NGD, but
the performance degrades as the optimization pro-
cedure starts farther away (large initial loss).

20

