
Facility Location Problem in Differential Privacy
Model Revisited: Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

A Connection of our setting to the Joint Differential Privacy model1

The Joint Differential Privacy model was initially proposed in [Kears-Pai-Roth-Ullman, ITCS 2014].2

In the model, every client gets its own output from the central curator and the algorithm is ε-joint3

differentially private (JDP) if for every two datasets D, D′ with D′ = D ] {j}, the joint distribution4

of the outputs for all clients except j under the data D is not much different from that under the5

dataset D′ (using a definition similar to that of the ε-Differential Privacy). In other words, j’s own6

output should not be considered when we talk about the privacy for j.7

The super-set output setting in the ε-DP model we considered for UFL is closely related to the8

JDP-model. In order for the JDP model to be meaningful, one needs to define the problem in such a9

way that the algorithm needs to give an output for each client, which contains important information10

for the client. In the UFL problem, this information can be which facility the client should be11

connected to. If we define UFL in this way, i.e, every client only needs to know its own connecting12

facility, then our ε-DP algorithm in the super-set output setting implies an ε-JDP algorithm: Instead13

of outputting the superset R to everyone, the central curator can simply output to each j the facility14

that j is connecting to.15

B Reducing general metrics to HST metrics: Proof of Theorem 116

This section is dedicated to the proof of Theorem 1. The FRT tree decomposition result states that17

any n-point metric can be embedded into a distribution of O(1)-HST metrics:18

Theorem I. There is an efficient randomized algorithm that, given a constant λ > 1, a metric (V, d)19

with n := |V |, minimum non-zero distance at least 1 and diameter ∆ := maxu,v∈V d(u, v), outputs20

a λ-HST T whose leaves are exactly V satisfying the following conditions:21

(Ia) With probability 1, for every u, v ∈ V , we have dT (u, v) ≥ d(u, v).22

(Ib) For every u, v ∈ V , we have23

E dT (u, v) ≤ O(log n) · d(u, v),

where the expectation is over all randomness of the algorithm.24

(Ia) says that the metric dT restricted to V is always non-contracting compared to the metric d. On25

the other hand (Ib) says that dT “expands” only by a factor of O(log n) in expectation. Theorem I26

allows us to reduce many combinatorial problems with min-sum objective on general metrics to those27

on metrics induced by HSTs. We use the UFL problem as an in this proof.28

Let λ > 1 be a small enough constant as in Theorem 1. Given the UFL instance (V, d, f, ~N), our29

algorithm shall randomly generate a λ-HST T for the input metric (V, d) using the algorithm in30

Theorem I. Then we solve the instance (V, dT |V , f, ~N) using the algorithm A to obtain a set S of31
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open facilities.1 One show that the final approximation ratio we obtain for the original instance32

(V, d, f, ~N) will be O(log n) times that for the instance (V, dT |V , f, ~N); moreover the ε-DP property33

carries over in the reduction.34

Claim I. The expected cost of S to the original instance (V, d, f, ~N) is at most O(αtree · log n) times35

that of the optimum solution of (V, d, f, ~N).36

Proof. Let S∗ ⊆ V be the optimum solution to the instance (V, d, f, ~N). Then, we have37

E
T

costdT (S∗) ≤ O(log n)costd(S
∗).

Above, costdT (S∗) is the cost of the solution S∗ w.r.t instance (V, dT |V , f, ~N) and costd(S
∗) is the38

cost of the solution S∗ w.r.t (V, d, f, ~N). The expectation is over the randomness of T . The equation39

simply follows from property (Ib).40

If the algorithm for the instance (V, dT |V , f, ~N) is an αtree-approximation, then we have41

E[costdT (S)|T ] ≤ αtree · costdT (S∗),

where S is the solution output by the algorithm when the chosen tree is T . This holds since the42

optimum cost to the instance (V, dT |V , f, ~N) is at most costdT (S∗). Then, using property (Ia), i.e,43

the metrics are non-contracting, we have costd(S) ≤ costdT (S). Thus, we have44

E[costd(S)|T ] ≤ αtree · costdT (S∗).

Taking the expectation over the randomness of T , we have45

E
T

costd(S) = E
T

[
E[costd(S)|T ]

]
≤ αtree · E

T
costdT (S∗) ≤ O(αtree · log n)costd(S

∗).

46

For the ε-DP property of the algorithm, it suffices to observe that the random variable T is independent47

of ~N , and for any fixed T , the algorithm A on T is ε-DP. This finishes the proof of Theorem 1.48

C Missing Proofs from Section 449

Proof of Claim 1. Fix the optimum solution for the instance (V, dT , ~N). We define the cost inside a50

sub-tree Tv to be the total cost of open facilities in Tv, and the connection cost of clients in Tv in51

the optimum solution. Clearly, opt is at least the sum of costs inside Tv over all v ∈ V ′ since the52

{Tv}v∈V ′ are disjoint. On the other hand, the cost inside Tv is at least Bv = min{f,Nvλ`(v)}: If Tv53

contains some open facility, then the cost is at least f ; otherwise, all clients in Tv has to be connected54

to outside Tv , incurring a cost of at least Nvλ`(v). The claim then follows.55

Proof of Claim 2. We prove that any u ∈ S also has u ∈ min-set(V ◦ ∩M). Notice that any u with56

`(u) > L′ will not be in R (as it will not be minimal-marked) and thus it will not be in S. Any u57

with `(u) < L′ and Nu = 0 will not be marked and thus will not be in S.58

Now consider the case `(u) ≤ L′ and Nu ≥ 1. If u ∈ S ⊆ R then u is minimal-marked in M . It59

must also be minimal-marked in M ∩ V ◦ since all vertices in VT \ V ◦ below level L′, in particular,60

verticies in VT \ V ◦ that are descendants of u, are not marked. So u ∈ min-set(M ∩ V ◦).61

Thus, it remains to focus on a vertex u with `(u) = L′ and Nu = 0. Consider any leaf v with Nv > 062

and the level-L′ ancestor u′ of v; so u′ 6= u since Nu = 0. Then u′ ∈ M and there will be some63

u′′ ∈ Tu′ such that u′′ ∈ R. We have d(v, u′′) < d(v, u) and thus clients in v will not be connected64

to u. This holds for any v with Nv > 0. So, u /∈ S. The finishes the proof of the claim.65

1Recall that in the super-set output setting, S is not the returned set, but the set of facilities that are connected
by at least 1 client. One small caveat is that for the original instance (V, d, f, ~N), given a set R of facilities
returned by the algorithm, we should use the tree metric dT to decide how to connect the clients, instead of the
original metric d. Thus, along with the set R, the algorithm should also return the HST T .
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Proof of Lemma 1. We break the set of u’s in min-set(V ◦ ∩M) into two cases and bound the total66

cost for each case separately.67

(a) `(u) = L′. By the definition of V ◦, we have Nu ≥ 1. Then, f ≤ 1
ελ

L′ ≤ 1
εNuλ

`(u) and thus68

f ≤ 1
εBu by the definitions of L′ and Bu. So, we have the total facility cost of all u’s in this69

case is at most 1
ε

∑
u in the case (a) Bu ≤

1
ε · opt. The inequality is by Claim 1, which holds as all70

u’s in the summation are at the same level.71

(b) `(u) < L′. u must minimal-marked, i.e, u ∈ R. Then we have f ≤ Nuλ`(u) and thus f ≤ Bu.72

The total cost in this case is at most
∑
u∈RBu ≤ opt by Claim 1, which holds since R does not73

contain an ancestor-descendant pair.74

Thus, we have proved F ≤ (1 + 1/ε)opt. Combining the upper bounds for both C and F gives the75

lemma.76

Proof of Lemma 2. Notice that reducing R to S will not increase the connection cost of any client77

since we are using the closest-facility rule. Thus, we can pretend the set of open facilities is R instead78

of S. Let us focus the clients located at any leaf v ∈ V . Let u be the level-L′ ancestor of v; notice79

that u is marked. If v is marked, then v ∈ R and thus the connection cost of any client at v is 0. So80

we can assume v is unmarked. Then there is exactly one maximal-unmarked vertex u′ 6= u in the u-v81

path in T . Let u′′ be the parent of u′. Then u′′ is marked and some vertex in Tu′′ will be in R. So the82

connection cost of a client at v is at most 2
λ−1λ

`(u′′) = 2λ
λ−1 · λ

`(u′). The total connection cost of83

clients is at most84

2λ

λ− 1

∑
u′∈VT is maximal-unmarked

Nu′ · λ`(u
′) =

2λ

λ− 1

∑
u′ as before

Bu′ ≤ 2λ

λ− 1
· opt.

For every u′ in the summation, we have Nu′λ`(u
′) < f and thus Bu′ = Nu′λ`(u

′). So the equality in85

the above sequence holds. The inequality follows from Claim 1 , as the set of maximal-unmarked86

vertices does not contain an ancestor-descendant pair. Thus, we proved the lemma.87

Proof of Lemma 3. We focus on two datasets ~N, ~N ′ ∈ ZV≥0 satisfying | ~N ′ − ~N |1 = 1. Let v be the88

unique leaf with |Nv −N ′v| = 1. We show the ε-differential privacy between the two distributions of89

M generated by Algorithm 2for the two datasets. Since the returned set R is completely decided by90

M , this is sufficient to establish the ε-DP property. For two different vertices u, u′ ∈ VT , the event91

u ∈ M is independent of the event v ∈ M , since the former only depends on the noise added to92

Nu and the later only depends that added to Nu′ . Thus, by the composition of differentially private93

mechanisms, we can focus on the sub-algorithm that only outputs whether u ∈M , for each u ∈ VT .94

For simplicity, for every u ∈ VT , let au and a′u respectively indicate if u ∈M under the datasets ~N95

and ~N ′. If `(u) ≥ L′ then au = a′u = 1 always holds. Also, au and a′u have the same distribution if96

u is not an ancestor of v, since ~Nu = ~N ′u. That is the sub-algorithm for u is 0-DP between ~N and97

~N ′.98

So we can focus on an ancestor u of v with `(u) < L′. For this u we have |Nu − N ′u| = 1. Due99

to the property of the Laplacian distribution, the sub-algorithm for this u is cηL
′+`(v)

f -differentially100

private between ~N and ~N ′. Summing the privacy over all such vertices gives the total privacy as101

c

L′−1∑
`=0

ηL
′+`(v)

f
=
cηL

′

f
· η

L′ − 1

η − 1
≤ c

f(η − 1)
· λL

′
≤ c

f(η − 1)
· λεf =

cηε

η − 1
= ε,

by the definition of c.102

Proof of Claim 3. Notice that min-set(M ′) = min-set(min-set(M) ∪ {v}), and min-set(M) does103

not contain an ancestor-descendant pair. If v is an ancestor of some vertex in min-set(M), Case (3a)104

happens. If v is a descendant of some vertex in min-set(M), then Case (3c) happens. Otherwise, we105

have case (3b).106
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D Lower Bound on Approximation Ratio for ε-DP Algorithm: Making107

Facility Costs Uniform108

In this section, we formally describe the star instance we shall construct for proving Theorem 4 . The109

star is depicted in Figure 1b : the set of nodes are V = {b, a1, a2, · · · , an} where b is the center and110

ai’s are the leaves. The distance between b and ai for i ∈ [n] is f/
√
m. The facility cost of each111

node equals to f .112

We shall make sure that in every location ai, we have at least 1 client. Then, the optimum solution113

to the instance has cost at least n · f/
√
m. If our n is at least, say

√
m = 1/

√
ε, then the cost is at114

least f . So, opening the facility at b will only cost f and thus only lose an additive factor of 1 in the115

approximation ratio. This does not affect our analysis since we are interested in whether there is a116

c
√
m-approximation or not. Thus, without loss of generality we can assume the facility at b is open117

for free. With this assumption, we can see that the instance in Figure 1b is equivalent to instance in118

Figure 1c : it can be seem as n copies of the instance in Figure 1a , that is for each i ∈ [n], the facility119

cost at bi is 0, while it is f at ai. The distance between bi and ai is f/
√
m. Moreover, the distances120

between the copies are∞. In the following we will focus on instance in Figure 1c .121

We can use a vector ~N ∈ Zn≥0 to denote an input vector, where Ni is the number of clients at location122

ai. We shall only be interested in the datasets ~N ∈ {1,m}n, i.e, every location has either 1 or m123

clients. We define a distribution P over the set of vectors as follows: for every i ∈ [n], let Ni = 1124

with probability
√
m√
m+1

and Ni = m with probability 1√
m+1

; the choices for all i ∈ [n] are made125

independently.126

We consider the term of E ~N∼P [cost(S∗( ~N); ~N)], where S∗( ~N) is the optimal solution for the dataset127

~N . Then, for the optimum solution is easy to define: if Ni = 1, we do not open ai and if Ni = m,128

we open ai. The expected cost of the optimum solution over all vector ~N is129

E ~N∼P [cost(S∗( ~N); ~N)] =
∑

~N∈{1,m}n

P ~N ′ [cost(S∗( ~N); ~N)] =
∑

~N∈{1,m}n

P ~N

n∑
i=1

opt(Ni)

=

n∑
i=1

∑
~N, ~N ′∈{1,m}n, ~N, ~N ′ differ at i,Ni=1,N ′

i=m

[P ~N · opt(1) + P ~N ′ · opt(m)]

=
∑

i, ~N, ~N ′ as before

2P ~Nf√
m

. (i)

Above opt(1) = f/
√
m and opt(m) = f are the optimum cost for the two-point instance when there130

are 1 and m clients respectively. P ~N is the probability of ~N according to P . The second equality in131

(i) is due to the structure of instance of Figure 1c and thus cost(S∗( ~N); ~N) =
∑n
i=1 opt(Ni). Notice132

that we could have a cleaner form for the expected cost; however we use the above form for the133

purpose of easy comparison.134

Now we consider any ε-DP algorithm A. Due to the structure of Figure 1c, if we denote the term135

costi(A(Ni);Ni) as the cost of A( ~N) given ~N incurred by clients at ai, the expected cost of A can136

be written as137

E ~N∼P,A[cost(A( ~N); ~N)]

=

n∑
i=1

∑
~N, ~N ′∈{1,m}n, ~N, ~N ′ differ at i,Ni=1,N ′

i=m

[P ~NEcosti(A( ~N); ~N) + P ~N ′Ecosti(A( ~N ′); ~N ′)].

From the analysis of the two-point metric, we already proved that for any such pair ( ~N, ~N ′) in the138

summation, we have139

P ~NEcosti( ~N ;A( ~N)) + P ~N ′Ecosti( ~N
′;A( ~N ′)) ≥ (P ~N + P ~N ′)cf ≥ P ~Ncf. (ii)

Indeed, if the above property does not hold, we can just use our algorithm A as a black box to solve140

the two-point instance: For every j 6= i, we just pretend we have Nj = N ′j clients at aj ; the number141
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of clients at ai is exactly the number of clients in a in the two point solution; Run the algorithm A on142

the instance. Then the negation of (ii) will imply the negation of (4). Thus (ii) must hold.143

Thus we have144

E ~N∼P [cost(A( ~N); ~N)] ≥
∑
i, ~N, ~N ′

cP ~Nf. (iii)

Comparing the inequality with (i) gives that145

E ~N∼P [cost(A( ~N); ~N)] ≥ (c
√
m/2)E ~N∼P [cost(S∗( ~N); ~N)].

Thus, E[cost(A( ~N); ~N)] ≥ (c
√
m/2)cost(S∗( ~N); ~N) holds for at least one vector ~N in the support146

of P . So the algorithm A must have an Ω(
√
m)-approximation factor. This finishes the proof of147

Theorem 4.148
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