
Table 1: Training time (hours) on the splice site
dataset. The (m) suffix is trained in memory. The
(d) suffix is trained with disk as external memory.

Training time until the loss convergences
Memory Sparrow XGB LGM

8 GB 2.9 (d) OOM OOM
15 GB 8.4 (d) > 50 (d) OOM
30 GB 10.4 (d) 0.6 (d) OOM
61 GB 4.4 (d) 12.8 (d) 1.2 (m)

244 GB 1.3 (d) 1.1 (m) 0.5 (m)
Converged 0.057 0.055 0.053

Training time until the average loss reaches 0.06
Memory Sparrow XGB LGM

8 GB 1.4 (d) OOM OOM
15 GB 7.1 (d) > 50 (d) OOM
30 GB 2.3 (d) 9.3 (d) OOM
61 GB 1.3 (d) 4.6 (d) 0.3 (m)

244 GB 0.5 (d) 0.3 (m) 0.2 (m)

Table 2: Training time (hours) on the bathymetry
dataset. The (m) suffix is trained in memory. The
(d) suffix is trained with disk as external memory.

Training time until the loss convergences
Memory Sparrow XGB LGM

8 GB The disk cannot fit the data
15 GB 2.5 (d) OOM OOM
30 GB 1.9 (d) 41.7 (d) OOM
61 GB 1.2 (d) 38.6 (d) OOM

244 GB 0.4 (d) 20.0 (m) 4.0 (m)
Converged 0.046 0.054 0.054

Training time until the average loss reaches 0.06
Memory Sparrow XGB LGM

8 GB The disk cannot fit the data
15 GB 1.0 (d) OOM OOM
30 GB 0.6 (d) 41.7 (d) OOM
61 GB 0.6 (d) 38.4 (d) OOM

244 GB 0.2 (d) 16.9 (m) 3.3 (m)

A Evaluate Sparrow on Large Datasets

Due to the space limit, we summarize the detailed training time in each experiment in the appendix.

The experiments on large datasets are all conducted on EC2 instances with attached SSD storages
from Amazon Web Services. We ran the evaluations on five different instance types with increasing
memory capacities, specifically 8 GB (, costs $0.192 hourly), 15.25 GB (,
costs $0.156 hourly), 30.5 GB (, costs $0.312 hourly), 61 GB (, costs $0.624
hourly), and 244 GB (, costs $2.496 hourly).

In Table 1 and Table 2, we compared the training time it takes to reduce the exponential loss as
evaluated on the testing data. Specifically, we compared the values of the average loss when the
training converges and the corresponding training time. In addition, we observed that the average
losses converge to slightly different values, because two of the algorithms in comparison, Sparrow and
LightGBM, apply sampling methods during the training. Therefore, we also compared the training
time it takes for each algorithm to reach the same threshold for the average loss.

We use “XGB” for XGBoost, and “LGM” for LightGBM in the tables. In addition, we observe that
the training speed on the 8 GB instances is better than that on 15 GB instances, because the 8 GB
instance has more CPU cores than the 15 GB instance.

B Stopping rule analysis

We set the stopping rule applied in Sparrow (Equation 8) based on the following theorem.

Theorem 1 (based on Balsubramani [3] Theorem 4) Let Mt be a martingale Mt =
P

t

i
Xi, and

suppose there are constants {ck}k�1 such that for all i � 1, |Xi|  ci w.p. 1. For 8� > 0, with

probability at least 1� � we have

8t : |Mt|  C

vuut

tX

i=1

c
2
i

!
log log

 P
t

i=1 c
2
i

|Mt|

!
+ log

1

�

!
,

where C is a universal constant.

In our experiments, we set C = 1 and � = 0.001
|H|

, where H is the set of base classifiers (weak rules).

1

C Pseudocode for Sparrow

Algorithm 1 Main Procedure of Sparrow
Input Sample size n

A threshold ✓ for the minimum neff/n ratio for training weak learner

Initialize H0 = 0
Create initial sample S by calling SAMPLE
for k := 1 . . .K do

Call Scanner on sample S generate weak rule hk, �k

Hk Hk�1 +
1
2 log

1/2+�

1/2��
hk

if neff/n < ✓ then
Receive a new sample S from Sampler
Set S S

0

end if
end for

Algorithm 2 Scanner
Input An iterator over in-memory sampled set S

Initial advantage target �0 2 (0.0, 0.5)

static variable � = �0

loop
if sample S is scanned without firing stopping rule then

Shrink � by � 0.9 b�
Reset S to scan from the beginning

end if
(x, y, wl) S.next()
w UPDATEWEIGHT(x, y, wl, H)
for h 2W do

Compute h(~x)y
Update Mt, Vt (Eqn 7)
if Stopping Rule (Eqn 8) fires then

return h, �

end if
end for

end loop

2

Algorithm 3 Sampler
Input Randomly permuted, disk-resident training-set

Disk-resident stratified structure D {}

Weights of the strata W {}

Construct new sample S {}

loop
With the probability proportional to W ,

sample a strata R

(x, y, wl) R.next()
Delete (x, y, wl) from R, update W

Receive new model H from MAINPROCEDURE
w UPDATEWEIGHT(x, y, wl, H)
With the probability proportional to w,

S S + {(x, y, w)}.
Append (x, y) to the right stratum with regard to w,

D D + {(x, y, w)}
Update W

if S is full then
Send S to MAINPROCEDURE
S {}

end if
end loop

3

