
Appendix

Table of Contents
A Illustration of Pseudo Mirror Descent Update 13

B Duality between Strong Convexity and Lipschitz Smoothness 13

C On Designing Pseudo-Gradient for Multivariate Hawkes Process 14

D Proof of Example 1 15

E Proof of Lemma 2 15

F Proof of Theorem 3 15

F.1 A Technical Lemma . 15

F.2 The Main Proof . 16

G Proof of Corollary 4 17

H Proof of Theorem 5 18

I Proof of Theorem 6 18

J Proof of Proposition 7 19

J.1 Strong Convexity of Φ(x) = 〈x, log x− 1〉 for x with Bounded L1-Norm 20

J.2 Verification of Lipschitz Smoothness of fΦ for x with Bounded L1-Norm 21

J.3 Verification of the Polyak-Łojasiewicz Condition when mint∈[0,1] x(t) is Bounded
Away from 0 . 22

K Implementation Details and Further Numerical Results for Learning Intensity Func-
tions of Poisson Processes with Pseudo Mirror Descent 22

K.1 Learning the Intensity Function of a One-Dimensional Poisson Process 22

K.2 Learning Shot Distances in Professional Basketball Games 24

L Online Learning for Multivariate Hawkes Process 24

L.1 A 5-Dimensional Synthetic Dataset . 25

L.2 A Memetracker Dataset . 26

12

A Illustration of Pseudo Mirror Descent Update

“primal space”

“dual space”

…

…

𝑥𝑥 0 𝑥𝑥 1 𝑥𝑥 𝑇𝑇

𝑥𝑥∗

𝛻𝛻𝛻

[𝛻𝛻𝛻 𝑥𝑥 0]

𝛻𝛻Φ∗𝛻𝛻𝛻 𝛻𝛻Φ∗

[𝛻𝛻𝛻 𝑥𝑥 1] [𝛻𝛻𝛻 𝑥𝑥 𝑇𝑇]

[𝛻𝛻𝛻 𝑥𝑥∗]…𝛼𝛼 < 90∘

Figure 5: Illustration of pseudo mirror descent update procedure.

Figure 5 illustrates the update procedure of the pseudo mirror descent algorithm. The black solid
lines in the primal space represent the update trajectory of pseudo mirror descent. The corresponding
update trajectory in the dual space is represented by the black dashed lines. The red lines represent
the update trajectory using the exact gradient. The angle between the pseudo-gradient and the exact
gradient, denoted by α, is acute. Intuitively, this guarantees that the pseudo mirror descent has an
update trajectory in the dual space that is close to the one using the exact gradient.

B Duality between Strong Convexity and Lipschitz Smoothness

Lemma 9. Let ‖ · ‖] and ‖ · ‖],∗ be a pair of norm and dual norm. If Φ is µ-strongly-convex with
respect to ‖ · ‖], then Φ∗, the Fenchel conjugate of f , is µ−1-Lipschitz-smooth with respect to ‖ · ‖],∗.

Proof. Consider Φ to be µ-strongly-convex with respect to norm ‖ · ‖]. Then,

Φ(x) ≥ Φ(y) + 〈∇Φ(y), x− y〉+
µ

2
‖x− y‖2] . (13)

We wish to prove

Φ∗(x) ≤ Φ∗(y) + 〈∇Φ∗(y), x− y〉+
µ−1

2
‖x− y‖2],∗ (14)

for any x, y ∈ H. Since∇Φ(x) is defined through an isometric isomorphism betweenH andH∗, it
suffices to prove

Φ∗(x) ≤ Φ∗(∇Φ(y)) + 〈∇Φ∗(∇Φ(y)), x−∇Φ(y)〉+
µ−1

2
‖x−∇Φ(y)‖2],∗, (15)

or equivalently

Φ∗(x) ≤ Φ∗(∇Φ(y)) + 〈y, x−∇Φ(y)〉+
µ−1

2
‖x−∇Φ(y)‖2],∗. (16)

The proof exploits the following simple idea. Let Φ and Ψ be mappings fromH to [−∞,∞], and let
Φ(x) ≤ Ψ(x) for all x ∈ H. Then, by the definition of Fenchel conjugate,

Ψ∗(y) = sup
x∈H
{〈x, y〉 −Ψ(x)} = 〈x∗(y), y〉 −Ψ(x∗(y))

≤ 〈x∗(y), y〉 − Φ(x∗(y)) ≤ sup
x∈H
{〈x, y〉 − Φ(x)} = Φ∗(y),

13

where we denote x∗(y) as the solution to supx∈H{〈x, y〉 −Ψ(x)}. We shall show that, if, for any
fixed y ∈ H, let the right-hand side of (13) be Ψ(x), then the right-hand side of (16) is the expression
of Ψ∗(x).

To show this, let

Ψ(x) = Φ(y) + 〈∇Φ(y), x− y〉+
µ

2
‖x− y‖2] .

Since Φ is strongly convex, we have Φ(x) ≥ Ψ(x), and Φ∗(x) ≤ Ψ∗(x). However,

Ψ∗(x) = sup
z∈H
{〈x, z〉 −Ψ(z)}

= sup
z∈H
{〈x, z〉 − Φ(y)− 〈∇Φ(y), z − y〉 − µ

2
‖z − y‖2]}

= sup
z∈H
{−Φ(y) + 〈x, y〉+ 〈x−∇Φ(y), z − y〉 − µ

2
‖z − y‖2]}

≤ −Φ(y) + 〈x, y〉+
‖x−∇Φ(y)‖2],∗

2µ
,

where the last step follows by invoking Cauchy-Schwarz inequality 〈x − ∇Φ(y), z − y〉 ≤ ‖x −
∇Φ(y)‖],∗‖z − y‖], and computing the extremum of a quadratic form. Finally, notice that

−Φ(y) + 〈x, y〉 = Φ∗(∇Φ(y)) + 〈y, x−∇Φ(y)〉,

we have that

Ψ∗(x) ≤ Φ∗(∇Φ(y)) + 〈y, x−∇Φ(y)〉+
µ−1

2
‖x−∇Φ(y)‖2],∗.

Hence, we have (16), and thus (14) and eventually (13).

Remark 10. Note that the conclusion of Lemma 9 can be generalized when the strong convexity of Φ
is constrained to a set F ⊂ H. Indeed, by examining the equivalence condition between (15) and
(16), the Lipschitz smoothness holds for x, y ∈ Span(∇Φ(z), z ∈ F). For all intents and purposes,
F is the “primal space”, as illustrated in Figure 5. It immediately follows that, as long as x and y
belong to the “dual space”, then the Fenchel conjugate of Φ is Lipschitz smooth.

C On Designing Pseudo-Gradient for Multivariate Hawkes Process

We consider Φ(x) = 〈x, log x − 1〉. Using chain rule,the partial derivative of fΦ with respect to
∇Φ(yij) can be expressed as:

[∂∇Φ(yij)fΦ(∇Φ(yi1), . . . ,∇Φ(yip))](s) = E

[∫ T

0

(
1− x∗i (t)

xi(t)

)
yij(s)x

∗
j (t− s)dt

]
,

where s > 0 (due to causality), and the expectation is over the sample paths. We choose the
pseudo-gradient to be the kernel embedding of the above and x∗(t):

gij(s) =

∫ T

0

K(s, r)dr

∫ T

0

(
1− x∗i (t)

xi(t)

)
yij(r)x

∗
j (t− r)dt.

In practice, the value of x∗(t) can only be accessed through samples. Hence, we choose

gij(s) =

∫ T

0

Nj(t)∑
k=1

K(s, t− tjk)yij(t− tjk)dt−
Ni(T)∑
m=0

Nj(tim)∑
n=0

K(s, tim − tjn)

xi(tim)
yij(tim − tjn),

where tim is the m-th arrival in the i-th dimension. This is obtained upon approximating the integral
over x∗j (t− r) and the double integral over x∗j (t− r)x∗i (t) by their corresponding sample averages
under the multivariate Hawkes process, respectively.

14

D Proof of Example 1

We observe that f(x) = fΦ(∇Φ(x)). This can be proved by showing ∇Φ∗ = (∇Φ)−1. To show
this, we first suppose y = ∇Φ(x). Then, Φ(x) + Φ∗(y) = 〈x, y〉. Since Φ∗∗ = Φ, we have
Φ∗(y) + Φ∗∗(x) = 〈x, y〉, which yields x = ∇Φ∗(y). Hence, x = ∇Φ∗(y) = ∇Φ∗(∇Φ(x)),
showing ∇Φ∗ = (∇Φ)−1.

With this observation, we further invoke the definition of directional derivative, which gives us, for
y ∈ H,

〈∇f(x), y〉 = lim
ε→0

fΦ(∇Φ(x+ εy))− fΦ(∇Φ(x))

ε

= lim
ε→0

fΦ(∇Φ(x) + 〈∇2Φ(x), εy〉+ o(ε))− fΦ(∇Φ(x))

ε

= lim
ε→0

〈∇fΦ(∇Φ(x)), 〈∇2Φ(x), εy〉〉
ε

,

where the last step holds due to the Lipschitzness of fΦ, which follows from the smoothness of f and
the strong convexity of Φ. Hence, substituting y = ∇fΦ(∇Φ(x)) and let x = x(k−1) gives the result.

E Proof of Lemma 2

The first order condition of (4) when optimizing overH is

∇Φ(x) = ∇Φ(x(k))− ηkg(k+1).

As shown in Appendix D, ∇Φ∗ = (∇Φ)−1. Hence,

x = ∇Φ∗(∇Φ(x(k))− ηkg(k+1)).

By assumption, x ∈ H+. Therefore x = x(k+1).

F Proof of Theorem 3

F.1 A Technical Lemma

Before we state the formal part of the proof, we first prove a technical lemma, which will be used at
the beginning of the main proof.

Lemma 11. Suppose fΦ is continuously differentiable, and satisfies ‖∇fΦ(x+ y)−∇fΦ(x)‖] ≤
L‖y‖],∗. Then,

fΦ(x+ y)− fΦ(x)− 〈∇fΦ(x), y〉 ≤ L

2
‖y‖2],∗.

Remark 12. This lemma states two equivalent ways of expressing the smoothness of fΦ. The result
is standard when ‖ · ‖] is the norm of the Hilbert space, which, not surprisingly, corresponds to the
case where Φ(x) = ‖x‖2/2. Here, we extend the proof of Theorem 18.13 in Bauschke and Combettes
[2011] to show equivalence for more general choices of ‖ · ‖].

Proof. We start from the given condition

‖∇fΦ(x+ y)−∇fΦ(x)‖] ≤ L‖y‖],∗,

and multiply the two sides by ‖y‖],∗:

‖∇fΦ(x+ y)−∇fΦ(x)‖]‖y‖],∗ ≤ L‖y‖2],∗.

By Cauchy-Schwarz inequality, the left-hand side can be further lower bounded by 〈∇fΦ(x+ y)−
∇fΦ(x), y〉, and hence

〈∇fΦ(x+ y)−∇fΦ(x), y〉 ≤ L‖y‖2],∗. (17)

15

Now, define h(t) = fΦ(x+ ty). Then, the derivative of h is h′(t) = 〈y,∇fΦ(x+ ty)〉. Hence, by
the fundamental theorem of calculus, we have

fΦ(x+ y)− fΦ(x)− 〈∇fΦ(x), y〉 =

∫ 1

0

〈y,∇fΦ(x+ ty)−∇fΦ(x)〉dt

=

∫ 1

0

1

t
〈ty,∇fΦ(x+ ty)−∇fΦ(x)〉dt

≤
∫ 1

0

1

t
L‖ty‖2],∗dt

=

∫ 1

0

Lt‖y‖2],∗dt

=
L

2
‖y‖2],∗,

where the inequality holds by applying (17).

F.2 The Main Proof

The proof follows the procedure of Poljak and Tsypkin [1973]. The key to proving the existence of
limk→∞ f(x(k)) is to show that f(x(k)) − f∗ is a semimartingale, and that its limit exists almost
surely. The key to proving the asymptotic convergence of 〈∇fΦ(∇Φ(x(k))),E[g(k)|F (k−1)]〉 is
to show limk→∞ ηkE[〈∇fΦ(∇Φ(x(k))),E[g(k)|F (k−1)]〉] = 0, which then yields the result upon
noticing that 〈∇fΦ(∇Φ(x(k))),E[g(k)|F (k−1)]〉 ≥ 0 by design. Below are the details of the proof.

First observe that for a pseudo mirror descent update x(k), we have f(x(k)) = fΦ(∇Φ(x(k)))
according to the proof in Appendix D. Incorporating this fact with Lemma 11, and setting L = Mµ−1,
we immediately have

f(x(k))− f(x(k−1))− 〈∇fΦ(x(k−1)),∇Φ(x(k))−∇Φ(x(k−1))〉

≤ Mµ−1

2
‖∇Φ(x(k))−∇Φ(x(k−1))‖2],∗

for pseudo mirror descent updates. By Lemma 2, the pseudo mirror descent updates also satisfy
∇Φ(x(k))−∇Φ(x(k−1)) = −ηk−1g

(k). Therefore,

f(x(k))− f(x(k−1)) + 〈∇fΦ(∇Φ(x(k−1))), ηk−1g
(k)〉 ≤

Mµ−1η2
k−1

2
‖g(k)‖2],∗,

which further implies

f(x(k)) ≤ f(x(k−1))− ηk−1〈∇fΦ(∇Φ(x(k−1))), g(k)〉+
Mµ−1η2

k−1

2
‖g(k)‖2],∗. (18)

Taking conditional expectations on both sides of (18),

E[f(x(k))− f∗|F (k−1)] ≤ (f (k−1) − f∗)− ηk−1〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉+

+
Mµ−1η2

k−1

2
E[‖g(k)‖2],∗|F (k−1)]

≤ −ηk−1〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉
(

1− Mµ−1

2
ηk−1

)
+

+
Mµ−1λkη

2
k−1

2
+ (f (k−1) − f∗)

≤ (f (k−1) − f∗) +
Mµ−1λkη

2
k−1

2
, (19)

16

where the last step holds for sufficiently large k. Let

z(k) = (f(x(k))− f∗) +
∑
i≥k

Mµ−1λiη
2
i−1

2
.

Then, we immediately have, upon substituting z(k) into (19),

E[z(k)|F (k−1)] ≤ z(k−1).

Since for any sequence z(k), f(x(k))− f∗ can be uniquely determined (nothing else is random), we
can take conditional expectations on both sides of (19) with respect to z(1), . . . , z(k−1), and obtain

E[z(k)|z(1), . . . , z(k−1)] ≤ z(k−1).

This shows that z(k) is a semimartingale, and that Ez(k) ≤ · · · ≤ Ez(1) < ∞. This implies
limk→∞ z(k) exists almost surely, and hence, limk→∞(f(x(k))− f∗) exists almost surely, and that
E[f(x(k))− f∗] are uniformly upper bounded.

Taking unconditional expectations on both sides of (19), we now have

E[f(x(k))− f∗] ≤ E[f(x(k−1))− f∗] +
Mµ−1λkη

2
k−1

2
−

− ηk−1E[〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉]
(

1− Mµ−1ρ

2
ηk−1

)
.

For sufficiently large k, 2−Mµ−1ρηk > 0. Hence, summing both sides from k = 1 to∞, we get

E[f(x(0))− f∗] +

∞∑
k=0

Mµ−1λk+1η
2
k

2
≥
∞∑

k=0

ηkE[〈∇fΦ(∇Φ(x(k))),E[g(k+1)|F (k)]〉]
(

1− Mµ−1ρ

2
ηk

)
.

By assumption, the left-hand side of the above inequality is finite. In other words,
∞∑
k=0

ηkE[〈∇fΦ(∇Φ(x(k))),E[g(k+1)|F (k)]〉]
(

1− Mµ−1ρ

2
ηk

)
<∞.

On the other side, we also have
∑∞
k=0 ηk =∞, 〈∇fΦ(∇Φ(x(k))),E[g(k+1)|F (k)]〉 ≥ 0, while for

sufficiently large k, 1− ηkMµ−1ρ/2 ≥ ε > 0 for some small constant ε. Therefore, there exists a
subsequence ki such that 〈∇fΦ(∇Φ(x(k))),E[g(k+1)|F (k)]〉 converges in distribution:

lim
i→∞

E[〈∇fΦ(∇Φ(x(ki−1))),E[g(ki)|F (ki−1)]〉] = 0.

Since the sequence converges in distribution to a constant, it also converges in probability, which
further implies almost sure convergence of a subsequence:

lim
j→∞
〈∇fΦ(∇Φ(x(kij−1))),E[g(kij)|F (kij−1)]〉 = 0

almost surely. This implies the final result.

G Proof of Corollary 4

Proof when g(k) = ∇fΦ(∇Φ(x(k−1))). By the last step in proof of Theorem 3, we have

lim
k→∞

‖∇fΦ(∇Φ(x(k)))‖2 = 0

in probability. By chain rule and boundedness of eigenvalues of∇2Φ, this further implies

lim
k→∞

‖∇f(x(k))‖2 = 0

in probability.

17

Proof when g(k) = ∇f(x(k−1)). By chain rule,

lim
k→∞

〈E[g(k+1)|F (k)],∇fΦ(∇Φ(x(k)))〉 = lim
k→∞

〈∇fΦ(∇Φ(x(k))), [∇2Φ(x(k))](∇fΦ(∇Φ(x(k))))〉.

By Theorem 3, the left-hand side converges to 0 in probability, while the right-hand side is lower
bounded by limk→∞ λmin‖∇fΦ(∇Φ(x(k)))‖2. Therefore,

lim
k→∞

‖∇fΦ(∇Φ(x(k)))‖ = 0

in probability. Since λmax is upper bounded, we also have

lim
k→∞

‖∇f(x(k))‖ = 0

in probability by chain rule.

H Proof of Theorem 5

First, we take unconditional expectation on both sides of (19), which gives

E[f(x(k))− f∗] ≤ E[f(x(k−1))− f∗]− ηk−1E[〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉]+

+
Mµ−1η2

k−1

2
E[‖g(k)‖2],∗]

≤ −
(
ηk−1 −

c23Mµ−1η2
k−1

2

)
E[〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉]+

+ E[f(x(k−1))− f∗] +
Mµ−1η2

k−1c
2
2

2
.

Telescoping both sides over k, and dividing both sides by
∑k−1
κ=0 ηκ, we have

k∑
κ=1

ηκ−1 −
c23Mµ−1η2κ−1

2∑k
i=1

(
ηi−1 −

c23Mµ−1η2i−1

2

)E[〈∇fΦ(∇Φ(x(κ−1))),E[g(κ)|F (κ−1)]〉]

≤
E[f(x(0))− f(x(k))] +

∑k
κ=1

Mµ−1c22
2 η2

κ−1∑k
κ=1

(
ηκ−1 −

c23Mµ−1η2κ−1

2

) .

By assumption, the denominators on both sides of the above inequality are positive, and since
ηk = Θ(1/

√
k), both denominators are dominated by

∑k
κ=1 ηκ = Θ(

√
k) for large k. Since

f(x(0)) − f(x(k)) ≤ f(x(0)) − f∗, the numerator on the right-hand side is upper bounded by
c4 + O(log k) = O(log k). Meanwhile, the left-hand side is lower bounded by the minimum of
E[〈∇fΦ(∇Φ(x(κ−1))),E[g(κ)|F (κ−1)]〉] for κ ∈ {1, . . . , k}. Hence, we reached the conclusion.

I Proof of Theorem 6

By Assumption 1, we know that fΦ is Mµ−1-smooth, and that

f(x(k)) ≤ f(x(k−1))− ηk−1〈∇fΦ(∇Φ(x(k−1))), g(k)〉+
Mµ−1η2

k−1

2
‖g(k)‖2],∗.

Taking unconditional expectations on both sides, we have

E[f(x(k))− f∗] ≤ E[f(x(k−1))− f∗]− ηk−1E[〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉]+

+
Mµ−1η2

k−1

2
E[‖g(k)‖2],∗].

18

By the upper bound assumption on E[‖g(k)‖2],∗] and the lower bound assumption on
E[〈∇fΦ(∇Φ(x(k−1))),E[g(k)|F (k−1)]〉], we further have

E[f(x(k))− f∗] ≤ E[f(x(k−1))− f∗]− c1
(
ηk−1 −

Mµ−1η2
k−1

2
c23

)
E[‖∇fΦ(∇Φ(x(k−1)))‖2]+

+
Mµ−1η2

k−1

2
c22.

Notice that here we have already used the assumption that ηk ≤ 2/(Mµ−1c23), which is required
in both cases of constant and diminishing step sizes, to guarantee the positivity of the quantity
ηk−1 − 0.5Mµ−1η2

k−1c
2
3. By Assumption 2, we further have

E[f(x(k))− f∗] ≤ E[f(x(k−1))− f∗]− 2γc1

(
ηk−1 −

Mµ−1η2
k−1

2
c23

)
E[f(x(k−1))− f∗]+

+
Mµ−1η2

k−1

2
c22

= E[f(x(k−1))− f∗]
{

1− 2γc1

(
ηk−1 −

Mµ−1η2
k−1

2
c23

)}
+
Mµ−1η2

k−1

2
c22.

The remaining part of the proof coincides with that of Theorem 4 in Karimi et al. [2016].

Constant step size. Choosing ηk ≡ η < min{1/(2γc1), 2M−1µc−2
3 }, the factor in the curled

brackets is strictly between 0 and 1. Hence, we have

E[f(x(k))− f∗] ≤
(

1− 2γc1

(
ηk−1 −

Mµ−1η2
k−1

2
c23

))k
[f(x(0))− f∗] +

Mµ−1η2

2
c22

upon telescoping over k.

Decreasing step size. Choosing ηk = min{(2k + 1)/[γc1(k + 1)2],M−1µc−2
3 }, we get

ηk−1 −
Mµ−1η2

k−1

2
c33 ≥ ηk−1 − ηk−1 ·

Mµ−1c23
2

·M−1µc−2
3 =

ηk−1

2
.

Hence,

E[f(x(k+1))− f∗] ≤ k2

(k + 1)2
E[f(x(k))− f∗] +

Mµ−1c22
2

· (2k + 1)2

γ2c21(k + 1)4

for large k such that ηk = (2k + 1)/[γc1(k + 1)2]. This holds true when k ≥ Mc23/(γc1µ).
Multiplying both sides by (k + 1)2, and letting δ(k + 1) = k2E[f(x(k))− f∗], we get

δ(k + 1) ≤ δ(k) +
Mµ−1c22

2γ2c21
,

which holds since (k + 1)4 ≥ (2k + 1)2. Summing from 0 to k and using the fact that δ(0) = 0, we
get

(k + 1)2E[f(x(k+1))− f∗] ≤ Mµ−1c22
2γ2c21

(k + 1),

and we reach the conclusion.

J Proof of Proposition 7

In this section, we verify three most important factors in the claim of Proposition 7. These include
the (conditional) strong convexity of Φ(x) and the smoothness of the objective fΦ, as well as the
(conditional) satisfactory of the generalized Polyak-Łojasiewicz assumption.

19

J.1 Strong Convexity of Φ(x) = 〈x, log x− 1〉 for x with Bounded L1-Norm

We prove the following lemma by generalizing the proof of Pinsker’s inequality by Pollard in his
course notes [Pollard, 2005].

Lemma 13 (Generalized Pinsker’s inequality). Assume thatH = L2[0, 1]. Let Φ(x) = 〈x, log x−1〉.
Then Φ(x) is µ-strongly-convex with respect to L1-norm when ‖x‖L1

≤ µ−1. That is, for x and y
satisfying max{‖x‖L1

, ‖y‖L1
} ≤ µ−1, we have

∆Φ(x, y) ≥ µ

2
‖x− y‖2L1

.

A technical lemma required for the proof is stated below.

Lemma 14. For s > −1,

(1 + s) log(1 + s)− s ≥ 1

2
· s2

1 + s2/3
.

Recall that for Φ(x) =
∫ 1

0
x(t) log x(t)dt−

∫ 1

0
x(t)dt. We have

∆Φ(x, y) =

∫ 1

0

x(t) log
x(t)

y(t)
dt−

∫ 1

0

(x(t)− y(t))dt,

which holds for any Hilbert space that permits the interchange between the integration and the
gradient. Let

r(t) =
x(t)

y(t)
− ‖x‖L1

‖y‖L1

.

Then, letting Ey[h(t)] :=
∫ 1

0
y(t)h(t)dt, we have

Ey[r(t)] = 0.

It is not hard to see, with simple manipulations, that

∆Φ(x, y) = Ey
[(
‖x‖L1

‖y‖L1

+ r(t)

)
log

(
‖x‖L1

‖y‖L1

+ r(t)

)
−
(
‖x‖L1

‖y‖L1

+ r(t)− 1

)]
.

Invoking the technical Lemma 14 with

s =
‖f‖L1

‖g‖L1

+ r(x)− 1,

we get

∆Φ(x, y) ≥ Ey

1

2
·

(
‖x‖L1
‖y‖L1

+ r(t)− 1
)2

1 + 1
3 ·
(
‖x‖L1
‖y‖L1

+ r(t)− 1
)
 .

It is not hard to notice that

Ey
[
1 +

1

3
·
(
‖x‖L1

‖y‖L1

+ r(t)− 1

)]
= ‖y‖L1 ·

(
2

3
+

1

3
· ‖x‖L1

‖y‖L1

)
.

Hence, incorporating this equation into the lower bound of ∆Φ(x, y) and applying Cauchy-Schwarz
inequality, we get

∆Φ(x, y) ≥ 1

2
·
E2
y

[∣∣∣‖x‖L1‖y‖L1
+ r(t)− 1

∣∣∣]
‖y‖L1

·
(

2
3 + 1

3 ·
‖x‖L1
‖y‖L1

) .
Notice that

Ey
[∣∣∣∣‖x‖L1

‖y‖L1

+ r(t)− 1

∣∣∣∣] = ‖x− y‖2L1
,

20

we have

∆Φ(x, y) ≥ C

2
· ‖x− y‖2L1

,

with

C =

(
2

3
· ‖y‖L1 +

1

3
· ‖x‖L1

)−1

.

Since ‖x‖L1 and ‖y‖L1 are upper bounded by µ−1, we get C ≥ µ. Hence Φ(x) is µ-strongly-convex
with respect to L1 norm when ‖x‖L1 ≤ µ−1.

J.2 Verification of Lipschitz Smoothness of fΦ for x with Bounded L1-Norm

From the derivations in Section 3, we have ∇fΦ(∇Φ(x)) = x− x∗. Since the Poisson process is on
[0, 1], we have

‖∇fΦ(∇Φ(y))−∇fΦ(∇Φ(x))‖L1
= ‖x− y‖L1

≤ 2µ−1,

by triangle inequality. On the other hand,
‖∇Φ(y)−∇Φ(x)‖∞ = ‖ log(y)− log(x)‖∞.

By the definition of the L1-norm and the infinity norm, we can assume, without loss of generality,
that y(t) ≥ x(t) for all t ∈ [0, 1]. This assumption simplifies our subsequent presentation. We also
assume ‖ log(y)− log(x)‖∞ is achieved at t∗. This reduces the subsequent analysis into two cases,
which we present below.

Case I: First consider the case where log(y(t∗))− log(x(t∗)) ≥ 2M−1. In this case, we have
Mµ−1‖ log(y)− log(x)‖∞ = Mµ−1(log(x(t∗))− log(y(t∗))) ≥ 2µ−1 ≥ ‖x− y‖L1 .

Case II: Next consider the case where log(y(t∗)) − log(x(t∗)) = ε < 2M−1. In this case, the
condition log(y(t∗)) − log(x(t∗)) < 2M−1 and the previous assumption that y(t) ≥ x(t) for all
t ∈ [0, 1] now together imply that x and y are close. This allows us to bound ‖ log(y)− log(x)‖∞
from below. The detailed analysis is below.

First, notice that for a given function f such that fΦ is Lipschitz smooth with constant Mµ−1, it is
also M ′µ−1-Lipschitz-smooth with any M ′ > M . Hence, we can assume, without loss of generality,
that M > 2/ log 3, which guarantees for any ε < 2M−1 we have (exp(ε)−1)ε−1 < M . This allows
us to write

Mµ−1‖ log(y)− log(x)‖∞ >
exp(ε)− 1

ε
· µ−1‖ log(y)− log(x)‖∞

= (exp(ε)− 1)µ−1

≥ (exp(ε)− 1)‖x‖L1
,

where the first inequality uses the assumption M > (exp(ε)− 1)ε−1, and the equality that followed
uses the assumption that ‖ log(y)− log(x)‖∞ = ε. Finally, the assumption ‖x‖L1

≤ µ−1 is used.

Now, notice that we have assumed, without loss of generality, that y(t) ≥ x(t) for all t ∈ [0, 1]. This
implies 0 < log(y(t))− log(x(t)) ≤ ε for any t ∈ [0, 1], which further implies 1 < y/x ≤ exp(ε).
Hence, we further have

Mµ−1‖ log(y)− log(x)‖∞ ≥ (exp(ε)− 1)‖x‖L1

=

∫ 1

0

x(t)(exp(ε)− 1)dt

≥
∫ 1

0

x(t)

(
y(t)

x(t)
− 1

)
dt

=

∫ 1

0

(y(t)− x(t))dt

= ‖y − x‖L1 .

Hence, we have verified the smoothness of the objective.

21

J.3 Verification of the Polyak-Łojasiewicz Condition when mint∈[0,1] x(t) is Bounded Away
from 0

First notice that

‖∇fΦ(∇Φ(x))‖2 =

∫ 1

0

(x(t)− x∗(t))2
dt,

and

2ν(f(x)− f∗) = 2ν ·
[∫ 1

0

(x− x∗)(t)dt−
∫ 1

0

x∗(t) log
x

x∗
(t)dt

]
.

We wish to prove a conclusion similar to the following:∫ 1

0

x2(t)

(
1− x∗

x
(t)

)2

dt ≥ 2ν

∫ 1

0

(
x− x∗ − x∗ log

x

x∗

)
(t)dt.

Notice that the left-hand side resembles the form of a χ2 divergence, whereas the right-hand side
resembles the form of a Kullback-Leibler divergence. In fact, when mint∈[0,1] x(t) ≥ 2ν, we have

2ν ·
[∫ 1

0

(x− x∗)(t)dt−
∫ 1

0

x∗(t) log
x

x∗
(t)dt

]
= 2ν ·

[∫ 1

0

(x− x∗)(t)dt+

∫ 1

0

x∗(t) log
x∗

x
(t)dt

]
≤ 2ν ·

[∫ 1

0

(x− x∗)(t)dt+

∫ 1

0

x∗(t)

(
x∗

x
(t)− 1

)
dt

]
= 2ν

∫ 1

0

x(t)

(
x∗

x
(t)− 1

)2

dt

= 2ν

∫ 1

0

1

x(t)
(x∗(t)− x(t))2dt

≤
∫ 1

0

(x∗(t)− x(t))2dt.

K Implementation Details and Further Numerical Results for Learning
Intensity Functions of Poisson Processes with Pseudo Mirror Descent

In this section, we specify the implementation details on pseudo mirror descent and benchmark
algorithms. We also provide more detailed experiment results which we did not put in the main text
due to space constraints.

K.1 Learning the Intensity Function of a One-Dimensional Poisson Process

We provide additional experiment comparing pseudo mirror descent, projected gradient descent,
and the link function approach. We first introduce the implementation details of PGD and the link
function approaches, and then present additional simulation results.

Projected gradient descent (PGD). For a one-dimensional Poisson process, we consider a paramet-
ric setting. Let t := {t1, . . . , tM} ⊂ [0, 1] be a set of beacons, and let c be the coefficient vector.
We perform projected gradient descent on the loss function f as a function of c. Similar to the
procedure adopted in Yang et al. [2017], we use discretization to avoid computing the integral of the
kernel. It has been shown in Yang et al. [2017] that the approximation error brought about can be
well-controlled. In particular, we approximate∫ z

0

K(x, y)dx ≈
bz/∆c∑
k=1

∆K(k ·∆, y).

22

where the right-hand side is the Riemann sum of the integral on the left-hand side with ∆ being the
length of the interval. Let B denote the size of the mini-batch and tij denoting the time of the j-th
arrival in the i-th sample path in the mini-batch, we have

∇f(c) =

bz/∆c∑
k=1

∆K(k ·∆, ·)− 1

B

B∑
i=1

mi∑
j=1

f−1(k ·∆)K(tij , ·),

where mi is the number of arrivals in the i-th sample path. This allows us to perform updates via

c(k+1/2) = c(k) − ηk∇f(c).

Notice that the update is not complete and we need to obtain c(k+1) by projecting c(k) so that x(k+1)

is positive. To perform the projection, we aim to find the coefficient vector c(k+1) that minimizes
‖K(·, t)c(k+1/2) −K(·, t)c(k+1)‖2 while satisfying K(·, t)c(k+1) ≥ 0. To simplify computation,
we solve the following problem in practice:

minimize.
c(k+1)∈Rk+1

(
c(k+1) − c(k+1/2)

)>
K
(
c(k+1) − c(k+1/2)

)
, s.t. Kc(k+1) ≥ 0,

where we have used K ∈ RM×M to denote a Gram matrix whose i, j-th entry Kij = K(ti, tj).
This reduces to minimize the distance of the function represented by c(k+1/2) and the projected
function represented by c(k+1) at the beacons t1, . . . , tM , subject to positivity constraints only at
those beacons. This requires solving a quadratic programming problem which we solve using cvxopt
[Andersen et al., 2013].

RKHS + Link function x = y2. We adopt and revise the method in Yang et al. [2017] and apply it to
the Poisson process. The original algorithm proposed in Yang et al. [2017] was designed to perform
online estimation for the triggering functions of the multivariate Hawkes process (MHP). It can also
be used for estimating the intensity of Poisson counting processes in the batch learning setting. Upon
assuming that the intensity function is x(t) = y2(t), we immediately have the alternative form of the
loss function:

f(y) =

∫ 1

0

y2(t)− x∗(t) log y2(t)dt.

The gradient is then

∇f(y) =

∫ 1

0

2y(t)K(t, ·)dt− 1

B

B∑
i=1

mi∑
j=1

2K(tij , ·)
y(tij)

≈
bz/∆c∑
k=1

∆K(k ·∆, ·)− 1

B

B∑
i=1

mi∑
j=1

2K(tij , ·)
y(tij)

.

Simulation settings and results. We adopt the simulation settings in Table 1. We show the estimation
results of the pseudo mirror descent under the step sizes specified in Figure 1 in Figure 6.

Method Initialization ηk K(x, y) Solver
PMD (Fig. 1) x(0) ≡ 10 See Figure 1 (1 + xy)2 None
PMD (Fig. 1) x(0) ≡ 10 (0.1k + 10)−1 (1 + xy)2 None
PGD (Fig. 1) c(0) ≡ 0.1 (2k + 100)−1 exp(−(x− y)2/2) cvxopt

NPOLE (Fig. 1) x(0) ≡ 10 (k + 100)−1 exp(−(x− y)2/2) None
Table 1: Simulation settings for Figure 1. PMD: pseudo mirror descent; PGD: projected gradient
descent; NPOLE: RKHS + link function approach.

23

0.0 0.2 0.4 0.6 0.8 1.0
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x(
t)

η = 1/500

η = 1/1000

η = 1/2000

Ground t ruth

0.0 0.2 0.4 0.6 0.8 1.0
t

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x(
t)

k = 1/(0.01k + 10)
k = 1/(0.01k + 100)
k = 1/(0.1k + 10)
k = 1/(0.1k + 100)

Ground truth

Figure 6: Learning result for pseudo mirror descent with constant (left) and vanishing (right) step
sizes.

K.2 Learning Shot Distances in Professional Basketball Games

The simulation setting for the experiment in Figure 3 is given in Tables 2, 3 and 4.

Apart from the pseudo mirror descent and the link function approaches, we also built a neural
network estimator as a competitive benchmark. The neural network we used is fully connected and
has 3 hidden layers of size 64. The activation function for hidden layers is the hyperbolic tangent
function. The activation function for the output layer is σ(t) = tanh(t2), to guarantee positivity and
boundedness of the output.

Method Initialization ηk K(x, y) Solver
PMD x(0) ≡ 1 0.01 1 + min{x, y} None

NPOLE x(0) ≡ 1 (0.1
√
k + 10)−1 exp(−(x− y)2/(2× 0.12)) None

Table 2: Simulation settings for Figure 3 on Stephen Curry.

Method Initialization ηk K(x, y) Solver
PMD x(0) ≡ 1 (10

√
k + 100)−1 1 + min{x, y} None

NPOLE x(0) ≡ 1 (10
√
k + 100)−1 exp(−(x− y)2/(2× 0.12)) None

Table 3: Simulation settings for Figure 3 on Klay Thompson.

Method Initialization ηk K(x, y) Solver
PMD x(0) ≡ 1 0.01 1 + min{x, y} None

NPOLE x(0) ≡ 1 (0.1
√
k + 10)−1 exp(−(x− y)2/(2× 0.12)) None

Table 4: Simulation settings for Lebron James in Figure 3.

L Online Learning for Multivariate Hawkes Process

The pseudo mirror descent algorithm can also be applied successfully to online learning scenarios.
In the experiment below, we extend the NPOLE-MHP algorithm proposed in Yang et al. [2017]
to efficiently learn triggering functions in multivariate Hawkes processes, which we present as a
stand-alone algorithm in Algorithm 2. This algorithm requires the input of a sequence of step
sizes, as well as a window size z, which was required in the NPOLE-MHP for the approximate
evaluation of the intensity function. As an online algorithm, Algorithm 2 updates at a set of given
intervals t0, . . . , tT−1, with t0 = 0 and tk+1 being the minimum of tk + δ, with δ being a small but
fixed time interval, and the arrival time of the next event. We denote Iik as an indicator function
indicating whether there is an arrival on the i-th dimension during the interval [tk, tk+1). We can

24

see that Algorithm 2 holds a similar structure to the NPOLE-MHP. However, unlike NPOLE-MHP,
the algorithm does not require performing projections any more, and only requires computing the
multiplicative update rule with a pseudo-gradient evaluated in (12). Rigorous proof of convergence is
out of the scope of this paper, and instead we demonstrate the performance of Algorithm 2 on both
synthetic and real datasets.

Algorithm 2 NonParametric OnLine Estimation for MHP (NPOLE-MHP) with pseudo mirror descent
1: input: a sequence of step sizes {ηk}∞k=1, window size z.
2: Initialize y(0)

ij for all i, j.
3: for k = 0, ..., T − 1 do
4: Observe the interval [tk, tk+1), and compute Iik for i ∈ {1, . . . , p}.
5: for i = 1, . . . , p do
6: Evaluate pseudo-gradient g(k+1)

ij according to (12) for all j.
7: for j = 1, . . . , p do
8: Set y(k+1)

ij ←y(k)
ij exp(−ηkg(k+1)

ij).
9: end for

10: end for
11: end for
12: output: y(T)

ij for all i, j.

L.1 A 5-Dimensional Synthetic Dataset

Simulation setup. We used the synthetic data set in Yang et al. [2017], where the triggering function
matrix is

Y =


e−2.5t 0 0 e−10(t−1)2 0
2−5t (1 + cos(πt))e−t/2 e−5t 0 0

0 2e−3t 0 0 0

0 0 0 e−2t2 e−4t

0 0 te−5(t−1)2 0 e−3t

 .

We simulated pseudo mirror descent, with initialization being the same as the setting in Yang
et al. [2017], and ηk being 1/(k ∗ 0.00001 + 1), 1/(k ∗ 0.00001 + 0.5), 1/(k ∗ 0.000005 + 1),
1/(k ∗ 0.00001 + 1), 1/(k ∗ 0.00001 + 1), accordingly, for the 5 dimensions. We changed the update
rule to pseudo mirror descent update with the pseudo-gradient calculated at each iteration by (12)
with a Sobolev kernel K(x, y) = 1 + min{x, y}, and adjusted the step sizes accordingly.

For benchmarks, we used NPOLE-MHP results, recreated from the settings in Yang et al. [2017]. We
also built a neural network estimator as a benchmark. The neural network we used is fully connected
and has 3 hidden layers of size 16. The activation functions for hidden layers are rectified linear units
(ReLU). The activation function for the output layer is σ(t) = tanh(t2), to guarantee positivity and
boundedness of the output.

Results. We first selected 3 out of 25 triggering functions to display in Figure 7, which showed that
pseudo mirror descent achieved a similar accuracy to the benchmarks. We note that the bumps in the
curves in the second subfigure is due to the fact that we used a nondifferentiable kernel and pointwise
evaluation of the triggering and intensity functions. This motivates us to simulate a set of parallel
results using a smoother Gaussian kernel, which we present subsequently.

A more complete simulation result is given in Figure 8. We can see that pseudo mirror descent
performs similar to NPOLE-MHP on estimating non-zero yij’s. Although the result is similar to that
of the neural network, it is partially due to the fact that we gave the neural network extra information
during its training phase. This includes the dimensions for which yij is non-zero, and the exact values

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0
y4, 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

y5, 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0
y2, 1

Ground truth Pseudo Mirror Descent NPOLE-MHP Neural network

Figure 7: Comparison between pseudo mirror descent, NPOLE-MHP (online gradient descent), and
neural networks on a 5-dimensional multivariate Hawkes process.

for the base intensities. Even so, we found it very hard to train the neural network, which often
converges to solutions far from optimal.

Lastly, for the synthetic dataset, we compared the performance of pseudo mirror descent using
different kernels in Figure 9. In particular, we used a Sobolev kernel, K(x, y) = 1 + min{x, y},
and a Gaussina kernel, K(x, y) = exp(−(x − y)2/0.02). The result shows that, under pointwise
evaluation, the Gaussian kernel creates a smoother output.

L.2 A Memetracker Dataset

As our last additional experiment, we compared the performance of pseudo mirror descent (Algorithm
2), NPOLE-MHP, and MLE-SGLP [Xu et al., 2016] on a memetracker dataset [Leskovec et al.,
2009]. Following the settings of Yang et al. [2017], we collected the publication times of posts and
articles of the 20 most active websites, and studied the pattern of their publication behaviors using
10 days worth of data. We modeled the process as a 20-dimensional Hawkes process. The result is
reported in Figure 10, where we plotted a 20× 20 heatmap with each cell being the L1-norm of a
triggering function. We can see that pseudo mirror descent generates a similar heat map compared to
NPOLE-MHP and MLE-SGLP, showing mainly self-exciting behavior of the dataset.

26

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y1, 1

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y1, 2

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y1, 3

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y1, 4

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y1, 5

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y2, 1

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y2, 2

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y2, 3

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y2, 4

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y2, 5

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y3, 1

0 1 2 3
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
y3, 2

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y3, 3

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y3, 4

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y3, 5

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y4, 1

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y4, 2

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y4, 3

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

y4, 4

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y4, 5

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y5, 1

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y5, 2

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

y5, 3

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y5, 4

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y5, 5

Neural network Ground truth Pseudo Mirror Descent (Sobolev kernel) NPOLE-MHP

Figure 8: Performance comparison between pseudo mirror descent (PMD) with Sobolev kernel,
NPOLE-MHP, and the neural network on estimating Y. The black curve is the ground truth, the green
curve is the result of NPOLE-MHP. The red curve is the result of PMD, and the orange curve is the
result of the neural network. Due to the difficulty in training neural network to obtain a comparable
result, we gave it extra information of the base intensity x∗i0’s, as well as the information regarding
which function is non-zero.

27

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y1, 1

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y1, 2

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y1, 3

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y1, 4

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y1, 5

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y2, 1

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y2, 2

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y2, 3

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y2, 4

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y2, 5

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y3, 1

0 1 2 3
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
y3, 2

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y3, 3

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y3, 4

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y3, 5

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y4, 1

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y4, 2

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y4, 3

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

y4, 4

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y4, 5

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y5, 1

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y5, 2

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

y5, 3

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y5, 4

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y5, 5

Pseudo Mirror Descent (Gaussian kernel) Ground truth Pseudo Mirror Descent (Sobolev kernel)

Figure 9: Performance comparison between pseudo mirror descent using the Sobolev kernel (red),
and the Gaussian kernel (orange), compared with the ground truth (black).

28

1 5 10 15 20

1

5

10

15

20

NPOLE-MHP

0

5

10

15

20

25

1 5 10 15 20

1

5

10

15

20

Pseudo Mirror Descent (PMD)

5

10

15

20

1 5 10 15 20

1

5

10

15

20

MLE-SGLP

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Figure 10: A heatmap comparison between the estimates of pseudo mirror descent, NPOLE-MHP,
and MLE-SGLP on the memetracker dataset.

29

