
Supplementary material

A Mapping to Ising

As introduced in [1] for the SBM (θ = 1n), the probability to realize a graph under the sparse
DC-SBM hypothesis reads:
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By making use of the Bayes theorem we can map the probability distribution of the labels to a
physical analogue of spins interacting on the graph.
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where we recovered the Boltzmann distribution with dimensionless Hamiltonian given by
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where const is a constant that will be absorbed in the normalization factor. This last step gives rise to
an Ising Hamiltonian. The following system of equations must then hold for some r:
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It is easy to check that r = ζ is the solution to this system of equations. From this result, one can
then follow the derivation of the Bethe-Hessian matrix proposed in [2].

It has to be remarked that to obtain Equation (A.1) we neglected terms coming from non-nearest
neighbours, in the limit for n → ∞. The mapping is therefore not exact, but it still constitutes a
useful tool to analyze and understand the problem.

Further note that, for disassortative networks, cin < cout and thus ζ < 0 as commented in Remark 3
in the main article. This would correspond to an anti-ferromagnetic interaction between the spins, in
complete agreement with the mapping provided.

B Mean and variance of the eigenvector

We need to identify the terms βi and µα introduced in Assumption 1 to track the behavior of δ and
thus of the eigenvector σ + δ. A first constraint on δ follows from imposing the normalization of the
eigenvector which, in the trivial limit equals σ, the norm of which is

√
n. As such,

‖(1− µα)σ + fαβ �N‖2 = n (B.1)

where β = (βi)
n
i=1, and N is a vector of zero mean and unit variance Gaussian random variables.

Denoting nβ̃2 ≡ ‖β �N‖2 and observing that β̃ = O(βi) – i.e. they have the same scaling with
respect to c –, we can rewrite this equation under the form:

(1− µα)2 + f2
αβ̃

2 = 1. (B.2)

This provides a first relation between µα and β̃. To obtain our next equations, we now explore
boundary conditions on the model parameters in the limit of trivial clustering and at the phase
transition where clustering becomes impossible.
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It is established in [3] that there exists a critical value αc ≡ 2/
√

Φ for α below which community
detection is (asymptotically) impossible. In particular, for α = αc, the eigenvector σ + δ does not
contain any information about the classes and thus µαc = 1. From Equation (9), we then find that
fαc =

√
cΦ− 1/2. Also, from (B.2), we get β̃ = 1/fαc . Updating (B.2), we now have an explicit

expression for µα for all α. Recalling that 4f2
α = ζ2

α − 1 (from (6) and (9)) then gives
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√
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α
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. (B.3)

Getting back to (7) and (8), it now remains to estimate βi, which we shall perform in the limit
α→

√
2cin of trivial clustering. To this end, combining both equations, we have
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for Ñ1, N1, . . . , Ñn, Nn all (non necessarily independent) standard normal random variables. The
second left-hand side term is proportional to

√
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if cout = εcin for ε� 1, since c typically scales like di, we obtain that fα
√
di =

√
εcin/2 +O(ε).

Hence, if cin ' ε−1, the right-hand side vanishes. But imposing this growth condition is in fact not
even necessary. If λα ∝ fηα for some η > 1, we directly obtain a vanishing right-hand side term; in
Section 3 we argued that η = 2 (see Claim 1).
Denoting

∑
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√
di for some 〈β〉 > 0, we may then rewrite
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in the limit α→
√

2cin. Besides, µα → 0 while ζα → 1. We already argued that βi (and thus 〈β〉),
which is of the order of β̃, scales as 1/fαc = O(c−1/2). Thus, in the limit of large degrees, the
second term in (B.4) is negligible and the third of order O(1). Equating the large degree limiting
variances of the resulting equation finally gives

βi =
2√
di
.

We now have the mean and the variance of each vector component and we can estimate the expression
of the overlap. Considering a node with σi = 1 without loss of generality, in the large c limit, we
have the approximate classification error for node i:
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From this, the expression of the overlap follows.

C Extension to more than two classes

In order to generalize the argument carried on for two classes, first we look into the following quantity
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By repeating the same argument on the average behavior of the adjacency matrix we obtain:
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from which the result unfolds. In the simulations on synthetic networks, the off-diagonal terms of
the matrix C are drawn from a uniform distribution U(cout − f, cout + f), the element C11 is fixed
to cin and all the other diagonal terms are determined to ensure CΠ1k = c1k. The randomness
will make the eigenvalues of CΠ non degenerate and there will not be a unique transition. The line
cin − cout = k

√
c indicates the approximated position of the transition.

In Figure 1 we report the spectrum of B in the case of four classes, that shows that the largest isolated
real eigenvalues of the matrix B are τp for 1 ≤ p ≤ k, followed by c/τp for 2 ≤ p ≤ k. This result
can be obtained analytically from the linearization of the belief propagation equations (see [4]).

Figure 1: Spectrum of B. In green the isolated real eigenvalues outside the bulk corresponding to
{τpΦ}, in red those inside the bulk, corresponding to {ζp = c/τp}; in blue all the others. We used 4
clusters of equal size, n = 5000, cin = 20, cout = 5, f = 1.5 and θi ∼ θ = U(3, 13)4.

Figure 2(a) displays the overlap as a function of the hardness of the problem and of the number of
classes comparing our algorithm with [2], evidencing a strong advantage in terms of performance for
our algorithm. The red square underlines the fact that the two methods coincide only at the transition
when k = 2 and the latter algorithm pays a lot in terms of performance for k > 2, even close to the
transition. Figure 2(b) shows how k̂ = |{p, vp(

√
cΦ) < 0}| is a good estimator of the number of

classes. With kd = |{p, τp >
√
c/Φ}| we denote the number of theoretically detectable clusters and

plot the quantity 2(k̂ − kd)/(k̂ + kd), showing small disagreement only close to the transition. The
recovery being asymptotically exact, this can be interpreted as a finite size effect.

Figure 2: (a) Overlap (color scale) as a function of the number of classes (k) and hardness of the
problem for the proposed algorithm (left) and H√cΦ (right). Here, n = 10 000, cin = 4→ 40,
cout = 3, f = 2/k, θi ∼ [U(3, 13)]4. Averaged over 10 samples.
(b) Recovery (2(k̂ − kd)/(k̂ + kd)) as a function of k and the hardness of the problem for the same
parameters as (a).
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