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Abstract

A landmark result of non-smooth convex optimization is that gradient descent is
an optimal algorithm whenever the number of computed gradients is smaller than
the dimension d. In this paper we study the extension of this result to the parallel
optimization setting. Namely we consider optimization algorithms interacting
with a highly parallel gradient oracle, that is one that can answer poly(d) gradient
queries in parallel. We show that in this case gradient descent is optimal only
up to eO(

p
d) rounds of interactions with the oracle. The lower bound improves

upon a decades old construction by Nemirovski which proves optimality only up to
d
1/3 rounds (as recently observed by Balkanski and Singer), and the suboptimality

of gradient descent after
p
d rounds was already observed by Duchi, Bartlett

and Wainwright. In the latter regime we propose a new method with improved
complexity, which we conjecture to be optimal. The analysis of this new method is
based upon a generalized version of the recent results on optimal acceleration for
highly smooth convex optimization.

1 Introduction

Much of the research in convex optimization has focused on the oracle model, where an algorithm
optimizing some objective function f : Rd

! R does so by sequential interaction with, e.g., a
gradient oracle (given a query x 2 Rd, the oracle returns rf(x)), [Nemirovski and Yudin, 1983,
Nesterov, 2004, Bubeck, 2015].1 In the early 1990s, Arkadi Nemirovski introduced the parallel
version of this problem [Nemirovski, 1994]: instead of submitting queries one by one sequentially,
the algorithm can submit in parallel up to Q � 1 queries. We refer to the depth of such a parallel
algorithm as the number of rounds of interaction with the oracle, and the work as the total number of
queries (in particular work  Q⇥ depth). In this paper we study the optimal depth achievable for
highly parallel algorithms, namely we consider the regime Q = poly(d). We focus on non-smooth
convex optimization, that is we want to optimize a Lipschitz, convex function f on the unit Euclidean
ball.

1Throughout we assume that f is differentiable, though our results carry over to the case where f is non-
differentiable and given by a sub-gradient oracle. This generalization is immediate as our analysis and algorithms
are stable under finite-precision arithmetic and convex functions are almost everywhere differentiable.
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Our key result is a new form a quadratic acceleration: while for purely sequential methods the critical
depth at which one can improve upon local search is eO(d), we show that in the highly parallel regime
the critical depth is eO(

p
d).

1.1 Classical optimality results

Classically, when Q = 1, it is known that gradient descent’s query complexity is order optimal for
any target accuracy " in the range

⇥
d
�1/2

, 1
⇤
. More precisely, it is known that the query complexity

of gradient descent is O(1/"2) and that for any " in the range
⇥
d
�1/2

, 1
⇤
, and for any algorithm,

there exists a Lipschitz and convex function f on which the number of oracle queries the algorithm
makes to achieve additive " accuracy is ⌦(1/"2). Furthermore, whenever " is smaller than d

�1/2

there exists a better algorithm (i.e., with smaller depth), namely the center of gravity whose depth is
O(d log(1/")). Consequently, an alternative formulation of these results is that, for Q = 1, gradient
descent is order optimal if and only if the depth is smaller than eO(d). (See previously cited references
for the exact statements.)

1.2 Optimality for highly parallel algorithms

The main result of this paper is to show that in the highly parallel regime (Q = poly(d)), gradient
descent is order optimal if and only if the depth is smaller than eO(

p
d). Thus one has a “quadratic"

improvement over the purely sequential setting in terms of the critical depth at which naive local
search becomes suboptimal.

The only if part of the above statement follows from Duchi et al. [2012], where randomized smoothing

with accelerated gradient descent was proposed (henceforth referred to as distributed randomized
smoothing [Scaman et al., 2018]), and shown to achieve depth d

1/4
/", which is order better than

1/"2 exactly when the latter is equal to
p
d. A first key contribution of our work is a matching lower

bound showing that, when the depth is smaller than eO(
p
d), no significant improvement over gradient

descent is possible, i.e. Q = 1 and Q = poly(d) have essentially the same power. Importantly we
note that our lower bound applies to randomized algorithms. The previous state of the art lower
bound was that gradient descent is optimal up to depth eO(d1/3) [Balkanski and Singer, 2018]. In
fact the construction in the latter paper is exactly the same as the original construction of Nemirovski
in [Nemirovski, 1994] (however the final statements are different, as Nemirovski was concerned
with an `1 setting instead of `2, see also Diakonikolas and Guzmán [2018] for more results about
non-Euclidean setups).

A second key contribution of this work is to improve the state of the art complexity of parallel
algorithms with depth between

p
d and d. Improving the depth d

1/4
/" of Duchi et al. [2012] was

explicitly mentioned as an open problem by Scaman et al. [2018]. Leveraging the recent higher order
acceleration schemes of Gasnikov et al. [2018], Jiang et al. [2018], Bubeck et al. [2018], we propose
a new method with depth d

1/3
/"

2/3. This means that for any value of " in the range
⇥
d
�1

, d
�1/4

⇤

there is an algorithm that is order better than both gradient descent and center of gravity. Moreover
we conjecture that the depth d

1/3
/"

2/3 is in fact optimal for any " in this range (as the arguments
of Section 2.3 would imply this if a similar argument could be made for � = ", i.e. a smaller
walling radius). We leave this question, the optimality of the center of gravity method for small
" < 1/poly(d) , and the optimal work among optimal depth algorithms, for future works.

1.3 Related works

Though Nemirovski’s prescient work stood alone for decades, more recently the subfield of paral-
lel/distributed optimization is booming, propelled by problems in machine learning, see e.g., [Boyd
et al., 2011]. Chief among those problems is how to leverage mini-batches in stochastic gradient
descent as efficiently as possible [Dekel et al., 2012]. The literature on this topic is sprawling, see for
example [Duchi et al., 2018] which studies the total work achievable in parallel stochastic convex
optimization, or [Zhang and Xiao, 2018] where the stochastic assumptions are leveraged to take
advantage of second order information. More directly related to our work is [Nemirovski, 1994,
Diakonikolas and Guzmán, 2018, Balkanski and Singer, 2018] from the lower bound side (we directly
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improve upon the result in the latter paper), and [Duchi et al., 2012, Scaman et al., 2018] from the
upper bound side (we directly improve upon the depth provided by the algorithms in those works).

2 Lower bound

Fix " > 0 such that 1/"2 = eO(
p
d). In this section we construct a random function f such that,

for any deterministic algorithm with depth O(1/"2) and total work poly(d), the output point x is
such that E[f(x) � f

⇤] > ", where the expectation is with respect to the random function f , and
f
⇤ denotes the minimum value of f on the unit centered Euclidean ball. Note that by the minimax

theorem, this implies that for any randomized algorithm there exists a deterministic function such
that the same conclusion applies. Formally, we prove the following:

Theorem 1 (Lower Bound) Let ⇢ 2 (0, 1) and C = 12 + 4 logd(Q/⇢). Further, assume that it

holds that log(N)N
p
C log(d)/d  1

4 (i.e., N .
q
d/ log3(d)). Fix a randomized algorithm that

queries at most Q points per iteration (both function value and gradient), and that runs for at most

N iterations. Then, with probability at least 1� ⇢, when run on the shielded Nemirovski function f

(see Section 2.3 and Section 2.4)) one has for any queried point: f(x)� f
⇤
�

1
4
p
N

.

The details of the proof of this theorem are deferred to Appendix A. In the remainder of this section
we instead provide a sketch of its proof. We first recall in Section 2.1 why, for purely sequential
algorithms, the above statement holds true, and in fact one can even replace

p
d by d in this case (this

construction goes back to [Yudin and Nemirovski, 1976], see also [Nemirovski and Yudin, 1983]).
Next, in Section 2.2 we explain Nemirovski [1994]’s construction, which yields a weaker version of
the above statement, with

p
d replaced by d

1/3 (as rediscovered by [Balkanski and Singer, 2018]).
We then explain in Section 2.3 our key new construction, a type of shielding operation. Finally, we
conclude the proof sketch in Section 2.4.

For the rest of the section we let v1, . . . , vN denote N random orthonormal vectors in Rd (in particular
N  d), and x

⇤ = � 1p
N

PN
i=1 vi. We define the Nemirovski function with parameter � � 0 by:

N (x) = max
i2[N ]

�
vi · x� i�

 
,

Note that
N

⇤
 N (x⇤)  �

1
p
N

. (1)

2.1 The classical argument

We consider here the Nemirovski function with parameter � = 0. Each gradient query reveals a single
vector in the collection of the vi, so after N/2 iterations one might know say v1, . . . , vN/2, but the rest
remain unknown (or in other words they remain random orthonormal vectors in span(v1, . . . , vN/2)

?).
Thus for any output x that depends on only N/2 queries, one has E[N (x)] � 0 (formally this
inequality follows from Jensen’s inequality and the tower rule). Thus, together with (1), it follows
that E[N (x)�N

⇤] � 1/
p
N . In other words the best rate of convergence of sequential methods is

1/
p
N , provided that N  d.

2.2 The basic parallel argument

We consider here the Nemirovski function with parameter � = C
p

log(d)/d for some large enough
constant C (more precisely that constant C depends on the exponent in the poly(d) number of
allowed queries per round). The key observation is as follows: Imagine that the algorithm has already
discovered v1, . . . , vi�1. Then for any set of poly(d) queries, with high probability with respect to
the random draw of vi, . . . , vN , one has that the inner product of any of those vectors with any of the
queried points is in [��/2, �/2] (using both basic concentration of measure on the sphere, and a union
bound). Thus the maximum in the definition of N is attained at some index  i. This means that this
set of poly(d) queries can only reveal vi, and not any of the vj , j > i. Thus after N � 1 rounds we
know that with high probability any output x satisfies N (x) � vN · x�N� � �(N + 1)� (since
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vN is a random direction orthogonal to span(v1, . . . , vN�1) and x only depends on v1, . . . , vN�1).
Thus we obtain that the suboptimality gap is 1p

N
� (N + 1)�. Let us assume that

N
3/2


1

2�
, (2)

i.e., N = eO(d1/3) (since � = C
p
log(d)/d). Then one has that the best rate of convergence with a

highly parallel algorithm is ⌦(1/
p
N) (i.e., the same as with purely sequential methods).

2.3 The wall function

Our new idea to improve upon Nemirovski’s construction is to introduce a new random wall function

W (with parameter � > 0), where the randomness come from v1, . . . , vN . Our new random hard
function, which we term shielded-Nemirovski function, is then defined by:

f(x) = max {N (x),W(x)} .

We construct the convex function W so that one can essentially repeat the argument of Section
2.2 with a smaller value of � (the parameter in the Nemirovski function), so that the condition (2)
becomes less restrictive and allows to take N as large as eO(

p
d).

Roughly speaking the wall function will satisfy the following properties:

1. The value of W at x⇤ is small, namely W(x⇤)  � 1p
N

.

2. The value of W at “most" vectors x with kxk � � is large, namely W(x) � N (x), and
moreover it is does not depend on the collection vi (in fact at most points we will have the
simple formula W(x) = 2kxk1+↵, for some small ↵ that depends on �, to be defined later).

The key argument is that, by property 2, one can expect (roughly) that information on the random
collection of v0is can only be obtained by querying points of norm smaller than �. This means that
one can repeat the argument of Section 2.2 with a smaller value of �, namely � = � · C

p
log(d)/d.

In turn the condition (2) now becomes N = eO
�
d
1/3

/�
2/3
�
. Due to convexity of W , there is a

tension between property 1 and 2, so that one cannot take � too small. We will show below that it
is possible to take � =

p
N/d. In turn this means that the argument proves that 1/

p
N is the best

possible rate, up to N = eO(
p
d).

The above argument is imprecise because the meaning of “most" in property 2 is unclear. A more
precise formulation of the required property is as follows:

20 Let x = w + z with w 2 Vi and z 2 V
?
i where Vi = span(v1, . . . , vi). Assume

that kzk � �, then the total variation distance between the conditional distribution of
vi+1, . . . , vN given rW(x) (and W(x)) and the unconditional distribution is polynomially
small in d with high probability (here high probability is with respect to the realization of
rW(x) and W(x), see below for an additional comment about such conditional reasoning).
Moreover if the argmax in the definition of N (x) is attained at some index > i, then
W(x) � N (x).

Given both property 1 and 20 it is actually easy to formalize the whole argument. We do so by
consdering a game between Alice, who is choosing the query points, and Bob who is choosing the
random vectors v1, . . . , vN . Moreover, to clarify the reasoning about conditional distributions, Bob
will resample the vectors vi, . . . , vN at the beginning of the i

th round of interaction, so that one
explicitly does not have any information about those vectors given the first i� 1 rounds of interaction.
Then we argue that with high probability all the oracle answers remain consistent throughout this
resampling process. See Appendix A for the details. Next we explain how to build W so as to satisfy
property 1 and 2’.

4



2.4 Building the wall

Let h(x) = 2kxk1+↵ be the basic building block of the wall. Consider the correlation cones:

Ci =

(
x 2 Rd :

����vi ·
x

kxk

���� � C

r
log(d)

d

)
.

Note that for any fixed query x, the probability (with respect to the random draw of vi) that x is in Ci

is polynomially small in d. We now define the wall W as follows: it is equal to the function h outside
of the correlation cones and the ball of radius �, and it is extended by convexity to the rest of the unit
ball. In other words, let ⌦ = {x 2 Rd : kxk 2 [�, 1] and x 62 Ci for all i 2 [N ]}, and

W(x) = max
y2⌦

{h(y) +rh(y) · (x� y)} .

Let us first prove property 1:

Lemma 2 Let ↵ = 1
log2(1/�)

 1, and
�

log2(1/�)
= 4C

q
N log(d)

d + 1p
N

. Then W(x⇤)  � 1p
N

.

Proof One has rh(y) = 2(1 + ↵) y
kyk1�↵ and thus

h(y) +rh(y) · (x� y) = �2↵kyk1+↵ + 2(1 + ↵)
y · x

kyk1�↵
. (3)

Moreover for any y 2 ⌦ one has:

|y · x
⇤
| 

1
p
N

NX

i=1

|y · vi|  C

r
N log(d)

d
· kyk .

Thus for any y 2 ⌦ we have:

h(y) +rh(y) · (x⇤
� y)  �2↵�1+↵ + 2(1 + ↵)C

r
N log(d)

d
.

The proof is straightforwardly concluded by using the values of ↵ and �.

Next we prove a simple formula for W(x) in the context of property 20. More precisely we assume
that x = w + z with w 2 Vi and z 2 V

?
i with z 62 Cj for any j > i. Note that for any fixed z, the

latter condition happens with high probability with respect to the random draw of vi+1, . . . , vN .

Lemma 3 Let x = w + z with w 2 Vi and z 2 V
?
i with z 62 Cj for any j > i. Then one has:

W(x) = max
a,b2R+:a2+b22[�2,1]

(
�2↵(a2 + b

2)
1+↵
2 + 2

1 + ↵

(a2 + b2)
1�↵
2

 
max

y2e⌦,kyk=a
y · w + bkzk

!)
,

where e⌦ = {x 2 Vi : x 62 Cj for all j 2 [i]} and we use the convention that the maximum of an

empty set is �1.

Proof Recall (3), and let us optimize over y 2 ⌦ subject to kPViyk = a and kPV ?
i
yk = b for some

a, b such that a2 + b
2
2 [�2, 1]. Note that in fact there is an upper bound constraint on a for such a y

to exists (for if the projection of y onto Vi is large, then necessarily y must be in one of the correlation
cones), which we can ignore thanks to the convention choice for the maximum of an empty set. Thus
the only calculation we have to do is to verify that:

max
y2⌦:kPViyk=a and kP

V ?
i

yk=b
y · x = max

y2e⌦,kyk=a
y · w + bkzk .

Note that y · x = PViy · w + PV ?
i
y · z. Thus the right hand side is clearly an upper bound on the

left hand side (note that PViy 2
e⌦). To see that it is also a lower bound take y = y

0 + b
z

kzk for some

arbitrary y
0
2 e⌦ with ky0k = a, and note that y 2 ⌦ (in particular using the assumption on z) with
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kPViyk = a and kPV ?
i
yk = b.

The key point of the formula given in Lemma 3 is that it does not depend on vi+1, . . . , vN . Thus
when the algorithm queries the point x and obtains the above value for W(x) (and the corresponding
gradient), the only information that it obtains is that z 62 Cj for any j > i. Since the latter condition
holds with high probability, the algorithm essentially learns nothing (more precisely the conditional
distribution of vi+1, . . . , vN only changes by 1/poly(d) compared to the unconditional distribution).

Thus to complete the proof of property 20 it only remains to show that if kzk � � and the argmax in
N (x) is attained at an index > i, then the formula in Lemma 3 is larger than N (x). By taking a = 0
and b = � one obtains that this formula is equal to (using also the values assigned to ↵ in Lemma 2):

�2↵�1+↵ + 2
1 + ↵

�1�↵
�kzk = �↵� + (1 + ↵)kzk � kzk .

On the other hand one has (by assumption that the argmax index is > i)

N (x) = max
j>i

{vj · x� j�}  kzk .

This concludes the proof of property 20, and in turn concludes the proof sketch of our lower bound.

3 Upper bound

Here we present our highly parallel optimization procedure. Throughout this section we let f :
Rd
! R denote a differentiable L-Lipschitz function that obtains its minimum value at x⇤

2 Rd

with kx⇤
k2  R. The main result of this section is the following theorem, which provides an

eO(d1/3/"2/3)-depth highly-parallel algorithm that computes an "-optimal point with high probability.

Theorem 4 (Highly Parallel Function Minimization) There is a randomized highly-parallel algo-

rithm which given any differentiable L-Lipschitz f : Rd
! R minimized at x

⇤
with kx

⇤
k  R

computes with probability 1� ⌫ a point x 2 Rd
with f(x)� f(x⇤)  " in depth eO(d1/3(LR/")2/3)

and work eO(d4/3(LR/")8/3) where eO(·) hides factors polylogarithmic in d,",L,R, and ⌫
�1

.

Our starting point for obtaining this result are the O(d1/4/") depth highly parallel algorithms of
[Duchi et al., 2012]. This paper considers the convolution of f with simple functions, e.g. Gaussians
and uniform distributions, and shows this preserves the convexity and continuity of f while improving
the smoothness and thereby enables methods like accelerated gradient descent (AGD) to run efficiently.
Since the convolved function can be accessed efficiently in parallel by random sampling, working
with the convolved function is comparable to working with the original function in terms of query
depth (up to the sampling error). Consequently, the paper achieves its depth bound by trading off the
error induced by convolution with the depth improvements gained from stochastic variants of AGD.

To improve upon this bound, we apply a similar approach of working with the convolution of f
with a Gaussian. However, instead of applying standard stochastic AGD we consider accelerated
methods which build a more sophisticated model of the convolved function in parallel. Instead of
using random sampling to approximate only the gradient of the convolved function, we obtain our
improvements by using random sampling to glean more local information with each highly-parallel
query and then use this to minimize the convolved function at an accelerated rate.

To enable the use of these more sophisticated models we develop a general acceleration framework
that allows us to leverage any subroutine for approximate minimization a local model/approximate
gradient computations into an accelerated minimization scheme. We believe this framework is of
independent interest, as we show that we can analyze the performance of this method just in terms
of simple quantities regarding the local model. This framework is discussed in Section 3.1 and in
Appendix C where we show how it generalizes multiple previous results on near-optimal acceleration.

Using this framework, proving Theorem 4 reduces to showing that we can minimize high quality
local models of the convolved function. Interestingly, it is possible to nearly obtain this result by
simply random sampling to estimate all derivatives up to some order k and then use this to minimize
a regularized k-th order Taylor approximation to the function. Near-optimal convergence for such
methods under Lipschitz bounds on the k-th derivatives were recently given by [Gasnikov et al., 2018,
Jiang et al., 2018, Bubeck et al., 2018] (and follow from our framework). This approach can be shown
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to give a highly-parallel algorithm of depth eO(d1/3+c
/"

2/3) for any c > 0 (with an appropriately
large k). Unfortunately, the work of these methods is O(dpoly(1/c)) and expensive for small c.

To overcome this limitation, we leverage the full power of our acceleration framework and instead
show that we can randomly sample to build a model of the convolved function accurate within a ball
of sufficiently large radius. In Section 3.2 we bound this quality of approximation and show that this
local model can be be optimized to sufficient accuracy efficiently. By combining this result with our
framework we prove Theorem 4. We believe this demonstrates the utility of our general acceleration
scheme and we plan to further explore its implications in future work.

3.1 Acceleration framework

Here we provide a general framework for accelerated convex function minimization. Throughout
this section we assume that there is a twice-differentiable convex function g : Rd

! R given by an
approximate proximal step oracle and an approximate gradient oracle defined as follows.

Definition 5 (Approximate Proximal Step Oracle) Let ! : R+ ! R+ be a non-decreasing func-

tion, � � 0, and ↵ 2 [0, 1). We call Tprox an (↵, �)-approximate !-proximal step oracle for

g : Rd
! R if, for all x 2 Rd

, when queried at x 2 Rd
the oracle returns y = Tprox(x) such that

krg(y) + !(ky � xk)(y � x)k  ↵ · !(ky � xk)ky � xk+ � . (4)

Definition 6 (Approximate Gradient Oracle) We call Tgrad an �-approximate gradient oracle for

g : Rd
! R if when queried at x 2 Rd

the oracle returns v = Tgrad(x) such that kv �rg(x)k  �.

We show that there is an efficient accelerated optimization algorithm for minimizing g using only
these oracles. Its performance is encapsulated by the following theorem.

Theorem 7 (Acceleration Framework) Let g : Rd
! R be a convex twice-differentiable function

minimized at x
⇤

with kx
⇤
k  R, " > 0, ↵ 2 [0, 1), and � � 1 such that 128↵�2

 1. Further, let

! : R+ ! R+ be a monotonically increasing continuously differentiable function with 0 < !
0(s) 

� · !(s)/s for all s > 0. There is an algorithm which for all k computes a point yk with

g(yk)� g
⇤
 max

(
" ,

32 · !
⇣

40kx⇤k
k3/2

⌘
kx

⇤
k
2

k2

)

using k(6 + log2[10
20
�
6
R

2
· !(105�2

R) · "�1])2 queries to a (↵, �)-approximate !-proximal step

oracle for g and a �-approximate gradient oracle for g provided that both �  "/[1020�2
R] and

"  1020�4
R

3
!(80R).

This theorem generalizes multiple accelerated methods (up to polylogarithmic factors) and sheds light
on the rates of these methods (See Appendix C for applications). For example, choosing !(x)

def
= L

2

and Tprox(x) = x �
1
Lrf(x) recovers standard accelerated minimization of L-smooth functions,

choosing !(x)
def
= L

2 and Tprox(x) ⇡ argminy g(y) +
L
2 ky � xk

2 recovers a variant of approximate
proximal point [Frostig et al.] and Catalyst [Lin et al., 2015], and choosing !(x)

def
= Lp·(p+1)

p! x
p�1

and Tprox(x) = argminy gp(y;x) +
Lp

p! ky � xk
p+1 where gp(y;x) is the value of the p’th order

Taylor approximation of g about x evaluated at y recovers highly smooth function minimization
[Monteiro and Svaiter, 2013, Gasnikov et al., 2018, Jiang et al., 2018, Bubeck et al., 2018].

We prove Theorem 7 by generalizing an acceleration framework due to [Monteiro and Svaiter, 2013].
This framework was recently used by several results to obtain near-optimal query complexities
for minimizing highly smooth convex functions [Gasnikov et al., 2018, Jiang et al., 2018, Bubeck
et al., 2018]. In Section B.1 we provide a variant of this general framework that is amenable to the
noise induced by our oracles. In Section B.2 we show how to instantiate our framework using the
oracles assuming a particular type of line search can be performed. In Section B.3 we then prove the
Theorem 7. The algorithm for and analysis of line search is deferred to Appendix E.
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3.2 Highly parallel optimization

With Theorem 7 in hand, to obtain our result we need to provide, for an appropriate function !, a
highly parallel implementation of an approximate proximal step oracle and an approximate gradient
oracle for a function that is an O(") additive approximation f . As with previous work [Duchi et al.,
2012, Scaman et al., 2018] we consider the convolution of f with a Gaussian of covariance r2 · Id for
r > 0 we will tune later. Formally, we define g : Rd

! R for all x 2 Rd as

g(x)
def
=

Z

Rd

�r(y)f(x� y)dy where �r(x)
def
=

1

(
p
2⇡r)d

exp

✓
�
kxk

2

2r2

◆

It is straightforward to prove (See Section D.1) the following standard facts regarding g.

Lemma 8 The function g is convex, L-Lipschitz, and satisfies both |g(y) � f(y)| 
p
d · Lr and

r
2
g(y) � (L/r) · Id for all y 2 Rd

.

Consequently, to minimize f up to " error, it suffices to minimize g to O(") error with r = O( "p
dL

).
In the remainder of this section we simply show how to provide highly parallel implementations of
the requisite oracles to achieve this by Theorem 7.

Now, as we have discussed, one way we could achieve this goal would be to use random sampling
to approximate (in parallel) the k-th order Taylor approximation to g and minimize a regularization
of this function to implement the approximate proximal step oracle. While this procedure is depth-
efficient, its work is quite large. Instead, we provide a more work efficient application of our
acceleration framework. To implement a query to the oracles at some point c 2 Rd we instead simply
take multiple samples from �r(x� c), i.e., the normal distribution with covariance r

2
Id and mean c,

and use these samples to build an approximation to the gradient field of g. The algorithm for this
procedure is given by Algorithm 1 and carefully combines the gradients of the sampled points to
build a model with small bias and variance. By concentration bound and "-net argument, we can
show that Algorithm 1 outputs a vector field v : Rd

! Rd that is an uniform approximation of rg
within a small ball (See Section D.2 for the proof.)

Algorithm 1: Compute vector field approximating rg
1 Input: Number of samples N , radius r > 0, error parameter ⌘ 2 (0, 1), center c 2 Rd.
2 Sample x1, x2, · · · , xN independently from �r(x� c).
3 return v : Rd

! Rd defined for all y 2 Rd by

v(y) =
1

N

NX

i=1

�r(y � xi)

�r(c� xi)
·rf(xi) · �((xi � c)>(y � c)) · 1kxi�ck(

p
d+ 1

⌘ )r

where �(t)
def
= 0, if |t| � r

2, �(t) def
= 1 if |t|  r2

2 and �(t)
def
= 2� 2|t|

r2 otherwise.

Lemma 9 (Uniform Approximation) Algorithm 1 outputs vector field v : Rd
! R such that for

any � 2 (0, 1
2 ) with probability at least 1� � the following holds

max
y:ky�ck ⌘

4 r
kv(y)�rg(y)k  5L · exp

✓
�

1

2⌘2

◆
+

8L
p
N

s
d

⌘2
log(9d) + log

1

�
.

Consequently, for any " 2 [0, 1], N = O([d log d log( 1" ) + log( 1� )]"
�2), and ⌘ = 1

2
q

log( 10
" )

this

yields that maxy:ky�cker kv(y)�rg(y)k  L · " where er = r

8
q

log( 10
" )

.

This lemma immediately yields that we can use Algorithm 1 to implement a highly-parallel approx-
imate gradient oracle for g. Interestingly, it can also be leveraged to implement a highly-parallel
approximate proximal step oracle. Formally, we show how to use it to find y such that

rg(y) + !(ky � xk) · (y � x) ⇡ 0 where !(s)
def
=

4Lsp

erp+1
(5)
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for some p to be determined later. Ignoring logarithmic factors and supposing for simplicity that
L,R  1, Theorem 7 shows that by invoking this procedure eO(k) ⇡ d

p+1
3p+4 "

�2p�2
3p+4 times we could

achieve function error on the order

!(1/k3/2)/k2 ⇡ er�(p+1)
k
� 3p+4

2 ⇡ d
p+1
2 "

�(p+1)
k
� 3p+4

2 ⇡ "

and therefore achieve the desired result by setting p to be polylogarithmic in the problem parameters.

Consequently, we simply need to find y satisfying (5). The algorithm that achieves this is Algorithm 2
which essentially performs gradient descent on

g(y) + �(ky � ck) where �(s) =

Z s

0
!(t) · t dt . (6)

The performance of this algorithm is given by Theorem 24 in Section D.3. Combined with all of the
above it proves Theorem 4, see Section D.4 for the details.

Algorithm 2: Approximate minimization of g(y) + �(ky � ck)

1 Input: center c 2 Rd, accuracy ", inner radius er = r

8
q

log( 60
" )

, and step size h = er
48p

p
dL

.

2 Use Algorithm 1 to find a vector field v such that maxy:ky�cker kv(y)�rg(y)k  L ·
"
6 .

3 y  c.
4 for i = 1, 2, · · ·1 do
5 �y = v(y) + !(ky � ck) · (y � c) where ! is defined by (5) with p � 1.
6 if k�yk  L ·

5"
6 then return y else y = y � h · �y;

7 end
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