
Mapping State Space using Landmarks
for Universal Goal Reaching

Zhiao Huang ∗
UC San Diego

z2huang@eng.ucsd.edu

Fangchen Liu ∗
UC San Diego

fliu@eng.ucsd.edu

Hao Su
UC San Diego

haosu@eng.ucsd.edu

Abstract

An agent that has well understood the environment should be able to apply its
skills for any given goals, leading to the fundamental problem of learning the
Universal Value Function Approximator (UVFA). A UVFA learns to predict the
cumulative rewards between all state-goal pairs. However, empirically, the value
function for long-range goals is always hard to estimate and may consequently
result in failed policy. This has presented challenges to the learning process and
the capability of neural networks. We propose a method to address this issue
in large MDPs with sparse rewards, in which exploration and routing across
remote states are both extremely challenging. Our method explicitly models the
environment in a hierarchical manner, with a high-level dynamic landmark-based
map abstracting the visited state space, and a low-level value network to derive
precise local decisions. We use farthest point sampling to select landmark states
from past experience, which has improved exploration compared with simple
uniform sampling. Experimentally we showed that our method enables the agent to
reach long-range goals at the early training stage, and achieve better performance
than standard RL algorithms for a number of challenging tasks.

1 Introduction

Reinforcement learning (RL) allows training agents for planning and control tasks by feedbacks from
the environment. While significant progress has been made in the standard setting of achieving a
goal known at training time, e.g., to reach a given flag as in MountainCar [1], very limited efforts
have been exerted on the setting when goals at evaluation are unknown at training time. For example,
when a robot walks in an environment, the destination may vary from time to time. Tasks of this
kind are unanimous and of crucial importance in practice. We call them Universal Markov Decision
Process (UMDP) problems following the convention of [2].

Pioneer work handles UMDP problems by learning a Universal Value Function Approximator
(UVFA). In particular, Schaul et al. [3] proposed to approximate a goal-conditioned value function
V (s, g)2 by a multi-layer perceptron (MLP), and Andrychowicz et al. [4] proposed a framework
called hindsight experience replay (HER) to smartly reuse past experience to fit the universal value
function by TD-loss. However, for complicated policies of long-term horizon, the UVFA learned by
networks is often not good enough. This is because UVFA has to memorize the cumulative reward
between all the state-goal pairs, which is a daunting job. In fact, the cardinality of state-goal pairs
grows by a high-order polynomial over the horizon of goals.

While the general UMDP problem is extremely difficult, we consider a family of UMDP problems
whose state space is a low-dimension manifold in the ambient space. Most control problems are
∗equal contribution
2s is the current state and g is the goal.
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of this type and geometric control theory has been developed in the literature [5]. Our approach is
inspired by manifold learning, e.g., Landmark MDS [6]. We abstract the state space as a small-scale
map, whose nodes are landmark states selected from the experience replay buffer, and edges connect
nearby nodes with weights extracted from the learned local UVFA. A network is still used to fit
the local UVFA accurately. The map allows us to run high-level planning using pairwise shortest
path algorithm, and the local UVFA network allows us to derive an accurate local decision. For a
long-term goal, we first use the local UVFA network to direct to a nearby landmark, then route among
landmarks using the map towards the goal, and finally reach the goal from the last landmark using
the local UVFA network.

Our method has improved sample efficiency over purely network learned UVFA. There are three
main reasons. First, the UVFA estimator in our framework only needs to work well for local value
estimation. The network does not need to remember for faraway goals, thus the load is alleviated.
Second, for long-range state-goal pairs, the map allows propagating accurate local value estimations
in a way that neural networks cannot achieve. Consider the extreme case of having a long-range
state-goal pair never experienced before. A network can only guess the value by extrapolation, which
is known to be unreliable. Our map, however, can reasonably approximate the value as long as there
is a path through landmarks to connect them. Lastly, the map provides a strong exploration ability
and can help to obtain rewards significantly earlier, especially in the sparse reward setting. This is
because we choose the landmarks from the replay buffer using a farthest-point sampling strategy,
which tends to select states that are closer to the boundary of the visited space. In experiments, we
compared our methods on several challenging environments and have outperformed baselines.

Our contributions are: First, We propose a sample-based method to map the visited state space using
landmarks. Such a graph-like map is a powerful representation of the environment, maintains both
local connectivity and global topology. Second, our framework will simultaneously map the visited
state space and execute the planning strategy, with the help of a locally accurate value function
approximator and the landmark-based map. It is a simple but effective way to improve the estimation
accuracy of long-range value functions and induces a successful policy at the early stage of training.

2 Related work

Variants of goal-conditioned decision-making problems have been studied in literature [7, 8, 3, 9].
We focus on the goal-reaching task, where the goal is a subset of the state space. The agent receives
meaningful rewards if and only if it has reached the goal, which brings significant challenges to
existing RL algorithms. A significant recent approach along the line is Hindsight Experience Replay
(HER) by Andrychowicz et al [4]. They proposed to relabel the reached states as goals to improve
data efficiency. However, they used only a single neural network to represent the Q value, learned by
DDPG [10]. This makes it hard to model the long-range distance. Our method overcomes the issue
by using a sample-based map to represent the global structure of the environment. The map allows to
propagate rewards to distant states more efficiently. It also allows to factorize the decision-making
for long action sequences into a high-level planning problem and a low-level control problem.

Model-based reinforcement learning algorithms usually need to learn a local forward model of the
environment, and then solve the multi-step planning problem with the learned model [11, 12, 13, 14,
15, 16]. These methods rely on learning an accurate local model and require extra efforts to generalize
to the long term horizon [17]. In comparison, we learn a model of environment in a hierarchical
manner, by a network-based local model and a graph-based global model (map). Different from
previous works to fit forward dynamics in local models, our local model distills local cumulative
rewards from environment dynamics. In addition, our global model, as a small graph-based map
that abstracts the large state space, supports reward propagation at long range. One can compare our
framework with Value Iteration Networks (VIN) [18]. VIN focused on the 2D navigation problem.
Given a predefined map of known nodes, edges, and weights, it runs the value iteration algorithm
by ingeniously simulating the process through a convolutional neural network [19]. In contrast, we
construct the map based upon the learned local model.

Sample-Based Motion Planning (SBMP) has been widely studied in the robotics context [20, 21, 22].
The traditional motion planning algorithm requires the knowledge of the model. Recent work has
combined deep learning and deep reinforcement learning for [23, 24, 25, 26]. In particularly, PRM-
RL addressed the 2D navigation problem by combining a high-level shortest path-based planner
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and a low-level RL algorithm. To connect nearby landmarks, it leveraged a physical engine, which
depends on sophisticated domain knowledge and limits its usage to other general RL tasks. In the
general RL context, our work shows that one can combine a high-level planner and a learned local
model to solve RL problems more efficiently. Some recent work also utilize the graph structure to
perform planning [27, 28], however, unlike our approach that discovers the graph structure in the
process of achieving goals, both [27, 28] require supervised learning to build the graph. Specifically,
[27] need to learn a Siamese network to judge if two states are connected, and [28] need to learn the
state-attribute mapping from human annotation.

Our method is also related to hierarchical RL research [2, 29, 30]. The sampled landmark points can
be considered as sub-goals. [2, 30] also used HER-like relabeling technique to make the training more
efficient. These work attack more general RL problems without assuming much problem structure.
Our work differs from previous work in how high-level policy is achieved. In their methods, the
agent has to learn the high-level policy as another RL problem. In contrast, we exploit the structure
of our universal goal reaching problem and find the high-level policy by solving a pairwise shortest
path problem in a small-scale graph, thus more data-efficient.

3 Background

Universal Markov Decision Process (UMDP) extends an MDP with a set of goals G. UMDP has
reward function R : S × A × G → R, where S is the state space and A is the action space.
Every episode starts with a goal selected from G by the environment and is fixed for the whole
episode. We aim to find a goal conditioned policy π : S × G → A to maximize the expected
cumulative future return Vg,π(s0) = Eπ[

∑∞
t=0 γ

tR(st, at, g)], which called goal-conditioned value,
or universal value. Universal Value Function Approximators (UVFA) [3] use neural network to
model V (s, g) ≈ Vg,π∗(s) where π∗ is the optimal policy, and apply Bellman equation to train it in a
bootstrapping way. Usually, the reward in UMDP is sparse to train the network. For a given goal, the
agent can receive non-trivial rewards only when it can reach the goal. This brings a challenge to the
learning process.

Hindsight Experience Replay (HER) [4] proposes goal-relabeling to train UVFA in sparse reward
setting. The key insight of HER is to “turn failure to success”, i.e., to make a failed trajectory become
success, by replacing the original failed goals with the goals it has achieved. This strategy gives
more feedback to the agent and improves the data efficiency for sparse reward environments. Our
framework relies on HER to train an accurate low-level policy.

4 Universal Goal Reaching

Problem Definition: Our universal goal reaching problem refers to a family of UMDP tasks. The
state space of our UDMP is a low-dimension manifold in the ambient space. Many useful planning
problems in practice are of this kind. Example universal goal reaching environments include labyrinth
walking (e.g., AntMaze [31]) and robot arm control (e.g., FetchReach [32]). Their states can only
transit in a neighborhood of low-dimensionality constrained by the degree of freedom of actions.

Following the notions in Sec 3, we assume that a goal g in goal space G which is a subset of the state
space S. For example, in a labyrinth walking game with continuous locomotion, the goal can be to
reach a specific location in the maze at any velocity. Then, if the state s is a vector consisting of the
location and velocity, a convenient way to represent the goal g would be a vector that only contains
the dimensions of location, i.e., the goal space is a projection of the state space.

The universal goal reaching problem has a specific transition probability and reward structure. At
every time step, the agent moves into a local neighborhood based on the metric in the state space,
which might be perturbed by random noise. It also receives some negative penalty (usually a constant,
e.g., −1 in the experiments) unless it has arrived at the vicinity of the goal. A 0 reward is received if
the goal is reached. To maximize the accumulated reward, the agent has to reach the goal in fewest
steps. Usually the only non-trivial reward 0 appears rarely, and the universal goal reaching problem
falls in the category of sparse reward environments, which are hard-exploration problems for RL.

A Graph View: Assume that a policy π takes at most steps T to move from s to g and the reward
at each step rk’s absolute value is bounded by Rmax. Let wπ(s, t) be the expected total reward along
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Figure 1: An illustration of our framework. The agent is trying to reach the other side of the maze by
planning on a landmark-based map. The landmarks are selected from its past experience, and the
edges between the landmarks are formed by a UVFA.

the trajectory, and dπ(s, t) = −wπ(s, t) for all s, t. If γ ≈ 1, we can show that UVFA Vπ(s, g) can
be approximated as (see supplementary for details):

Vπ(s, g) ≈ E[wπ(s, g)] = E[−dπ(s, g)] (1)

This suggests us to view the MDP as a directed graph, whose nodes are the state set S, and edges
are sampled according to the transition probability in the MDP. The general value iteration for RL
problems is exactly the shortest path algorithm in terms of dπ(s, g) on this directed graph. Besides,
because the nodes form a low-dimensional manifold, nodes that are far away in the state space can
only be reached by a long path.

The MDP of our universal goal reaching problem is a large-scale directed graph whose nodes are in
a low-dimensional manifold. This structure allows us to estimate the all-pair shortest paths accurately
by a landmark based coarsening of the graph.

5 Approach

In this paper, we choose deep RL algorithms such as DQN and DDPG for discrete and continuous
action space, respectively. UVFA [3] is a goal-conditioned extension of the original DQN, while
HER (Sec 3), can produce more informative feedback for UVFA learning. Our algorithm is thus
based upon HER, and the extension of this approach for other algorithms is also straightforward.

5.1 Basic Idea

Our approach aims at addressing the fundamental challenges in UVFA learning. As characterized
in the previous section, the UVFA estimation solves a pair-wise shortest path problem, and the
underlying graph has a node space of high cardinality. Note that UVFA has to memorize the distance
between every state-goal pairs, through trajectory samples from the starting state to the goal, which is
much larger than the original state space.

Such large set of state-goal pairs poses the challenge. First, it takes longer time to sample enough
state-goal pairs. Particularly, at the early stage, only few state-goal samples have been collected, so
learning from them requires heavy extrapolation by networks, which is well known to be unreliable.
Second, memorizing all the experiences is too difficult even for large networks.

We propose a map to abstract the visited state space by landmarks and edges to connect them.
This abstraction is reasonable due to the underlying structure of our graph — a low-dimensional
manifold [33]. We also learn local UVFA networks that only needs to be accurate in the neighborhood
of landmarks. As illustrated in Figure 1, an ant robot is put in an “U” Maze to reach a given position.
It should learn to model the maze as a small-scale map based on its past experiences.

This solution addresses the challenges. For the UVFA network, it only needs to remember experiences
in a local neighborhood. Thus, the training procedure requires much lower sample complexity. The
map decomposes a long path into piece-wise short ones, and each of which is from an accurate local
network.
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Our framework contains three components: a value function approximator trained with hindsight
experience replay, a map that is supported by sampled landmarks, and a planner that can find the
optimal path with the map. We will introduce them in Sec 5.2, Sec 5.3, and Sec 5.4, respectively.

5.2 Learning a Local UVFA with HER

Specifically, we define the following reward function for goal reaching problem:

rt = R(st, at, g) =

{
0 |s′t − g| ≤ δ
−1 otherwise

Here s′t is the next observation after taking action at. We first learn a UVFA based on HER, which has
proven its efficiency for UVFA. In experiments (see Sec 6.3), we find out that the agent trained with
HER does master the skill to reach goals of increasing difficulty in a curriculum way. However, the
agent can seldom reach the most difficult goals constantly, while the success rate of reaching easier
goals remains stable. All these observations prove that HER’s value and policy is locally reliable.

One can pre-train the HER agent and then build map for planner. However, as an off-policy algorithm,
HER can work with arbitrary exploration policy. Thus we use the planner based on current local
HER agent as the exploration policy and train the local HER agent jointly. We sample long horizon
trajectories with the planner and store them into the replay buffer. We change the replacement strategy
in HER, ensuring that the replaced goals are sampled from the near future within a fixed number of
steps to increase the agent’s ability to reach nearby goals at the early stage.

The UVFA trained in this step will be used in the planner for two purposes: (1) to estimate the
distance between two local states belonging to the same landmark, or between two nearby landmarks;
and (2) to decide whether two states are close enough so that we can trust the distance estimation
from the network. Although the learned UVFA is imperfect globally, it is enough for the two local
usages.

5.3 Building a Map by Sampling Landmarks

After training the UVFA, we will obtain a distance estimation d(s, g)3, a policy for any state-goal
pair (s, g), and a replay buffer that contains all the past experiences. We will build a landmark-based
map to abstract the state space based on the experiences. The pseudo-code for the algorithm is shown
in Algorithm 1.

Algorithm 1: Planning with State-space Mapping (Planner)
Input: state obs, goal g, UVFA Q(s, g, a), clip_value τ
Output: Next subgoal gnext

1 Sample transitions T = (s, a, s′) from replay buffer B
2 V ← FPS(S = {s‖(s, a, s′) ∈ T}) ∪{g} . Farthest point sampling to find landmarks
3 Wij ←∞ . Initialize Map as graph G = 〈V,W 〉
4 for ∀(vi, vj) ∈ V × V do
5 wij ← mina−Q(vi, vj , a)
6 if wij ≤ τ then
7 Wij = wij

8 D ←Bellman_Ford(W) . Calculate pairwise distance
9 gnext ← argminvi,a−Q(obs, vi, a) +Dvi,g

10 return gnext

Landmark Sampling The replay buffer stores visited states during training. Instead of localizing
few important states that play a key role in connecting the environment, we seek to sample many
states to cover the visited state space.

Limited by computation budget, we first uniformly sample a big set of states from the replay buffer,
and then use the farthest point sampling (FPS) algorithm [34] to select landmarks to support the

3If the algorithm returns aQ function, we will calculate the value by selecting the optimal action and calculate
the Q function and convert to d by Eq. 1
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Figure 2: The results on FourRoom Environment. Figure 2a shows the sampled landmarks and the
planned path based on our algorithm. Figure 2c, 2b, 2d are different evaluation metrics of value
estimation and success rate to reach the goal.

explored state space. The metric for FPS can either be the Euclidean distance between the original
state representation or the pairwise value estimated by the agent.

We compare different sampling strategies in Section 6.3, and demonstrate the advantage of FPS in
abstracting the visited state space and exploration.

Connecting Nearby Landmarks We first connect landmarks that have a reliable distance estima-
tion from the UVFA and assign the UVFA-estimated distance between them as the weight of the
connecting edge.

Since UVFA is accurate locally but unreliable for long-term future, we choose to only connect nearby
landmarks. The UVFA is able to return a distance between any pair (s, g), so we connect the pairs
with distance below a preset threshold τ , which should ensure that all the edges are reliable, as well
as the whole graph is connected.

With these two steps, we have built a directed weighted graph which can approximate the visited
state space. This graph is our map to be used for high-level planning. Such map induces a new
environment, where the action is to choose to move to another landmark. The details can be found in
Algorithm 1.

5.4 Planning with the Map

We can now leverage the map and the local UVFA network to estimate the distance between any
state-goal pairs, which induces a reliable policy for the agent to reach the goal.

For a given pair of (s, g), we can plan the optimal path between (s, g) by selecting a serial of
landmarks l1, · · · , lk, so that the approximated distance will be d̄(s, g) = minl1,··· ,lk d(s, l1) +∑k−1
i=1 d(li, li+1)+d(lk, g). The policy from s to g can then be approximated as: π̄(s, g) = π(s, l1)+∑k−1
i=1 π(li, li+1) + π(lk, g). Here the summation of π is the concatenation of the corresponding

action sequence.

In our implementation, we run the shortest path algorithm to solve the above minimization problem.
To speed up the pipeline, we first calculate the pairwise distances d(li, g) between each landmark li
and the goal g when episode starts. When the agent is at state s, we can choose the next subgoal by
finding gnext = arg minli d(s, li) + d(li, g).

6 Experiments

6.1 FourRoom: An Illustrative Example

We first demonstrate the merits of our method in the FourRoom environment, where the action space
is discrete. The environment is visualized in Figure 2a. There are walls separating the space into four
rooms, with narrow openings to connect them. For this discrete environment, we use DQN [35] with
HER [4] to learn the Q value. Here, we use the one-hot representation of the x-y position as the input
of the network. The initial states and the goals are randomly sampled during training.

We first get V (s, g) from the learned Q-value by equation V (s, g) = arg maxaQ(s, a, g), and convert
V (s, g) to pairwise distance D(s, g) based on Eq. 1. To evaluate the accuracy of distance estimation,
we further calculate the ground truth distance Dgt(s, g) by running a shortest path algorithm on
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(a) 2DReach (b) 2DPush (c) BlockedFetchReach (d) FetchPush

(e) PointMaze (f) AntMaze (g) Complex AntMaze (h) Acrobot

Figure 3: The environments we use for continuous control experiments.

the underlying ground-truth graph of maze. Then we adapt the mean distortion error (MDE) as the
evaluation metric: |D(s,g)−Dgt(s,g)|

Dgt(s,g)
.

Results are shown in Figure 2b. Our method has a much lower MDE at the very beginning stage,
which means that the estimated value is more accurate.

To better evaluate our superiority for distant goals, we first convert predicted values to corresponding
distances, and then plot the maximal distance during training. From Figure 2c, we can observe
that the planning module have a larger output range than DQN. We guess that this comes from
the max-operation in the Bellman-Ford equation, which pushes DQN to overestimate the Q value,
or in other words, underestimate the distance for distant goals. However, the planner can still use
piece-wise correct estimations to approximate the real distance to the goal.

We also compare our method with DQN on success reaching rate, and their performances are shown
in Figure 2d. Our method can achieve better accuracy at the early stage.

6.2 Continuous Control

In this section, we will compare our method with HER on challenging classic control tasks and
MuJoCo [36] goal-reaching environments.

6.2.1 Environment Description

We test our algorithms on the following environments:

2DReach A green point in a 2D U-maze aims to reach the goal represented by a red point, as shown
in Figure 3a. The size of the maze is 15× 15. The state space and the goal space are both in this 2D
maze. At each step, the agent can move within [−1, 1]× [−1, 1] as δx, δy in x and y directions.

2DPush The green point A now need to push a blue point B to a given goal (red point) lying in
the same U-maze as 2DReach, as shown in Figure 3b. Once A has reached B, B will follow the
movement of A. In this environment, the state is a 4-dim vector that contains the location of both A
and B.

BlockedFetchReach & FetchPush We need to control a gripper to either reach a location in 3d
space or push an object in the table to a specific location, as shown in Figure 3c and Figure 3d. Since
the original FetchReach implemented in OpenAI gym [37] is very easy to solve, we further add some
blocks to increase the difficulty. We call this new environment BlockedFetchReach.

PointMaze & AntMaze As shown in Figure 3e and Figure 3f, a point mass or an ant is put in a
12× 12 U-maze. Both agents are trained to reach a random goal from a random location and tested
under the most difficult setting to reach the other side of maze within 500 steps. The states of point
and ant are 7-dim and 30-dim, including positions and velocities.
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(a) 2DReach
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(b) 2DPush
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(c) BlockedFetchReach
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(d) FetchPush
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(e) PointMaze
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(f) AntMaze
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(g) Complex AntMaze
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(h) Acrobot

Figure 4: Experiments on the continuous control environments. The red curve indicates the perfor-
mance of our method at different training steps.

Complex AntMaze As shown in Figure 3g, an ant is put in a 56× 56 complex maze. It is trained to
reach a random goal from a random location and tested under the most difficult setting to reach the
farthest goal (indicated as the red point) within 1500 steps.

Acrobot As shown in Figure 3h, an acrobot includes two joints and two links. Goals are states that
the end-effector is above the black line at specific joint angles and velocities. The states and goals are
both 6-dim vectors including joint angles and velocities.

6.2.2 Experiment Result

The results compared with HER are shown in Figure 4. Our method trains UVFA with planner and
HER. It is evaluated under the test setting, using the model and replay buffer at corresponding training
steps.

In the 2DReach and 2DPush task (shown in Figure 4b), we can see our method achieves better
performance. When incorporating with control tasks, for BlockedFetchReach and FetchPush
environments, the results still show that our performance is better than HER, but the improvement is
not so remarkable. We guess this comes from the strict time limit of the two environments, which is
only 50. We observe that pure HER can finally learn well, when the task horizon is not very long.

We expect that building maps would be more helpful for long-range goals, which is evidenced in
the environments with longer episode length. Here we choose PointMaze and AntMaze with scale
12 × 12. For training, the agent is born at a random position to reach a random goal in the maze.
For testing, the agent should reach the other side of the “U-Maze” within 500 steps. For these two
environments, the performance of planning is significantly better and remains stable, while HER can
hardly learn a reliable policy. Results are shown in Figure 4e and Figure 4f.

We also evaluate our method on classic control, and more complex navigation + locomotion task.
Here we choose Complex Antmaze and Acrobot, and results are shown in Figure 4h and Figure 4g.
The advantage over baseline demonstrates our method is applicable to complicated navigation tasks
as well as general MDPs.

We also compare our method with Hierarchy RL on AntMaze and our method outperform recent
Hierarchy RL methods. See supplementary material for details.

6.3 Ablation Study

We study some key factors that affect our algorithm on AntMaze.

Choice of clip range and landmarks There are two main hyper-parameters for the planner – the
number of landmarks and the edge clipping threshold τ . Figure 6a shows the evaluation result of
the model trained after 0.8M steps in AntMaze. We see that our method is generally robust under
different choices of hyper-parameters. Here τ is the negative distance between landmarks. If it’s too
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(a) Multi-level AntMaze (b) Average Steps (c) Success Rate

Figure 5: AntMaze of multi-level difficulty. Figure 5b and Figure 5c is the average steps and success
rate to reach different level of goals, respectively.

(a) Hyperparameters of the planner
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Figure 6: Figure 6a shows the relationship with the landmarks and clip range in the planner. Figure 6b
shows FPS outperforms uniform sampling. And Figure 6c is the landmark-based map at different
training steps constructed by FPS.

small, the landmarks will be isolated and can’t form a connected graph. The same problem comes
when the landmarks are not enough.

The local accuracy of HER We evaluate our model trained between 0∼2.5M steps, for goals of
different difficulties. We manually define the difficulty level of goals, as shown in Figure 5a. Goal’s
difficulty increases from Level 1 to Level 6. We plot the success rate as well as the average steps
to reach these goals. We find out that, for the easier goals, the agent takes less time and less steps
to master the skill. The success rate and average steps also remain more stable during the training
process, indicating that our base model is more reliable and stable in the local area.

Landmark sampling strategy comparison Our landmarks are dynamically sampled from the replay
buffer by iterative FPS algorithm using distances estimated by UVFA, and get updated at the beginning
of every episode. The FPS sampling tends to find states at the boundary of the visited space, which
implicitly helps exploration. We test FPS and uniform sampling in fix-start AntMaze (The ant is born
at a fixed position to reach the other side of maze for both training and testing). Figure 6b shows that
FPS has much higher success rate than uniform sampling. Figure 6c shows landmark-based graph at
four training stages. Through FPS, landmarks expand gradually towards the goal (red dot), even if it
only covers a small proportion of states at the beginning.

7 Conclusion

Learning a structured model and combining it with RL algorithms are important for reasoning and
planning over long horizons. We propose a sample-based method to dynamically map the visited
state space and demonstrate its empirical advantage in routing and exploration in several challenging
RL tasks. Experimentally we showed that this approach can solve long-range goal reaching problems
better than model-free methods and hierarchical RL methods, for a number of challenging games,
even if the goal-conditioned model is only locally accurate. However, our method also has limitations.
First, we empirically observe that some parameters, particularly the threshold to check whether we
have reached the vicinity of a goal, needs hand-tuning. Secondly, a good state embedding is still
important for the learning efficiency of our approach, since we do not include heavy component of
learning state embedding. Thirdly, we find that in some environments whose intrinsic dimension is
very high, especially when the topological structure is hard to abstract, sample-based method is not
enough to represent the visited state space. And for those environments which is hard to obtain a
reliable and generalizable local policy, this approach will also suffer from the accumulated error.
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