
A Proofs

A.1 Proofs of Splitting Taylor Expansion

Proof of Theorem 2.2. Taking the gradient of L(✓) in (1) gives

r✓L(✓) = E[�0(�(✓, x))r✓�(✓, x)],

r
2
✓✓L(✓) = E[�0(�(✓, x))r2

✓✓�(✓, x) + �00(�(✓, x))r✓�(✓, x)
⌦2],

where �0(·) is the derivative of �(·) (which is a univariate function), and r✓�(✓, x)⌦2 :=
r✓�(✓, x)r✓�(✓, x)>.

When ✓ is split into {wi, ✓i}mi=1, the augmented loss function is

L(✓,w) = E
"
�

mX

i=1

wi�(✓i, x)

!#
,

where w = [w1, . . . , wm] and ✓ = [✓1, . . . , ✓m]. The weights should satisfy
Pm

i=1 wi = 1 and
wi � 0. In this way, we have L(✓,w) = L(✓) when ✓ = [✓, . . . , ✓] = ✓1m.

Taking the gradient of L(✓,w) w.r.t. ✓i when ✓ = ✓1m, we have

r✓iL (✓1m, w) = E [�0 (�(✓, x))wir✓�(✓, x)] = wir✓L(✓).

Taking the second derivative, we get

r✓i,✓iL(✓1m, w) = E
⇥
�0 (�(✓, x))wir

2
✓,✓�(✓, x) + �00 (�(✓, x))w2

ir✓�(✓, x)
⌦2
⇤

:= wiA(✓) + w2
iB(✓),

where

A(✓) := E
⇥
�0 (�(✓, x))r2

✓,✓�(✓, x)
⇤
, B(✓) := E

⇥
�00 (�(✓, x))r✓�(✓, x)

⌦2
⇤
.

Note that we have r
2
✓✓L(✓) = A(✓) +B(✓) following this definition.

For i 6= j, we have

r✓i✓jL(✓1m, w) = E
⇥
�00 (�(✓, x))wiwjr✓�(✓, x)

⌦2
⇤
= wiwjB(✓).

For ✓ = [✓1, . . . , ✓m], assume ✓i = ✓+✏�i, and define �̄ =
Pm

i=1 wi�i to be the average displacement.
Therefore, ✓ = ✓1m + ✏�. Using the Taylor expansion of L(✓1m + ✏�,w) w.r.t. ✏ at ✏ = 0, we have

L(✓, w)� L(✓) = L(✓1m + ✏�, w)� L(✓)

= ✏
mX

i=1

r✓iL(✓1m,w)>�i +
✏2

2

mX

ij=1

�>i (r2
✓i,✓jL(✓1m,w))�i +O(✏3)

= ✏
mX

i=1

wirL(✓)>�i +
✏2

2

mX

i=1

wi�
>
i A(✓)�i +

✏2

2

mX

ij=1

wiwj�
>
i B(✓)�j +O(✏3)

= ✏rL(✓)>�̄ +
✏2

2

mX

i=1

wi�
>
i A(✓)�i +

✏2

2
�̄>B(✓)�̄ +O(✏3)

= ✏rL(✓)>�̄ +
✏2

2
�̄>(A(✓) +B(✓))�̄ +

✏2

2

mX

i=1

(�>i A�i � �̄>A�̄) +O(✏3)

= ✏rL(✓)>�̄ +
✏2

2
�̄>r2L(✓)�̄ +

✏2

2

mX

i=1

(�i � �̄)>A(✓)(�i � �̄) +O(✏3).

This completes the proof.

Proof of Theorem 2.3. Recall that

II(�,w; ✓) =
✏2

2

mX

i=1

wi�
>
i S(✓)�i,

12

with
P

i wi = 1, wi � 0 and k�ik = 1. Since �>i S(✓)�i � �min(S(✓)) k�ik
2 = �min(S(✓)), it is

obvious that

II(�,w; ✓) =
✏2

2

mX

i=1

wi�
>
i S(✓)�i �

✏2

2

mX

i=1

wi�min(S(✓)) =
✏2

2
�min(S(✓)).

On the other hand, this lower bound is achieved by setting m = 2, w1 = w2 = 1/2 and �1 = ��2 =
vmin(S(✓)). This completes the proof.

Proof of Theorem 2.4. Step 1: We first consider the case with no average displacement, that is,
µ[`] = 0. In this case, Lemma A.1 below gives

L(✓[1:n],w[1:n]) = L(✓[1:n]) +
nX

`=1

⇣
L(✓[1:n]

` ,w[1:n])� L(✓[1:n])
⌘
+O(✏3), (10)

where ✓[1:n]
` denotes the augmented parameters obtained when we only split the `-th neuron, while

keeping all the neurons unchanged. Applying Theorem 2.2, we have for each `,

L(✓[1:n]
` ,w[1:n])� L(✓[1:n]) =

✏2

2
II`(�

[`],w[`]; ✓[1:n]) + O(✏3).

Combining this with (10) yields the result.

Step 2: We now consider the more general case when µ[1:n]
6= 0. Let ✓̃[1:n] = ✓[1:n] + ✏µ[1:n].

Applying the result above on ✓̃[1:n], we have

L

⇣
✓[1:n],w[1:n]

⌘
= L

⇣
✓̃[1:n]

⌘
+

✏2

2
D
⇣
✓̃[1:n]

⌘
+O(✏3)

where D
⇣
✓̃[1:n]

⌘
:=

Pn
`=1 II`(�

[`],w[`]; ✓̃[1:n]). Therefore,

L

⇣
✓[1:n],w[1:n]

⌘
= L

⇣
✓̃[1:n]

⌘
+

✏2

2
D(✓̃[1:n]) +O(✏3)

= L
⇣
✓̃[1:n]

⌘
+

✏2

2
D(✓[1:n]) +

✏2

2
(D(✓̃[1:n])�D(✓[1:n])) +O(✏3)

= L
⇣
✓̃[1:n]

⌘
+

✏2

2
D(✓[1:n]) +O(✏3) //because ✓[1:n] � ✓̃[1:n] = O(✏)

= L
⇣
✓[1:n] + ✏µ[1:n]

⌘
+

✏2

2
D(✓[1:n]) +O(✏3),

where D
�
✓[1:n]

�
:=

Pn
`=1 II`(�

[`],w[`]; ✓[1:n]). This completes the proof.

Lemma A.1. Let ✓[1:n] be the parameters of n neurons. Recall that we assume ✓[`] is split into
m` off-springs with parameters ✓[`] = {✓[`]i }

m`
i=1 and weights w[`] = {w[`]

i }
m`
i=1, which satisfiesPm`

i=1 w
[`]
i = 1. Let ✓[`]i = ✓[`] + ✏�[`]i , where �[`]i is the perturbation on the i-th off-spring of the `-th

neuron. Assume �̄[`] :=
Pm`

i=1 w
[`]
i �[`]i = 0, that is, the average displacement of all the neurons is

zero.

Denote by ✓[1:n]
` the augmented parameters we obtained by only splitting the `-th neuron while

keeping all the other neurons unchanged, that is, we have ✓[`]`,i = ✓[`] + ✏�[`]i for i = 1, . . . ,m`, and

✓[`
0]

`,i = ✓[`
0] for all `0 6= ` and i = 1, . . . ,m`0 . Assume the third order derivatives of L(✓[1:n],w[1:n])

are bounded. We have

L(✓[1:n],w[1:n]) = L(✓[1:n]) +
nX

`=1

⇣
L(✓[1:n]

` ,w[1:n])� L(✓[1:n])
⌘
+O(✏3).

13

Proof. Define

F :=
⇣
L(✓[1:n],w[1:n])� L(✓[1:n])

⌘
�

nX

`=1

⇣
L(✓[1:n]

` ,w[1:n])� L(✓[1:n])
⌘
.

By Taylor expansion,

F = ✏r✏F
��
✏=0

+
✏2

2
r✏✏F

��
✏=0

+O(✏3).

It is obvious to see that the first order derivation r✏F
��
✏=0

equals zero because of the correction terms.
Specifically,

r✏F
��
✏=0

=
nX

`=1

mX̀

i=1

r
✓[`]
i
L(✓[1:n],w[1:n])>�[`]i

����
✏=0

�

nX

`=1

mX̀

i=1

r
✓[`]
i
L(✓[1:n],w[1:n])>�[`]i

����
✏=0

= 0.

For the second order derivation, define

A`,`0 = r✓[`]✓[`0]L(✓[1:n]).

For any ` 6= `0, we have from (5) and (6) that

r
✓[`]
i ✓[`0]

i0
L(✓[1:n],w[1:n])

����
✏=0

= w[`]
i w[`0]

i0 r✓[`]✓[`0]L(✓[1:n]) = w[`]
i w[`0]

i0 A`,`0 .

Therefore, we have

r✏✏F
��
✏=0

=
X

` 6=`0

mX̀

i=1

m`0X

i0=1

(�[`]i)>r
✓[`]
i ✓[`0]

i0
L(✓[1:n],w[1:n])

����
✏=0

�[`
0]

i0

=
X

` 6=`0

mX̀

i=1

m`0X

i0=1

w[`]
i w[`0]

i0 (�[`]i)>A`,`0�
[`0]
i0

=
X

` 6=`0

(�̄[`])>A`,`0 �̄
[`0]

= 0 //because �̄[`] = 0,

where r✏✏F
��
✏=0

only involves cross derivatives r
✓[`]
i ✓[`0]

i0
L(✓[1:n],w[1:n]) with ` 6= `0, because all

the terms with ` = `0 are cancelled due to the correction terms.

A.2 Proofs of 1-Wasserstein Steepest Descent

Recall that p-Wasserstein distance is

Wp(⇢, ⇢
0) = inf

�2⇧(⇢,⇢0)
E(✓,✓0)⇠� [k✓ � ✓0k

p
]1/p.

When p ! +1, we obtain 1-Wasserstein distance,

W1(⇢, ⇢0) = inf
�2⇧(⇢,⇢0)

esssup
(✓,✓0)⇠�

k✓ � ✓0k , (11)

where esssup denotes essential supremum; it is the minimum value c with �(k✓ � ✓0k � c) = 0.

In the proof, we denote by �⇢,⇢0 an optimal solution of � in (11), that is,

�⇢,⇢0 2 arg inf
�2⇧(⇢,⇢0)

esssup
(✓,✓0)⇠�

k✓ � ✓0k .

�⇢,⇢0 is called an 1-Wasserstein optimal coupling of ⇢ and ⇢0. Denote by µ⇢,⇢0(✓) and ⌃⇢,⇢0(✓) the
mean and covariance matrix of (✓0 � ✓) under �⇢,⇢0 , conditional on ✓, that is,

µ⇢,⇢0(✓) = E�⇢,⇢0 [(✓
0
� ✓) | ✓] ⌃⇢,⇢0(✓) = cov�⇢,⇢0 [(✓

0
� ✓) | ✓] .

It is natural to expect that we can upper bound the magnitude of both µ⇢,⇢0(✓) and ⌃⇢,⇢0(✓) by the
1-Wasserstein distance.

14

Lemma A.2. Following the definition above, we have
kµ⇢,⇢0(✓)k W1(⇢, ⇢0), �max(⌃⇢,⇢0(✓)) W1(⇢, ⇢0)2,

almost surely for ✓ ⇠ ⇢.

Proof. We have
kµ⇢,⇢0(✓)k esssup

�⇢,⇢0
k✓ � ✓0k = W1(⇢, ⇢0),

almost surely for ✓ ⇠ ⇢. And

�max(⌃⇢,⇢0(✓)) = max
kvk=1

var�⇢,⇢0

⇥
v>(✓0 � ✓) | ✓

⇤

 max
kvk=1

E�⇢,⇢0

h�
v>(✓0 � ✓)

�2
| ✓
i

 esssup
�⇢,⇢0

k✓ � ✓0k
2

= W1(⇢, ⇢0)2.

Theorem A.3. Define G⇢(✓) = Ex⇠D [r� (E⇢[�(✓, x)])r�(✓, x)]. For two distributions ⇢ and ⇢0

and their 1-Wasserstein optimal coupling �⇢,⇢0 . We have

L[⇢0] = L[⇢] + E✓⇠⇢

⇥
G⇢(✓)

>µ⇢,⇢0(✓)
⇤

+ O((D1(⇢, ⇢0)2). (12)

Proof. We write � = �⇢,⇢0 for convenience. Denote by r�(✓, x) = r✓�(✓, x) and r
2�(✓, x) =

r
2
✓✓�(✓, x) the first and second order derivatives of � in terms of its first variable.

For (✓, ✓0) ⇠ �, introduce ✓⌘ = ⌘✓0+(1� ⌘)✓, whose distribution is denoted by ⇢⌘ . We have ⇢0 = ⇢
and ⇢1 = ⇢0. Taking Taylor expansion of L[⇢⌘] w.r.t. ⌘, we have

L[⇢0] = L[⇢] +r⌘L[⇢⌘]

����
⌘=0

+
1

2
r

2
⌘⌘L[⇢⌘]

����
⌘=⇠

,

where ⇠ is a number between 0 and 1. We just need to calculate the derivatives. For the first order
derivative, we have

r⌘L[⇢⌘]

����
⌘=0

= r⌘Ex⇠D [� (E� [�(⌘✓
0 + (1� ⌘)✓, x)])]

����
⌘=0

= Ex⇠D
⇥
�0 (E� [�(✓⌘, x)])E� [r�(✓⌘, x)

>(✓0 � ✓)]
⇤ ����

⌘=0

= Ex⇠D
⇥
�0 (E� [�(✓, x)])E� [r�(✓, x)>(✓0 � ✓)]

⇤

= E� [G⇢(✓)
>(✓0 � ✓)]

= E⇢

⇥
G⇢(✓)

>µ⇢,⇢0(✓)
⇤
,

where we used the derivation of G⇢(✓).

For the second order derivative, we have

r
2
⌘⌘L[⇢⌘]

����
⌘=⇠

= r⌘(r⌘L[⇢⌘])

����
⌘=⇠

= r⌘Ex⇠D
⇥
�0 (E� [�(✓⌘, x)])E� [r�(✓⌘, x)

>(✓0 � ✓)]
⇤ ����

⌘=⇠

= Ex⇠D
⇥
�00 (E� [�(✓⌘, x)]) (E� [r�(✓⌘, x)(✓

0
� ✓)])2

⇤

+ Ex⇠D
⇥
�0 (E� [�(✓⌘, x)])E� [(✓

0
� ✓)>r2�(✓⌘, x)(✓

0
� ✓)]

⇤ ����
⌘=⇠

= E� [(✓
0
� ✓)>T⇢(✓⇠)(✓

0
� ✓)] + E� [(✓

0
� ✓)>S⇢(✓⇠)(✓

0
� ✓)]

= E� [(✓
0
� ✓)> (T⇢(✓⇠) + S⇢(✓⇠)) (✓

0
� ✓)]

15

where we define T⇢(✓⇠) := Ex⇠D
⇥
�00 (E� [�(✓⇠, x)])r�(✓⇠, x)⌦2

⇤
. Denote by �⇤ :=

sup⇠2[0,1] �max(T⇢(✓⇠) + S⇢(✓⇠)). We have

r
2
⌘⌘L[⇢⌘]

����
⌘=⇠

 �⇤E�

h
k✓0 � ✓k

2
i

= O

⇣
E�

h
k✓0 � ✓k

2
i⌘

= O

esssup

�
k✓0 � ✓k

�2!

= O(D1(⇢, ⇢0)2).

This completes the proof.

Theorem A.4. For two distributions ⇢ and ⇢0, denote by �⇢,⇢0 their 1-Wasserstein optimal coupling,
and µ⇢,⇢0(✓) and ⌃⇢,⇢0(✓) the mean and covariance matrix of (✓0 � ✓) under �⇢,⇢0 , conditional on ✓,
respectively. Denote by (I + µ⇢,⇢0)]⇢ the distribution of ✓ + µ⇢,⇢0(✓) when ✓ ⇠ ⇢. We have

L[⇢0] = L [(I + µ⇢,⇢0)]⇢] + E✓⇠⇢

1

2
tr
�
S⇢(✓)

>⌃⇢,⇢0(✓)
��

+ O((D1(⇢, ⇢0))3) (13)

where S⇢(✓) = Ex⇠D
⇥
�0(f⇢(x))r2

✓✓�(✓, x)
⇤
. The first and second terms capture the effect of

displacement and splitting, respectively.

Proof of Theorem A.4. We use � := �⇢,⇢0 for notation convenience. Denote by ✓̃ = ✓ + µ⇢,⇢0(✓)
and ⇢̃ = (I + µ⇢,⇢0)]⇢ the distribution of ✓̃ when ✓ ⇠ ⇢. Recall that for (✓, ✓0) ⇠ �, we have

E�

✓0 � ✓̃

���� ✓
�
= E� [✓

0
� ✓ � µ⇢,⇢0(✓) | ✓] = 0, (14)

⌃⇢,⇢0(✓) = E�

(✓0 � ✓̃)(✓0 � ✓̃)>

���� ✓
�
. (15)

Introduce ✓⌘ = ⌘✓0 + (1� ⌘)✓̃. Denote by ⇢⌘ the distribution of ✓⌘ . This gives ⇢0 = ⇢1 and ⇢̃ = ⇢0.
We have

L[⇢0] = L[⇢̃] +r⌘L[⇢⌘]

����
⌘=0

+
1

2
r

2
⌘⌘L[⇢⌘]

����
⌘=0

+
1

6
r

3
⌘⌘⌘L[⇢⌘]

����
⌘=⇠

,

where ⇠ is a number between 0 and 1. We just need to evaluate these derivatives. For the first order
derivative, we have

r⌘L[⇢⌘]

����
⌘=0

= r⌘Ex⇠D

h
�
⇣
E� [�(⌘✓

0 + (1� ⌘)✓̃, x)]
⌘i ����

⌘=0

= Ex⇠D

h
�0 (E� [�(✓⌘, x)])E� [r�(✓⌘, x)

>(✓0 � ✓̃)]
i ����

⌘=0

= Ex⇠D

h
�0

⇣
E� [�(✓̃, x)]

⌘
E� [r�(✓̃, x)>(✓0 � ✓̃)]

i

= 0,

where the last step uses (14). Here r� denote the derivatives w.r.t. its first variables.

16

For the second order derivative, we have

r
2
⌘⌘L[⇢⌘]

����
⌘=0

= r⌘(r⌘L[⇢⌘])

����
⌘=0

= r⌘Ex⇠D

h
�0 (E� [�(✓⌘, x)])E� [r�(✓⌘, x)

>(✓0 � ✓̃)]
i ����

⌘=0

= Ex⇠D

h
�00 (E� [�(✓⌘, x)]) (E� [r�(✓⌘, x)(✓

0
� ✓̃)])2

i

+ Ex⇠D

h
�0 (E� [�(✓⌘, x)])E� [(✓

0
� ✓̃)>r2�(✓⌘, x)(✓

0
� ✓̃)]

i ����
⌘=0

(16)

= 0 + E� [(✓
0
� ✓̃)>S⇢(✓)(✓

0
� ✓̃)]

= E✓⇠⇢[tr(S⇢(✓)⌃⇢,⇢0(✓))].

Further, we can show that r3
⌘⌘⌘L[⇢⌘]

����
⌘=⇠

= O(D1(⇢, ⇢0)3), since when taking the third gradient,

all the terms of the derivative are bounded by k✓ � ✓0k3. Specifically, taking the derivative of the
form of r2

⌘⌘L[⇢⌘] in (16) gives

r
3
⌘⌘⌘L[⇢⌘]

����
⌘=⇠

= Ex⇠D

h
�000 (E� [�(✓⇠, x)]) (E� [r�(✓⇠, x)(✓

0
� ✓̃)])3

i

+ 3Ex⇠D

h
�00 (E� [�(✓⇠, x)])E� [r�(✓⇠, x)(✓

0
� ✓̃)]E� [(✓

0
� ✓̃)>r2�(✓⇠, x)(✓

0
� ✓̃)]

i

+ Ex⇠D

h
�0 (E� [�(✓⇠, x)])E� [hr

3�(✓⇠, x), (✓
0
� ✓̃)⌦3

i]
i

= O

esssup
(✓,✓0)⇠⇢

���✓0 � ✓̃
���
3
!

= O(D1(⇢, ⇢0)3).

Here we use the notation hA, v⌦3
i =

Pd
ijk=1 Aijkvivjvk. This completes the proof.

Proof of Theorem 2.5. Following Theorem A.3, we have

�⇤(⇢, ✏) = min
⇢0

�
E✓⇠⇢

⇥
G⇢(✓)

>µ⇢,⇢0(✓)
⇤
: D1(⇢, ⇢0) ✏

+O(✏2).

For D1(⇢, ⇢0) ✏, we must have kµ⇢,⇢0k ✏, and hence E(✓,✓0)⇠�⇢,⇢0

⇥
G⇢(✓)>µ⇢,⇢0(✓)

⇤
�

�✏E⇢[kG⇢(✓)k] by Cauchy–Schwarz inequality. On the other hand, this minimum is achieved
when µ⇢,⇢0 = �✏G⇢(✓)/ kG⇢(✓)k. The only distribution ⇢0 that satisfies this condition is
⇢0 = (I � ✏G⇢(✓)/ kG⇢(✓)k)]⇢. This proves Theorem 2.5a.

For Theorem 2.5b, we need to use the result in Theorem A.4, which yields, in the case of stable local
optima, that

�⇤(⇢, ✏) = min
⇢0

⇢
E✓⇠⇢

1

2
tr
�
S⇢(✓)

>⌃⇢,⇢0(✓)
��

: D1(⇢, ⇢0) ✏

�
+ O(✏3).

Similar to the argument above, the minima should satisfy ⌃⇢,⇢0(✓) / vminv>min, where vmin is the
eigenvector of S⇢(✓) associated with its minimum eigenvalue. This corresponds to splitting ✓ into
two copies with each weights with parameter ✓ ± ✏vmin when �min < 0, or keep ⇢ unchanged when
�min > 0.

17

B Experimental Settings and Additional Results

B.1 Two-Layer RBF Neural network

We consider fitting a simple radial basis function (RBF) neural network of form

f(x) =
mX

i=1

�(✓i, x), �(✓, x) := ✓i,3 ⇥ exp

✓
�
1

2
(✓i,1x+ ✓i,2)

2

◆
,

where x 2 R and ✓i = [✓i,1, ✓i,2, ✓i,3]> 2 R3. For the ground truth, we set m = 15 and sample
the true values of parameters {✓i} from N (0, 3), yielding the light blue curves shown in Figure 5.
We generate a training data set D := {xi, yi}1000i=1 by drawing xi from Uniform[�5, 5] and set
yi = f⇤(xi) without noise, where f⇤ denotes the true network we sampled. The network is trained by
minimizing the mean square loss:

min
f

Ex⇠D
⇥
(f⇤(x)� f(x))2

⇤
.

Mapping to (2), we have �(f) = (f⇤ � f)2. We learn the function using our splitting method and
other progressive training baselines, all starting from m = 1 neuron. We add one additional neuron
in each splitting/growing phase for all the methods. The parametric descent phase is performed using
typical stochastic gradient descent until convergence. We stop the splitting process at m = 8 for all
the methods. Figure 5 shows curves learned by different methods with m = 3 and m = 8 neurons,
respectively. Our method yields better approximation.

y

−5 0 5

0

5

−5 0 5

0

5

True
OStimaO SSOit (Ours)
5anGRm SSOit
New InitiaOizatiRn
GraGient BRRsting

x x

(a) m = 3 (b) m = 8

Figure 5: Results on the toy RBF neural network.

18

B.2 Learning Interpretable Neural Network

We provide more details on learning the interpretable neural network.

Setting We adopt the interpretable neural architecture proposed in Li et al. (2018) as our testbed.
Unlike standard black-box neural networks, this architecture contains a special prototype layer in the
classifier, which includes a set of prototype neurons that are enforced to encode to realistic images for
promoting interpretability. In this model, each input image x is first mapped to a lower-dimensional
representation based on its distance k✓ � e(x)k with a set of prototype vectors, where ✓ 2 R40

represents a prototype vector and e(x) is an encoder function. The prototype vectors are enforced
to be interpretable in that they can be decoded to some realistic images; this is achieved in Li et al.
(2018) by introducing a regularization term that minimizes the minimum square distance between the
prototypes and the training data, that is, mini k✓ � e(xi)k, where {xi} denotes the training dataset.

We apply our method to split the prototype neurons, by treating �(✓, x) := k✓ � e(x)k as the
activation function. We use the MNIST dataset in our experiment. We visualize the prototype neurons
we learned using the images that they encode, by feeding the prototype vectors ✓ into a decoder
function jointly trained with the network. We use the same encoder and decoder architectures, as
suggested in Li et al. (2018) and refer the reader to Li et al. (2018) for more implementation details.
To better understand the splitting dynamics, we start with a small network with just one prototype
neuron and gradually add more prototypes via splitting.

We compare our method with two baseline methods, New Initialization and Random Split,
that also progressively grow the prototype layers starting from one prototype neuron. In New

Initialization, we simply add one new prototype neuron with random initialization at each
iteration. In Random Split, we randomly pick a prototype neuron to split and split it following its
splitting gradient given by our splitting matrix. Figure 6 visualizes the full splitting/growing process
of our method and the two baselines. We can see that our splitting method successfully identifies the
most ambiguous (and least interpretable) prototype neurons to split at each iteration, and achieves the
best final results.

19

Optimal Split (Ours)

Random Split

New Initialization

Figure 6: Visualizing the growing process of the prototype neurons given by our splitting method and
the two baselines.

20

B.3 Lightweight Neural Architectures for Image Classification

We describe details of our experiments on learning lightweight deep networks for image classification.

Dataset and Backbone Networks We use the CIFAR-10 benchmark dataset. We adopt a standard
data argumentation scheme (mirroring and shifting) that is widely used for this dataset (Liu et al.,
2019b, 2017). The input images are normalized using channel means and standard derivations. We
use two popular deep neural architectures as our testbed, MobileNet (Howard et al., 2017) and
VGG19 (Simonyan & Zisserman, 2015).

Training Settings We treat the filters as the neurons to split for convolutional neural networks. For
example, consider a convolutional layer with nout ⇥ nin ⇥ k ⇥ k parameters, where nout denotes
the number of output channels and nin the number of input channels and k the filter size. We treat it
as nout neurons, and each neuron has a parameter of size nin ⇥ k ⇥ k. To apply our methods, we
start with a small variant of the MobileNet and VGG19, and gradually grow the network by splitting
the (convolutional) neurons with the most negative splitting indexes following Algorithm 1. For
MobileNet, we construct the initial network by keeping the size of the first convolution layer as the
same (=32) as the original MobileNet and setting the number of depthwise and pointwise channels to
be 16. For VGG19, we set the number of channels of the initial network to be 16 for all layers.

For the parametric descent phase, we use stochastic gradient descent with an initial learning rate 0.1
for 160 epochs. The learning rate is divided by 10 at 50% and 75% of the total number of training
epochs. We use a weight decay of 10�4 and a Nesterove momentum of 0.9 without dampening. The
batch size is set to be 64. In each splitting phase, we increase the number of channels by a percentage
of 30 using our method.

Note that our splitting matrix (see Eq. 7) involves the second-order derivative of the activation
function, which is not well defined for ReLU activation. Therefore, we replace the ReLU activation
with Softplus to prevent numerical issues in calculating the splitting matrices. We also apply Softplus
in the other experiments that contain ReLU activation function in the network.

Pruning We compare with two model pruning algorithms: the batch-normalization-based pruning
(Bn-prune) by Liu et al. (2017) and the L1-based pruning (L1-prune) by Li et al. (2017). Bn-prune
imposes L1-sparsity on the channel-wise scaling factors in the batch normalization layers during
training, and prunes channels with lower scaling factors afterwards. L1-prune removes the filters
with weights of small L1-norm in each layer. For both pruning baselines, we use the implementation
provided by Liu et al. (2019b). For Bn-prune, we set the sparsity term to be 0.0001 for all the cases.
We initial both pruning methods from a full-size backbone network (MobileNet and VGG19) that
we trained starting from scratch. After each pruning phase, the parameters of the pruned network
are finetuned starting from the previous values using stochastic gradient descent, following the same
setting as that we use in splitting steepest descent.

Finetuning vs. Retraining In both the splitting and pruning methods above, the parameters of
the split/pruned networks are successively finetuned starting from the previous values. In order to
test the performance of the network architectures given by both splitting and pruning methods, we
test another setting in which we retrain the network parameters after each splitting/pruning step,
that is, we discard all the parameters of the network, and retrain the whole network starting from a
random initialization, under the network structure obtained from splitting or pruning at each iteration.
As shown in Figure 3c-d, the results of retraining is comparable with (or better than) the result of
successive finetuning in Figure 3a-b, which is consistent with the findings in Liu et al. (2019b).

B.4 Resource-Efficient Keyword spotting

We apply our methods on the application of keyword spotting. Keyword spotting systems aim to
detect a particular set of keywords from a continuous stream of audio, which is typically deployed on
a wide range of edge devices with resource constraints.

Dataset and Training Settings We use the Google speech commands benchmark dataset (Warden,
2018) for comparisons. We are interested in the setting that the model size is limited to less than
500K and adopt the optimized architectures with tight resource constraints provided in Zhang et al.

21

(2017) as our baselines. For fair comparison, we closely follow the experimental settings described in
Zhang et al. (2017). We split the dataset into 80/10/10% for training, validation and test, respectively.

We start with a very narrow network and progressively grow it using splitting steepest descent. We
build our initial narrow network based on the DS-CNN architecture proposed in Zhang et al. (2017),
by reducing the number of channels in each layer to 16. The backbone DS-CNN model consists of
one regular convolution layer and five depthwise and pointwise convolution layers (Howard et al.,
2017). We refer the reader to Zhang et al. (2017) for more information. At each splitting stage, we
increase the number of channels by a percentage of 30% using the approach described in Algorithm 1.
We use the same hyper-parameters for training and evaluation as in Zhang et al. (2017).

B.5 Splitting Steepest Descent for Minimizing MMD

We consider the problem of data compression. Given a large set of data points {✓⇤i }Ni=1, we want to find
a smaller set of points {✓i}ni=1, equipped with a set of importance weights {wi}

n
i=1, to approximate

the larger dataset. This problem can be solved by minimizing maximum mean discrepancy (MMD)
(Gretton et al., 2012) using conditional gradient method (a.k.a. Frank-Wolfe), an algorithm known as
herding (Chen et al., 2010; Bach et al., 2012). In this section, we provide additional results on using
splitting steepest descent to minimize MMD by progressively introducing new points via splitting.

Denote by ⇢⇤ =
PN

i=1 �✓⇤
i
/N the empirical distribution of the original dataset, and ⇢ =

Pn
i=1 wi�✓i

the (weighted) empirical distribution of the compressed data. Let k(✓, ✓0) be a positive definite kernel,
which can be represented using a random feature expansion of form

k(✓, ✓0) = Ex⇠⇡[�(✓, x)�(✓
0, x)],

where �(✓, x) is a feature map index by an auxiliary variable x, and ⇡ is a distribution on x. The
�(✓, x) can be taken to be the cosine function for commonly used kernels such as RBF kernel; see
Rahimi & Recht (2007) for more information on random feature expansion. Then the MMD between
⇢ and ⇢⇤, with kernel k(✓, ✓0), can be written into

MMD(⇢, ⇢⇤) = E⇢,⇢⇤ [k(✓, ✓
0)� 2k(✓, ✓0⇤) + k(✓⇤, ✓

0
⇤)]

= Ex⇠⇡[(E✓⇠⇢[�(✓, x)]� E✓⇤⇠⇢⇤ [�(✓⇤, x)])
2], (17)

where ✓, ✓0 are i.i.d. drawn from ⇢ and ✓⇤, ✓0⇤ are i.i.d. drawn from ⇢⇤. The data compression problem
can be viewed as minimizing the MMD:

min
⇢

{L[⇢] := MMD(⇢, ⇢⇤)} .

From (17), this minimization can be viewed as performing least square regression on a one-hidden-
layer neural network f⇢(x) = E✓⇠⇢[�(✓, x)], where each data point ✓i is viewed as a neuron.
Therefore, splitting steepest descent can be applied to minimize the loss function. This allows us to
start with a small number of data points (neurons), and gradually increase the number of points by
splitting. The splitting matrix of L[⇢] is

S⇢(✓) = 2Ex⇠⇡

⇥
(E✓0⇠⇢[�(✓

0, x)]� E✓⇤⇠⇢⇤ [�(✓⇤, x)])r
2
✓✓�(✓, x)

⇤

= 2E✓0⇠⇢,✓⇤⇠⇢⇤

⇥
r

2
✓✓k(✓, ✓

0)�r
2
✓✓k(✓, ✓⇤)

⇤
.

We apply splitting steepest descent (Optimal Split) in Algorithm 1 starting from a single point
(neuron). We compare our method with Random Split, Gradient Boosting (a.k.a. Frank-Wolfe
or herding), New Initialization. In Random Split, we randomly pick a point to split, and
split it following its splitting gradient direction. In Gradient Boosting, a new point is introduced
greedily at each iteration by minimizing the MMD loss, with all the previous points fixed. In New

Initialization, a new random point is introduced and co-optimized together with all the previous
points at each iteration.

In our experiment, we construct ⇢⇤ by drawing an i.i.d. sample of size N = 1000 from a one-
dimensional Gaussian mixture model 0.2N (�2, 0.5)+0.3N (1., 0.5)+0.5N (3, 0.5) as ground truth.
We initialize all the methods from a same point drawn from Uniform[�5,�3], and add a new point in
each splitting/growing phase. The parametric descent phase is performed using the adagrad optimizer
with a constant learning rate 0.01 for all the methods.

22

Figure 7 plots the training dynamics of all the methods. The size of each dot represents the particle
weight. Note that in Optimal Split and Random Split, each off-spring shares half of the weights
of their parent points, but in New Initialization and Gradient Boosting, all the points evenly
divide the weights all the time.

O
p
t
i
m
a
l

S
p
l
i
t

R
a
n
d
o
m

S
p
l
i
t

N
e
w

I
n
i
t
i
a
l
i
z
a
t
i
o
n

G
r
a
d
i
e
n
t

B
o
o
s
t
i
n
g

#Particle=1 #Particle=2 #Particle=3 #Particle=4 #Particle=5

Figure 7: MMD minimization for data compression using different progressive optimization methods.

Figure 8 shows the training iterations vs. the training loss (logarithm of MMD) of our method
and the baseline approaches. As we can see from Figure 8, our method yields the lowest training
loss in general. The kicks of New Initialization and Gradient Boosting are resulted from
re-weighting all particles after introducing new particles.

Lo
g

M
M

D

Training Iterations

Figure 8: Lose curve of different methods for MMD minimization.

23

