
A Examples of Sub-algorithms371

In this section, we briefly discuss why the algorithms listed in Propositions 1, 2, and 4 satisfy372

Conditions 1, 2, and 3 respectively. We first note that except for AdaNormalHedge [27], all other373

algorithms satisfy even tighter bounds with the absolute value replaced by square (also see Footnote 3).374

A.1 Condition 1375

Prod [12] with learning rate η satisfies Eq. (4) according to its original analysis. Adapt-ML-Prod [19],376

AdaNormalHedge [27], and iProd/Squint [25] are all parameter-free algorithms that satisfy for all377

i ∈ [K],378

T∑
t=1

w>t ct − ct(i) ≤ O


√√√√(lnK)

T∑
t=1

∣∣w>t ct − ct(i)∣∣+ lnK

 . (10)

By AM-GM inequality the square root term can be upper bounded by lnK
4η + η

∑T
t=1

∣∣w>t ct − ct(i)∣∣379

for any η. Also the constraint η ≤ 1/5 in Condition 1 allows one to bound the extra lnK term by380
lnK
5η . This leads to Eq. (4).381

Finally, for completeness we present a variant of Hedge (Algorithm 4) that can be extracted from [20,382

31] and that satisfies Eq. (3).383

Proposition 9. Algorithm 4 satisfies Eq. (3).384

Proof. Define Φt =
∑K
i=1 exp

(
ηRt(i)− η2Gt(i)

)
where Rt(i) =

∑t
τ=1 rτ (i) with rτ (i) =385

w>τ cτ − cτ (i) and Gt(i) =
∑t
τ=1 c

2
τ (i). The goal is to show ΦT ≤ ΦT−1 ≤ · · · ≤ Φ0 = K,386

which implies for any i, exp
(
ηRT (i)− η2GT (i)

)
≤ K and thus Eq. (3) after rearranging. Indeed,387

for any t we have388

Φt − Φt−1

=
∑
i

exp
(
ηRt−1(i)− η2Gt−1(i)

) (
exp

(
ηrt(i)− η2c2t (i)

)
− 1
)

= exp
(
ηw>t ct

)∑
i

exp
(
ηRt−1(i)− η2Gt−1(i)

) (
exp

(
−ηct(i)− η2c2t (i)

)
− exp

(
−ηw>t ct

))
≤ exp

(
ηw>t ct

)∑
i

exp
(
ηRt−1(i)− η2Gt−1(i)

) (
1− ηct(i)− exp

(
−ηw>t ct

))
≤ exp

(
ηw>t ct

)∑
i

exp
(
ηRt−1(i)− η2Gt−1(i)

)
ηrt(i)

= 0,

where the first inequality uses the fact exp(x − x2) ≤ 1 + x for any x ≥ −1/2, the second389

inequality uses the fact − exp(−x) ≤ x − 1 for any x, and the last equality holds since wt(i) ∝390

exp
(
ηRt−1(i)− η2Gt−1(i)

)
and

∑
i wt(i)rt(i) = 0.391

A.2 Condition 2392

We first note that the three algorithms we include in Proposition 2 all work for an arbitrary number of393

actions K (instead of just two actions) and the general guarantee will be in the same form of Eq. (5),394

(6), and (7) except that lnT is replaced by ln(KT ).395

Fixed-share [23] with learning rate η satisfies Eq. (7) and the proof can be extracted from the proof396

of [6, Theorem 8.1] or [28, Theorem 2]. AdaNormalHedge.TV [27] is again a parameter-free397

algorithm and achieves the bound of (6) using similar tricks mentioned earlier for Condition 1.398

Finally we provide a variant of Fixed-share that satisfies Eq. (5). The pseudocode is in Algorithm 5,399

where we adopt the notation from Condition 2 (qt for distribution, ht for loss, b for action index) but400

present the general case with K actions.401

Proposition 10. Algorithm 5 satisfies Eq. (5).402
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Algorithm 4: Hedge Variant 1
1 Input: learning rate η ∈ (0, 1/5]
2 for t = 1, 2, . . . do
3 Sample It ∼ wt where wt(i) ∝ exp

(
−
∑
τ<t(ηcτ (i) + η2c2τ (i))

)
4 Receive loss ct ∈ [−1, 1]K

Algorithm 5: Fixed-share Variant
1 Input: learning rate η ∈ (0, 1/5], γ = 1/T

2 Initialize: q̃1 = 1
K

3 for t = 1, 2, . . . do
4 Sample an action according to qt = (1− γ)q̃t + γ

K1

5 Receive loss ht ∈ [−1, 1]K

6 Compute q̃t+1 such that q̃t+1(b) ∝ qt(b) exp(−ηht(b)− η2h2
t (b))

Proof. We first write the algorithm as an instance of Online Mirror Descent. Let ψ(q) =403 ∑K
b=1 q(b) ln q(b) be the entropy regularizer, and q̄t+1 be such that ∇ψ(q̄t+1) = ∇ψ(qt) −404

ηht − η2h2
t where h2

t represents the element-wise square. Then one can verify q̄t+1(b) =405

qt(b) exp(−ηht(b) − η2h2
t (b)) and q̃t+1 = argminq∈∆K

Dψ(q, q̄t+1), where Dψ(q, q′) =406 ∑
b

(
q(b) ln q(b)

q′(b) + q′(b)− q(b)
)

is the Bregman divergence associated with ψ. Now we have407

for any q ∈ ∆K ,408 〈
qt − q, ηht + η2h2

t

〉
= 〈qt − q,∇ψ(qt)−∇ψ(q̄t+1)〉
= Dψ(q, qt)−Dψ(q, q̄t+1) +Dψ(qt, q̄t+1)

≤ Dψ(q, qt)−Dψ(q, q̃t+1) +Dψ(qt, q̄t+1)

= Dψ(q, qt)−Dψ(q, q̃t+1) +

K∑
b=1

qt(b)
(
ηht(b) + η2h2

t (b) + exp(−ηht(b)− η2h2
t (b))− 1

)
≤ Dψ(q, qt)−Dψ(q, q̃t+1) + η2

K∑
b=1

qt(b)h
2
t (b)

≤ Dψ(q, qt)−Dψ(q, qt+1) + 2γ + η2
K∑
b=1

qt(b)h
2
t (b),

where the first inequality is by the generalized Pythagorean theorem, the second inequality is by the409

fact exp(x− x2) ≤ 1 + x for all x ≥ −1/2, and the last one is by the definition of qt+1 and the fact410

ln 1
1−γ ≤ 2γ for any γ ≤ 1/2. Rearranging then gives411

〈qt − q, ht〉 ≤
Dψ(q, qt)−Dψ(q, qt+1) + 2γ

η
+ η

K∑
b=1

q(b)h2
t (b).

A benchmark sequence with S − 1 switches naturally divides the sequence into S intervals, and412

for each interval 1 ≤ s, . . . , e ≤ T , by summing up the inequality above from t = s to t = e and413

telescoping we have414

e∑
t=s

〈qt − q, ht〉 ≤
Dψ(q, qs) + 2(t− s+ 1)γ

η
+ η

e∑
t=s

K∑
b=1

q(b)h2
t (b)

≤
ln K

γ + 2(t− s+ 1)γ

η
+ η

e∑
t=s

K∑
b=1

q(b)h2
t (b).

Finally summing over all intervals, setting q to put all weight on the corresponding competitor, and415

realizing γ = 1/T finish the proof.416
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Algorithm 6: Hedge Variant 2
1 Input: learning rate η1, . . . , ηK ∈ (0, 1/5]
2 for t = 1, 2, . . . do
3 Sample It ∼ wt where wt(i) ∝ ηi exp

(∑
τ<t(ηirτ (i)− η2

i r
2
τ (i))

)
, rτ (i) = w>τ cτ − cτ (i)

4 Receive loss ct ∈ [−1, 1]K

A.3 Condition 3417

To simplify notation, we use K to denote the number of actions (instead of KM ) and prove the418

following419

T∑
t=1

w>t ct − ct(i) ≤
C lnK

ηi
+ ηi

T∑
t=1

∣∣w>t ct − ct(i)∣∣ . (11)

which clearly implies Eq. (8). Once again since Adapt-ML-Prod [19], AdaNormalHedge [27], and420

iProd/Squint [25] are all parameter-free algorithms satisfying Eq. (10), they also ensure Eq. (11) for421

any ηi ≤ 1/5 by the same reasoning mentioned for Condition 1. Next we present a variant of Hedge422

(Algorithm 6) with individual learning rate for each action and prove the following.423

Proposition 11. Algorithm 6 satisfies Eq. (11).424

Proof. Define Φt,i = exp
(∑t

τ=1(ηirτ (i) + η2
i r

2
τ (i))

)
. We have425

ln

(
K∑
i=1

Φt,i

)
− ln

(
K∑
i=1

Φt−1,i

)
= ln

∑
i Φt−1,ie

ηirt(i)−η2i r
2
t (i)∑

i Φt−1,i

6 ln

∑
i Φt−1,i(1 + ηirt(i))∑

i Φt−1,i

= ln

∑
i Φt−1,i∑
i Φt−1,i

= 0,

where the inequality holds by the fact exp(x− x2) 6 1 + x for any x ≥ −1/2 and the equality holds426

because wt(i) ∝ ηiΦt−1,i and
∑
i wt(i)rt(i) = 0. Therefore,427

lnK = ln
∑
i

Φ0,i ≥ · · · ≥ ln
∑
i

ΦT,i ≥ ln ΦT,i =

T∑
t=1

(ηirt(i)− η2
i r

2
t (i)).

Solving for
∑
t rt(i) then proves Eq. (11).428

B Proofs for Section 3429

In this section we provide proofs and related discussions for our algorithms under full-information430

feedback (i.e. the expert problem).431

B.1 Proof of Theorem 3432

Proof. For each distinct action i in J = {i1, . . . , iT }, we first apply the static regret bound of A433

stated in Condition 1 (either Eq. (3) or Eq. (4)). With the fact w>t ct = 0 and |rt(i)| ≤ 2 this gives434

T∑
t=1

zt(i)rt(i) ≤
C lnK

η
+ 2η

T∑
t=1

zt(i). (12)

Next we apply the switching regret bound of Ai stated in Condition 2 with bt = 0 if it 6= i and435

bt = 1 otherwise (note that qt = (1 − zt(i), zt(i)) and ht = (0, 5η − rt(i))). This gives with436
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Si = 1 +
∑T
t=2 1 {bt 6= bt−1} and Ti = |{t : it = i}|437

T∑
t=1

zt(i)(5η − rt(i)) ≤
∑
t:it=i

(5η − rt(i)) +
CSi lnT

η
+ ηB, (13)

where B is438 
∑
t:it=i

|5η − rt(i)| if Eq. (5) holds,∑
t:it 6=i zt(i)|5η − rt(i)|+

∑
t:it=i

(1− zt(i))|5η − rt(i)| if Eq. (6) holds,∑T
t=1 zt(i)|5η − rt(i)| if Eq. (7) holds.

In either case, using the fact |5η − rt(i)| ≤ 3 we have439

B ≤ 3

T∑
t=1

zt(i) + 3Ti.

Combining this inequality with Eq. (13) and rearranging give440

∑
t:it=i

rt(i) ≤
CSi lnT

η
+ 8ηTi +

T∑
t=1

(zt(i)rt(i)− 2ηzt(i)) . (14)

Further combining inequalities (12) and (14) and canceling terms give441 ∑
t:it=i

rt(i) ≤
C(Si lnT + lnK)

η
+ 8ηTi. (15)

Finally summing over i ∈ J , using the fact R(i1:T ) = E
[∑

i∈J
∑
t:it=i

rt(i)
]
,
∑
i∈J Si ≤442

2S + n ≤ 3S,
∑
i∈J Ti = T , |J | ≤ n and the choice of η finish the proof.443

B.2 A weaker bound via weaker conditions444

Condition 1 and Condition 2 require some data-dependent regret bounds. In fact, one can even relax445

these conditions and replace the data-dependent regret bounds with worst-case T -dependent bounds,446

leading to a slightly weaker long-term memory guarantee. Specifically, if we replace the bounds in447

Condition 1 and Condition 2 by standard worst-case static and switching regret bounds448

T∑
t=1

w>t ct − ct(i) = O
(√

T lnK
)

and
T∑
t=1

q>t ht − ht(bt) = O
(√

TS lnT
)

respectively, then by setting η = 0 in Algorithm 1 (that is, removing the bias term in the loss for Ai)449

and redoing the proof of Theorem 3 in a similar way one can verify that Eq. (15) now becomes450 ∑
t:it=i

rt(i) = O
(√

T (Si lnT + lnK)
)
,

which finally leads to451

R(i1:T ) = O
(√

T (nS lnT + n2 lnK)
)

via Cauchy-Schwarz inequality. Compared to our bound in Theorem 3, this leads to an extra
√
n452

factor.453

B.3 Proof of Theorem 5454

Proof. The first step is to prove that for each distinct action i ∈ J = {i1, . . . , iT }, Algorithm 2455

ensures456

∑
t:it=i

rt(i) ≤ O

√√√√(Si lnT + ln(KM))E

[∑
t:it=i

|rt(i)|

]
+ Si lnT + ln(KM)

 . (16)
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The proof is similar to that of Theorem 3. We first apply the static regret bound of A stated in457

Condition 3, which gives for any i ∈ [K] and j ∈ [M ],458

T∑
t=1

zt(i, j)rt(i) ≤
C ln(KM)

ηj
+ ηj

T∑
t=1

zt(i, j) |rt(i)| . (17)

Here we use the fact459

w>t ct = −
∑
i,j

wt(i, j)zt(i, j)rt(i) = −Z
∑
i

pt(i)rt(i) = −Z

(
p>t `t −

∑
i

pt(i)`t(i)

)
= 0

where Z =
∑
i,j wt(i, j)zt(i, j) is the normalization factor. Next we apply the switching regret460

bound ofAij stated in Condition 2 with η = ηj , bt = 0 if it 6= i and bt = 1 otherwise (note that qt =461

(1−zt(i, j), zt(i, j)) and ht = (0, 5ηj |rt(i)|−rt(i))). This gives with Si = 1+
∑T
t=2 1 {bt 6= bt−1},462

463
T∑
t=1

zt(i, j)(5ηj |rt(i)| − rt(i)) ≤
∑
t:it=i

(5ηj |rt(i)| − rt(i)) +
CSi lnT

ηj
+ ηjB, (18)

where B is464 
∑
t:it=i

|5ηj |rt(i)| − rt(i)| if Eq. (5) holds,∑
t:it 6=i zt(i, j)|5ηj |rt(i)| − rt(i)|+

∑
t:it=i

(1− zt(i, j))|5ηj |rt(i)| − rt(i)| if Eq. (6) holds,∑T
t=1 zt(i, j)|5ηj |rt(i)| − rt(i)| if Eq. (7) holds.

In either case, using the fact 5ηj ≤ 1 and thus |5ηj |rt(i)| − rt(i)| ≤ 2|rt(i)|, we have465

B ≤ 2

T∑
t=1

zt(i, j)|rt(i)|+ 2
∑
t:it=i

|rt(i)|.

Combining this inequality with Eq. (18) and rearranging give466 ∑
t:it=i

rt(i) ≤
CSi lnT

ηj
+ 7ηj

∑
t:it=i

|rt(i)|+
T∑
t=1

(zt(i, j)rt(i)− 3ηjzt(i, j)|rt(i)|) . (19)

Further combining inequalities (17) and (19) and canceling terms give467 ∑
t:it=i

rt(i) ≤
C(Si lnT + ln(KM))

ηj
+ 7ηj

∑
t:it=i

|rt(i)|.

Now we pick j such that468

ηj ≤ min

{
1/5,

√
Si lnT + ln(KM)∑

t:it=i
|rt(i)|

}
≤ 2ηj ,

which is always possible by the construction of η1, . . . , ηM . This proves Eq. (16).469

Adversarial setting. We simply bound |rt(i)| by 2 in Eq. (16). The rest is the same as the proof470

of Theorem 3: summing over i ∈ J , applying Cauchy-Schwarz inequality, and using the fact471

R(i1:T ) = E
[∑

i∈J
∑
t:it=i

rt(i)
]
,
∑
i∈J Si ≤ 2S + n ≤ 3S,

∑
i∈J

∑
t:it=i

1 = T , |J | ≤ n,472

M = Θ(lnT ) proveR(i1:T ) = O
(√

T (S lnT + n ln(K lnT ))
)

.473

Stochastic setting. The proof is similar to that of [27] and solely replies on the adaptive bound (16).474

Recall that in the stochastic setting, without loss of generality we assume {i1, . . . , iT } = [n]. For475

each i ∈ [n] there exists a constant gap αi such that Et [`t(j)− `t(i)] ≥ αi for all j 6= i and all t476

such that it = i. This implies477

E

[∑
t:it=i

rt(i)

]
= E

∑
t:it=i

∑
j 6=i

pt(j)(`t(j)− `t(i))
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≥ αiE

∑
t:it=i

∑
j 6=i

pt(j)

 = αiE

[∑
t:it=i

(1− pt(i))

]
.

On the other hand, we have478

∑
t:it=i

|rt(i)| =
∑
t:it=i

∣∣∣∣∣∣
∑
j 6=i

pt(j)(`t(j)− `t(i))

∣∣∣∣∣∣ ≤
∑
t:it=i

∑
j 6=i

pt(j)|(`t(j)−`t(i))| ≤ 2
∑
t:it=i

(1−pt(i)).

Combining the two inequalities above with Eq. (16) and by AM-GM inequality, we know that there479

exists a constant C ′ such that480

αiE

[∑
t:it=i

(1− pt(i))

]
≤ E

[∑
t:it=i

rt(i)

]
≤ C ′(Si lnT + ln(KM))

αi
+
αi
2
E

[∑
t:it=i

(1− pt(i))

]
.

Rearranging proves481

αi
2
E

[∑
t:it=i

(1− pt(i))

]
≤ C ′(Si lnT + ln(KM))

αi

and thus482

E

[∑
t:it=i

rt(i)

]
≤ 2C ′(Si lnT + ln(KM))

αi
.

Summing over i ∈ [n] finishes the proof.483

B.4 A weaker best-of-both-worlds result484

In this section we present a version of the “Mixing Past Posteriors” algorithm of [8, 2, 13] with a485

particular doubling trick and show that it also provides some similar but weaker best-of-both-worlds486

results. As far as we know this is unknown previously.487

The pseudocode is in Algorithm 7. It is a variant of Hedge where each time the sampling distribution488

mixes all the past distributions. We apply a standard doubling trick to the quantity
∑
t

∑
i pt(i)r

2
t (i),489

an important data-dependent quantity that turns out to be useful for adapting to the stochastic setting490

(similar to the role of
∑
t

∑
i |rt(i)| in Eq. (16)). Specifically the algorithm satisfies the following491

adaptive switching regret bound.492

Theorem 12. Algorithm 7 ensures493

R(i1:T ) = O


√√√√(S lnT + n lnK)

T∑
t=1

K∑
i=1

pt(i)r2
t (i)

 , (20)

for any loss sequence `1, . . . , `T and benchmark sequence i1, . . . , iT such that
∑T
t=2 1{it 6= it−1} ≤494

S − 1 and |{i1, . . . , iT }| ≤ n. This implies that495

• in the adversarial setting, we haveR(i1:T ) = O
(√

T (S lnT + n lnK)
)

;496

• in the stochastic setting (defined in Section 2), we haveR(i1:T ) = O
(
S lnT+n lnK
mini∈[n] αi

)
.497

Compared to our bounds in Theorem 5, one can see that the stochastic bound here is weaker in the498

sense that all αi’s are replaced by mini αi. At a technical level, this is because this algorithm only499

admits an adaptive regret bound (20) over the entire horizon, instead of a bound like Eq. (16) that500

holds over segments with the same competitor.501

Proof. Similar to the proof of Proposition 10, we start by writing the algorithm as an instance502

of Online Mirror Descent. Let ψ(p) =
∑K
i=1 p(i) ln p(i) be the entropy regularizer, and p̄t+1503

be such that ∇ψ(p̄t+1) = ∇ψ(pt) + ηrt. Then one can verify p̄t+1(i) = pt(i) exp(ηrt(i)) and504
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Algorithm 7: Mixing Past Posteriors with Doubling Trick

1 Initialize: γ = 1/T, V = 0, t0 = 1, D = 1, η = min
{

1/5,
√

(S lnT + n lnK)/D
}
, p̃1 = 1

K

2 for t = 1, 2, . . . do
3 Sample an action according to pt = (1− γ)p̃t + γ

t−t0
∑t−1
τ=t0

p̃τ
4 Receive loss `t ∈ [−1, 1]K

5 Update p̃t+1 such that p̃t+1(i) ∝ pt(i) exp(ηrt(i)), where rt(i) = p>t `t − `t(i)
6 Update V ← V +

∑K
i=1 pt(i)r

2
t (i)

7 if V > D then B restart condition
8 Set V = 0, t0 = t+ 1, D ← 2D, η = min

{
1/5,

√
(S lnT + n lnK)/D

}
, p̃t+1 = 1

K

p̃t+1 = argminp∈∆K
Dψ(p, p̄t+1), where Dψ(p, p′) =

∑
i

(
p(i) ln p(i)

p′(i) + p′(i)− p(i)
)

is the505

Bregman divergence associated with ψ. Now we have for any p ∈ ∆K , we have506

〈p, ηrt〉 = 〈pt − p,−ηrt〉 (〈pt, rt〉 = 0)
= 〈pt − p,∇ψ(pt)−∇ψ(p̄t+1)〉
= Dψ(p, pt)−Dψ(p, p̄t+1) +Dψ(pt, p̄t+1)

≤ Dψ(p, pt)−Dψ(p, p̃t+1) +Dψ(pt, p̄t+1) (generalized Pythagorean theorem)

= Dψ(p, pt)−Dψ(p, p̃t+1) +

K∑
i=1

pt(i) (−ηrt(i) + exp(ηrt(i))− 1)

≤ Dψ(p, pt)−Dψ(p, p̃t+1) + η2
K∑
i=1

pt(i)r
2
t (i). (ex − 1 ≤ x+ x2, ∀x < 1/2)

Now consider a period between two resets of the algorithm that starts at time t0 and ends at time t1.507

Let st = 1 + max{t0 ≤ s < t : is = it} be one plus the most recent time when it is the competitor508

(if the set is empty, st is defined as 1). Note that by the definition of pt we have509

Dψ(p, pt) =
∑
i

p(i) ln
p(i)

pt(i)
≤ Dψ(p, p̃st) + 1 {st = t} ln

1

1− γ
+ 1 {st 6= t} ln

T

γ
.

Therefore, combining previous bounds we have for any j ∈ [K],510

rt(j) ≤
ln p̃t+1(j)

p̃st (j) + 1 {st = t} ln 1
1−γ + 1 {st 6= t} ln T

γ

η
+ η

K∑
i=1

pt(i)r
2
t (i).

Summing over t in this period and telescoping lead to511

t1∑
t=t0

rt(it) ≤
n lnK + T ln 1

1−γ + S ln T
γ

η
+ η

t1∑
t=t0

K∑
i=1

pt(i)r
2
t (i)

≤ O(n lnK + S lnT )

η
+ η

t1∑
t=t0

K∑
i=1

pt(i)r
2
t (i) (by the choice of γ)

≤ O(n lnK + S lnT )

η
+ η(D + 1) (by the restart condition)

≤ O(
√

(n lnK + S lnT )D + n lnK + S lnT ) (by the choice of η)

Finally suppose there are k = O(lnT ) periods in total, then512

R(i1:T ) = O
(√

(n lnK + S lnT )2k + (n lnK + S lnT ) lnT

)
.

Note that in this case by the restart condition one must also have
∑T
t=1

∑K
i=1 pt(i)r

2
t (i) ≥ 2k−1,513

which implies Eq. (20) (by dropping the lower order term (n lnK + S lnT ) lnT for simplicity).514
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Adversarial setting. Simply upper bound
∑T
t=1

∑K
i=1 pt(i)r

2
t (i) by 4T .515

Stochastic setting. This is similar to the proof of Theorem 5. We make the following two observa-516

tions. First, by the definition of the stochastic setting we have517

R(i1:T ) = E

∑
i∈[n]

∑
t:it=i

rt(i)

 = E

∑
i∈[n]

∑
t:it=i

∑
j 6=i

pt(j)(`t(j)− `t(i))


≥
∑
i∈[n]

αiE

∑
t:it=i

∑
j 6=i

pt(j)

 ≥ (min
i∈[n]

αi

)
E

[
T∑
t=1

(1− pt(it))

]
.

On the other hand, we have r2
t (it) ≤ 2|

∑
i6=it pt(i)(`t(i)− `t(it))| ≤ 4(1− pt(it)) and thus518

K∑
i=1

pt(i)r
2
t (i) = pt(it)r

2
t (it) +

∑
i6=it

pt(i)r
2
t (i)

6 4pt(it)(1− pt(it)) + 4(1− pt(it))
6 8(1− pt(it)).

Combining the two inequalities above with Eq. (20) and by AM-GM inequality, we know that there519

exists a constant C ′ such that520 (
min
i∈[n]

αi

)
E

[
T∑
t=1

(1− pt(it))

]
≤ R(i1:T ) ≤ C ′(S lnT + lnK)

mini∈[n] αi
+

mini∈[n] αi

2
E

[
T∑
t=1

(1− pt(it))

]
.

Rearranging proves521

mini∈[n] αi

2
E

[
T∑
t=1

(1− pt(it))

]
≤ C ′(S lnT + lnK)

mini∈[n] αi

and thus the claimed regret bound.522

C Proofs for Section 4523

In this section we provide the omitted proofs for Section 4.524

C.1 Negative results525

Proof of Theorem 6. Divide the whole horizon evenly into S/2 intervals. Our goal is to show that526

for any algorithm A, there exists a sequence of 2-sparse loss vectors such that the switching regret of527

A against a benchmark with at most 2 switches on each of these intervals is at least Ω(
√
TK/S),528

this clearly implies that the overall switching regret against a benchmark with at most S switches is529

at least Ω(
√
TKS).530

To show this, consider a fixed interval and consider the behavior of A against a fixed loss vector531

− 1
2e1 for the entire interval (ei represents a basis vector). Let N be the expected number of times532

that action 1 is not selected by A on this interval (a fixed number conditioned on everything prior533

to this interval). If N ≥
√
TK/S, then the (static) regret of A against action 1 on this interval534

is already Ω(
√
TK/S). Otherwise, there must exist an action i 6= 1 such that in expectation it is535

selected for less than
√
TK/S

K−1 ≤ 2
√
T/(KS) times. In this case, there must also exist a subinterval536

of length 2T/S

4
√
T/(KS)

= 1
2

√
TK/S where in expectation action i is selected for less than 1/2 times.537

This means that with probability at least 1/2, action i is not selected at all on this subinterval. If538

we switch the loss vector from − 1
2e1 to − 1

2e1 − ei starting from the beginning of this subinterval,539

A suffers expected regret Ω(
√
TK/S) against action i after the switch point. In other words, in540

this case the switching regret of A (first against 1 and then against i) is Ω(
√
TK/S), finishing the541

proof.542
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To prove Corollary 7, we first remind the reader the contextual bandit setting [6, 26]. It is a543

generalization of the MAB problem where at the beginning of each round t, the learner first observes544

a context xt from some arbitrary context space X , and then selects an action It and observes its loss545

`t(It). The learner is given a fixed set of policies Π beforehand where each policy is a mapping from546

X to [K]. The (static) regret of the learner against a fixed policy π ∈ Π is now defined as547

R(π) = E

[
T∑
t=1

`t(It)− `t(π(xt))

]
.

The optimal regret for a finite policy class Π is known to be Θ(
√
TK ln |Π|).548

It is well-known that one can reduce the problem of achieving switching regret (with S switches) for549

MAB to the problem of achieving static regret for contextual bandit. To do this, simply let xt = t550

and Π be the set of action sequences with length T and S switches. For a policy π that corresponds551

to the action sequence i1, . . . , iT , its output at time t is simply π(xt) = it. Comparing the regret552

definitions it is clear that the static regret for this contextual bandit problem exactly corresponds to553

the switching regret for MAB. Moreover, since the size of Π in this case is O((TK)S), a static regret554

of form Θ(
√
TK ln |Π|) exactly recovers the typical switching regret bound of form (2). Now it is555

clear that Corollary 7 is directly implied by Theorem 6.556

C.2 Proof of Theorem 8557

The proof relies on the following two lemmas, which respectively state the static and switching regret558

guarantees for algorithm A (that learns wt) and algorithm Ai (that learns zt(i)).559

Lemma 13. With γ = 200K2, Algorithm 3 ensures for any i ∈ [K],560

E

[
T∑
t=1

w>t ct −
T∑
t=1

ct(i)

]
≤ O

(
Tρη +

lnK

η
+K3 lnT

)
Lemma 14. For any i ∈ [K], Line 9 of Algorithm 3 ensures561

−
T∑
t=1

zt(i)rt(i) +

T∑
t=1

utrt(i) ≤ η
T∑
t=1

zt(i)r
2
t (i) +

2Si
ηδ

(21)

for any sequence of r1(i), . . . , rT (i) ∈ R and any competitor sequence u1, . . . , uT ∈ [δ, 1] with562 ∑T
t=2 1 {ut 6= ut−1} ≤ Si − 1.563

The bound in Lemma 13 resembles the one of [10] for sparse MAB, but as mentioned since ct is564

not sparse (nor can it be made sparse after shifting), it requires a different analysis. The bound in565

Lemma 14 contains a “local-norm” term
∑T
t=1 zt(i)r

2
t (i) that resembles the one achieved by Hedge566

in the full information setting. However, importantly this holds for any real-valued sequence of567

r1(i), . . . , rT (i), while Hedge requires the losses to be bounded from one side. We are not able to568

prove the same bound with the usual log barrier regularizer (see Footnote 7) either. As far as we569

know this lemma is new and might be of independent interest.570

Combining these two lemmas we now provide the proof for Theorem 8, followed by the proofs of571

these lemmas.572

Proof of Theorem 8. First note that by the definition of ct, rt and pt one has573

w>t ct =

K∑
i=1

−wt(i)zt(i)rt(i)− ηwt(i)zt(i)̂̀2t (i)
= −η

K∑
i=1

wt(i)zt(i)̂̀2t (i).
For each distinct action i ∈ J = {i1, . . . , iT }, applying Lemma 13 and rearranging then lead to574

T∑
t=1

E
[
zt(i)rt(i) + ηzt(i)̂̀2t (i)] ≤ ηE

 T∑
t=1

K∑
j=1

wt(j)zt(j)̂̀2t (j)
+O

(
Tρη +

lnK

η
+K3 lnT

)
.

(22)
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Next we apply Lemma 14 by setting ut = δ if it 6= i and ut = 1 otherwise, which gives575

∑
t:it=i

rt(i) ≤ −δ
∑
t:it 6=i

rt(i) +

T∑
t=1

zt(i)rt(i) + η

T∑
t=1

zt(i)r
2
t (i) +

2Si
ηδ

. (23)

Let Et denote the expectation conditioned on the history up to the beginning of round t. It is clear576

that ̂̀t is unbiased: Et[̂̀t] = `t, and thus Et[−rt(i)] = `t(i)− p>t `t(i) ≤ 2. Also we have577

r2
t (i) =

(
p>t
̂̀
t

)2

− 2
(
p>t
̂̀
t

) ̂̀
t(i) + ̂̀2t (i)

=

(
pt(It)`t(It)

p̃t(It)

)2

− 2

(
pt(It)

p̃t(It)

)
`t(It)̂̀t(i) + ̂̀2t (i)

≤
(
pt(It)

p̃t(It)

)2

+ ̂̀2t (i)
≤
(

1

1− η

)2

+ ̂̀2t (i) ≤ 4 + ̂̀2t (i), (24)

where the first inequality uses the fact `t(It)̂̀t(i) ≥ 0 (since it is either 0 or `t(i)2/p̃t(i)), the second578

inequality uses the definition of p̃t, and the last one uses η ≤ 1/2. Combining these with Eq. (22)579

and Eq. (23) gives580

E

[∑
t:it=i

rt(i)

]
≤ 2Tδ +

2Si
ηδ

+ ηE

 T∑
t=1

K∑
j=1

wt(j)zt(j)̂̀2t (j)
+O

(
Tρη +

lnK

η
+K3 lnT

)
.

It remains to bound581

Et

 K∑
j=1

wt(j)zt(j)̂̀2t (j)
 =

K∑
j=1

wt(j)zt(j)
`2t (j)

p̃t(j)

≤ 2

K∑
j=1

wt(j)zt(j)
`2t (j)

pt(j)

≤ 2

K∑
j=1

`2t (j) ≤ 2ρ,

which implies582

E

[∑
t:it=i

rt(i)

]
≤ 2Tδ +

2Si
ηδ

+O
(
Tρη +

lnK

η
+K3 lnT

)
.

Summing over i ∈ J and using the fact
∑
i∈J Si ≤ 3S andR(i1:T ) ≤ E

[∑T
t=1 rt(it)

]
+ Tη give583

R(i1:T ) = O
(
nTδ +

S

ηδ
+ nTρη +

n lnK

η
+ nK3 lnT

)
.

Plugging in the parameters η and δ proves the theorem.584

Proof of Lemma 13. The proof is in similar spirit of those of [10, 11]. Define for a semi-definite585

matrix M the associated norm for a vector a as ‖a‖M =
√
a>Ma. By standard analysis of Follow-586

the-Regularized-Leader, we have for any w ∈ ∆K ,587

T∑
t=1

(wt − w)>ct ≤ O

(
T∑
t=1

‖ct‖2∇−2ψ(w′t)
+Dψ(w,w1)

)
,
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where w′t is some point on the segment connecting wt and wt+1, and Dψ is the Bregman divergence588

associated with ψ. Set w = (1 − 1
T )ei + 1

TK1. One can verify E
[∑T

t=1 w
>ct − ct(i)

]
= O(K)589

and Dψ(w,w1) = lnK
η + γK lnT , and thus590

E

[
T∑
t=1

w>t ct − ct(i)

]
= O

(
E

[
T∑
t=1

‖ct‖2∇−2ψ(w′t)

]
+

lnK

η
+ γK lnT

)
.

The rest of the proof consists of two steps. First, we prove that the algorithm is stable in the sense591

that 1
2 ≤

wt+1(i)
wt(i)

≤ 2 for all t and i, which implies ‖ct‖2∇−2ψ(w′t)
= O

(
‖ct‖2∇−2ψ(wt)

)
. The second592

step is to show Et
[
‖ct‖2∇−2ψ(wt)

]
= O(ρη). Combining these two steps finishes the proof.593

First step. To prove the stability, it suffices to show ‖wt − wt+1‖∇2ψ(wt)
≤ 1

2 . Indeed, this594

is because ∇2ψ(wt) < γ
[

1
wt(i)2

]
diag

, where
[

1
wt(i)2

]
diag

represents the K dimensional diago-595

nal matrix whose i-th diagonal element is 1
wt(i)2

, and thus ‖wt − wt+1‖∇2ψ(wt)
≤ 1

2 implies596

‖wt − wt+1‖γ[1/wt(i)2]diag
≤ 1

2 , which further implies 1 − 1
2
√
γ 6 wt+1(i)

wt(i)
6 1 + 1

2
√
γ and thus597

1
2 ≤

wt+1(i)
wt(i)

≤ 2.598

To prove ‖wt − wt+1‖∇2ψ(wt)
≤ 1

2 , define Ft(w) =
∑t
s=1 w

>
s cs + ψ(w) so that wt+1 =599

argminw∈∆K
Ft(w). We will prove Ft(w′) ≥ Ft(wt) for any w′ such that ‖w′ − wt‖∇2ψ(wt)

= 1
2 ,600

which then implies ‖wt − wt+1‖∇2ψ(wt)
≤ 1

2 by the convexity of Ft.601

Indeed, by Taylor’s expansion, there exists some ξ on the line segment joining w′ and wt, such that602

Ft(w
′) = Ft(wt) +∇Ft(wt)>(w′ − wt) +

1

2
(w′ − wt)>∇2Ft(ξ)(w

′ − wt)

= Ft(wt) + c>t (w′ − wt) +∇Ft−1(wt)
>(w′ − wt) +

1

2
‖w′ − wt‖

2
∇2ψ(ξ)

≥ Ft(wt) + c>t (w′ − wt) +
1

2
‖w′ − wt‖

2
∇2ψ(ξ)

≥ Ft(wt)− ‖ct‖∇−2ψ(wt)
‖w′ − wt‖∇2ψ(wt)

+
1

2
‖w′ − wt‖

2
∇2ψ(ξ)

= Ft(wt)−
1

2
‖ct‖∇−2ψ(wt)

+
1

2
‖w′ − wt‖

2
∇2ψ(ξ)

where the first inequality is by the first order optimality of wt and the second is by Hölder’s inequality.603

Note that ξ is between wt and w′, which implies ‖ξ − wt‖∇2ψ(wt)
≤ 1

2 and ξi
wt(i)

≤ 1 + 1
2
√
γ ≤

11
10604

similar to previous discussions. Therefore, we have∇2ψ(ξ) < 100
121∇

2ψ(wt), and thus605

Ft(w
′) ≥ Ft(wt)−

1

2
‖ct‖∇−2ψ(wt)

+
50

121
‖w′ − wt‖

2
∇2ψ(wt)

= Ft(wt)−
1

2
‖ct‖∇−2ψ(wt)

+
25

242
.

Next we show ‖ct‖2∇−2ψ(wt)
≤ 1

25 , which will finish the proof for the stability.606

‖ct‖2∇−2ψ(wt)
=

K∑
i=1

ηw2
t (i)

wt(i) + γη
c2t (i)

≤ 2

K∑
i=1

ηw2
t (i)

wt(i) + γη

(
z2
t (i)r2

t (i) + η2z2
t (i)̂̀4t (i)) (Cauchy-Schwarz)

≤ 2

K∑
i=1

ηw2
t (i)

wt(i) + γη

(
4z2
t (i) + z2

t (i)̂̀2t (i) + η2z2
t (i)̂̀4t (i)) (by Eq. (24))

≤ 8η
∑
i

wt(i)z
2
t (i) +

2

γ

∑
i

w2
t (i)z

2
t (i)̂̀2t (i) +

2η2

γ

∑
i

w2
t (i)z

2
t (i)̂̀4t (i)
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≤ 8η +
2p2
t (It)

γp̃2
t (It)

+
2η2p2

t (It)

γp̃4
t (It)

(by definition of ̂̀t)
≤ 8η +

2

γ(1− η)2
+

2η2

γ(1− η)2
· K

2

η2
(by definition of p̃t)

6
1

25
. (by η ≤ 1

500 and γ = 200K2)

Second step. With the stability, it is clear that ‖ct‖2∇−2ψ(w′t)
= O

(
‖ct‖2∇−2ψ(wt)

)
. Now we607

show Et
[
‖ct‖2∇−2ψ(wt)

]
= O(ρη). Note that this is similar to previous calculations, but the608

expectation allows us to bound the term by something even smaller. Specifically, we continue from609

the intermediate step of the previous calculation610

‖ct‖2∇−2ψ(wt)
≤ 8η + 2

K∑
i=1

ηw2
t (i)

wt(i) + γη

(
z2
t (i)̂̀2t (i) + η2z2

t (i)̂̀4t (i))
≤ 8η + 2η

∑
i

wt(i)zt(i)̂̀2t (i) +
2η2

γ

∑
i

w2
t (i)z

2
t (i)̂̀4t (i).

Now we use the fact Et
[̂̀2
t (i)
]
≤ `2t (i)

p̃t(i)
≤ 2`2t (i)

pt(i)
and Et

[̂̀4
t (i)
]
≤ `2t (i)

p̃3t (i)
≤ 4K`2t (i)

ηp2t (i)
to continue with611

Et
[
‖ct‖2∇−2ψ(wt)

]
≤ 8η + 4η

∑
i

`2t (i) +
8ηK

γ

∑
i

`2t (i) = O(ρη).

This finishes the proof.612

Proof of Lemma 14. By the definition of zt+1(i) and first order optimality, one has613

(ut − zt+1(i))(−rt(i) + φ′(zt+1(i))− φ′(zt(i))) ≥ 0,

which after rearranging gives614

−(zt+1(i)− ut)rt(i) ≤ (ut − zt+1(i))(φ′(zt+1(i))− φ′(zt(i)))
= Dφ(ut, zt(i))−Dφ(ut, zt+1(i))−Dφ(zt+1(i), zt(i))

6 Dφ(ut, zt(i))−Dφ(ut, zt+1(i)).

Summing over t, telescoping, and realizing Dφ(ut, zt(i)) = 1
η

(
ut

zt(i)
+ ln zt(i)

ut
− 1
)
≤ 2

ηδ since ut615

and zt(i) are in [δ, 1], we arrive at616

−
T∑
t=1

zt+1(i)rt(i) +

T∑
t=1

utrt(i) ≤
2Si
ηδ

.

It remains to prove (zt+1(i)− zt(i))rt,i ≤ η
∑
t zt(i)r

2
t (i). For notational convenience, given any617

L, ξ ∈ R, let z1 = argminz∈[δ,1] Lz+φ(z) and z2 = argminz∈[δ,1](L+ξ)z+φ(z). If we can prove618

ξ(z1 − z2) ≤ ηz1ξ
2, then we finish the proof by setting L = −φ′(zt(i)) and ξ = −rt(i) (which619

gives z1 = zt(i) and z2 = zt+1(i)).620

To show ξ(z1 − z2) ≤ ηz1ξ
2. Realize that the optimizations are one dimensional and admit the621

following solutions with explicit forms622

z1 =


1 if L ≤ 1

η
1
ηL if 1

η < L < 1
ηδ

δ if L ≥ 1
ηδ

, z2 =


1 if L+ ξ ≤ 1

η
1

η(L+ξ) if 1
η < L+ ξ < 1

ηδ

δ if L+ ξ ≥ 1
ηδ

The rest of the proof is simply to show ξ(z1 − z2) ≤ ηz1ξ
2 holds in all of the nine possible cases.623

A. If z1 = z2 = 1, then ξ(z1 − z2) = 0 ≤ ηz1ξ
2 holds trivially.624
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B. If z1 = 1 and z2 = 1
η(L+ξ) , then L− 1

η ≤ 0 and η(L+ η) ≥ 1 and thus625

ξ(z1 − z2) = ηξ
L+ ξ − 1/η

η(L+ ξ)
≤ ηξ2 = ηz1ξ

2.

C. If z1 = 1 and z2 = δ, then ξ ≥ 0, L ≤ 1
η , and 1

ηδ − L ≤ ξ, and thus626

ξ(z1 − z2) = ξ(1− δ) ≤ ξ 1− δ
δ

= ηξ

(
1

ηδ
− 1

η

)
≤ ηξ

(
1

ηδ
− L

)
≤ ηξ2 = ηz1ξ

2.

D. If z1 = 1
ηL and z2 = 1, then ξ ≤ 0 and ηL− 1 ≤ −ηξ, and thus627

ξ(z1 − z2) = z1|ξ|(ηL− 1) ≤ ηz1ξ
2.

E. If z1 = 1
ηL and z2 = 1

η(L+ξ) , then 1
L+ξ ≤ η, and thus628

ξ(z1 − z2) =
z1ξ

2

L+ ξ
≤ ηz1ξ

2.

F. If z1 = 1
ηL and z2 = δ, then ξ ≥ 0 and 1

ηδ − L ≤ ξ, and thus629

ξ(z1 − z2) = ηz1ξδ

(
1

ηδ
− L

)
≤ ηz1ξ

2.

G. If z1 = δ and z2 = 1, then ξ ≤ 0, 1
ηδ ≤ L, and L− 1

η ≤ ξ, and thus630

ξ(z1 − z2) = ηz1|ξ|
(

1

ηδ
− 1

η

)
≤ ηz1|ξ|

(
L− 1

η

)
≤ ηz1ξ

2.

H. If z1 = δ and z2 = 1
η(L+ξ) , then ξ ≤ 0, 1

ηL ≤ δ, 1
η(L+ξ) ≤ 1, and thus631

ξ(z1 − z2) ≤ |ξ|
(
z2 −

1

ηL

)
=

ξ2

ηL(L+ ξ)
≤ ξ2

L
≤ ηδξ2 = ηz1ξ

2.

I. If z1 = z2 = δ, then ξ(z1 − z2) = 0 ≤ ηz1ξ
2 holds trivially.632

This finishes the proof.633
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