
A Sketch of analysis for Theorem 1
Additional notations: Before proceeding to our analysis, we introduce some technical
notations for stochastic processes: Let (Ft) denote the natural filtration (collection of
σ-algebras) associated to the stochastic process, that is, the data stream (Xt). Then by
the update rule of Algorithm 1, for any t, W t, P t, and ∆t are all Ft-measurable, and
Gt ∈ Ft.

A.1 A roadmap of analysis
On a high level, proving Theorem 1 is done in the following steps:

In section A.2 We show that if the algorithm’s iterates, W t, stay inside the basin of
attraction, which we formally define as event Gt, Gt := {∆i ≤ 1− τ,∀i ≤ t} , then a
suitable transformation of the stochastic process (∆t) forms a supermartingale.

In section A.3 Using martingale concentration inequality, we show that provided a
good initialization, it is likely that the algorithm’s outputs W 1, . . . ,W t stay inside the
basin of attraction.

In section A.4 We show that at each iteration t, conditioning on Gt, ∆t+1 ≤ β∆t for
some β < 1 if we set the learning rate ηt to be a properly chosen constant.

In section D We iteratively apply this recurrence relation to prove Theorem 1.

A.2 A conditional supermartingale
Letting Mi := 1Gi−1

exp
(
s∆i

)
, Lemma 1 shows that (Mi)i≥1 forms a supermartin-

gale.

Lemma 1 (Supermartingale construction). Suppose G0 holds. Let Ct and Z be as
defined in Proposition 2. Then for any i ≤ t, and for any constant s > 0,

E
[
1Gi exp

(
s∆i+1

)
|Fi
]

≤ 1Gi−1
exp

(
s∆i

(
1− 2ηi+1λkτ + (ηi+1)2Ci+1λ1

)
+ 2s2(ηi+1)2|Z|2

)
.

The proof of Lemma 1 utilizes the iteration-wise convergence inequality in Prop. 2
of Section A.4.

A.3 Bounding probability of bad event Gct
Let G0 denote the good event happening upon initialization of Algorithm 1. Observe
that the good events form a nested sequence of subsets through time:

G0 ⊃ G1 ⊃ . . .Gt ⊃ . . .
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This implies that we can partition the bad event Gct into a union of individual bad events:

Gct = ∪ti=1

(
Gi−1 \ Gi

)
,

The idea behind Proposition 1 is that, we first transform the union of events above
into a maximal inequality over a suitable sequence of random variables, which form a
supermartingale, and then we apply a type of martingale large-deviation inequality to
upper bound P (Gct ).

Proposition 1 (Bounding probability of bad event). Suppose the initialization condition
in Theorem 1 holds. For any δ > 0, t ≥ 1, and i ≤ t, if the learning rate ηi is set such
that

ηi ≤ min

{
2λkτ

( 16
1−τ ln 1

δ (b+ ‖Σ∗‖F )2 + b(k + 1)λ1)
,

√
2− 1

b

}
,

Then P (Gct ) ≤ δ .

Proof Sketch. For i > 1, we first consider the individual events:

Gi−1 \ Gi = Gi−1 ∩ Gci = {∀j < i, ∆j ≤ 1− τ} ∩ {∆i > 1− τ}

For any strictly increasing positive measurable function g, the above is equivalent to

Gi−1 \ Gi = {g(∆i) > g(1− τ) and ∀j < i, g(∆j) ≤ g(1− τ)}

Since event Gi−1 occurs is equivalent to {1Gi−1
= 1}, we can write

Gi−1 \ Gi = {g(∆i) > g(1− τ) and ∀j < i, g(∆j) ≤ g(1− τ), and 1Gi−1 = 1}

Additionally, since for any j′ < j, Gj′ ⊃ Gj , that is, {1Gj = 1} implies {1Gj′ = 1},
we have

Gi−1 \ Gi
= {g(∆i) > g(1− τ) and ∀j < i, g(∆j) ≤ g(1− τ),1Gi−1

= 1,1Gj′ = 1,∀j′ < i− 1}
= {1Gi−1

g(∆i) > g(1− τ) and ∀j < i,1Gj−1
g(∆j) ≤ g(1− τ), and 1Gj = 1}

⊂ {1Gi−1 g(∆i) > g(1− τ) and ∀j < i,1Gj−1 g(∆j) ≤ g(1− τ)}

So the union of the terms Gi−1 \ Gi can be upper bounded as

∪ti=1Gi−1 \ Gi ⊂
∪ti=2{1Gi−1 g(∆i) > g(1− τ),1Gj−1 g(∆j) ≤ g(1− τ),∀1 ≤ j < i}

∪{1G0 g(∆1) > g(1− τ)}

Observe that the event above can also be written as

{ sup
1≤i≤t

1Gi−1
g(∆i) > g(1− τ)} .
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We upper bound the probability of the event above by applying a variant of Doob’s
inequality. To achieve this, the key step is to find a suitable function g such that the
sequence

1G0
g(∆1),1G1

g(∆2), . . . ,1Gi−1
g(∆i), . . .

forms a supermartingale. Via Lemma 1, we show that if we choose g(x) := exp (sx)
for any constant s > 0, then

E
[
1Gi exp

(
s∆i+1

)
|Fi
]
≤ 1Gi−1 exp

(
s∆i

)
, (A.1)

provided we choose the learning rate in Algorithm 1 appropriately. Then a version of
Doob’s inequality for supermartingale (2, p. 231) implies that

P
(

sup
i
1Gi−1

exp
(
s∆i

)
> exp (s(1− τ))

)
≤

E
[
1G0 exp

(
s∆1

)]
exp (s(1− τ))

,

Finally, bounding the expectation on the RHS using our assumption on the initialization
condition finishes the proof.

A.4 Iteration-wise convergence result
Proposition 2 (Iteration-wise subspace improvement). At the t + 1-th iteration of
Algorithm 1, the following holds:

(V1) Let Ct := kb+ 2ηtb2 + (ηt)2b3 . Then

E
[
tr(U∗P t+1)|Ft

]
≥ tr(U∗P t) + 2ηt+1λk∆t(1−∆t)− (ηt+1)2Ct+1λ1∆t

(V2) There exists a random variable Z, with

E [Z|Ft] = 0 and |Z| ≤ 2(b+ ‖Σ∗‖F )
√

∆t

such that

tr(U∗P t+1) ≥ tr(U∗P t) + 2ηt+1λk∆t(1−∆t) + 2ηt+1Z − (ηt+1)2Ct+1λ1∆t

Proof Sketch. By definition,

tr(U∗P t+1) = tr(U∗(W t+1)>(W t+1(W t+1)>)−1W t+1) ,

where by the update rule of Algorithm 1

W t+1 = W t + ηt+1st+1(rt+1)> .

We first derive (V1); the proof sketch is as follows:

1. Since the rows of W t are orthonormalized, one would expect that a small
perturbation of this matrix, W t+1, is also close to orthonormalized, and thus
W t+1(W t+1)> should be close to an identity matrix. Lemma 2 shows this
is indeed the case, offsetting by a small term E, which can be viewed as an
error/excessive term:
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Lemma 2 (Inverse matrix approximation). Let k′ be the number of rows in W t.
Suppose the rows of W t are orthonormal, that is, W t(W t)> = Ik′ . Then for
W t+1 = W t + ηt+1st+1(rt+1)> , we have

(W t+1(W t+1)>)−1 � (1− λ1(E))Ik′ ,

where λ1(E) is the largest eigenvalue of some matrixE, and λ1(E) = (ηt+1)2‖rt+1‖2‖st+1‖2 .

This implies that

trU∗(W t+1)>(W t+1(W t+1)>)−1W t+1

≥ (1− (ηt+1)2‖rt+1‖2‖st+1‖2)tr(U∗(W t+1)>W t+1)

2. We continue to lower bound the conditional expectation of the last term in the
previous inequality as

E
[
tr(U∗(W t+1)>W t+1)|Ft

]
≥ tr(U∗P t) + 2ηt+1tr(U∗P tΣ∗(Id − P t))

3. The last term in the inequality above, tr(U∗P tΣ∗(Id − P t)) , controls the im-
provement in proximity between the estimated and the ground-truth subspaces.
In Lemma 3, we lower bound it as a function of ∆t:

Lemma 3 (Characterization of stationary points). Let Σ∗ be of rank k, and

Γt := tr(U∗P tΣ∗(Id − P t)) ,

Then the following holds:

(a) tr(U∗P t) = tr(U∗) implies that Γt = 0 .

(b) Γt ≥ λk∆t(1−∆t) .

4. Finally, combining the results above, we obtain (V1) inequality in the statement
of the proposition.

(V2) inequality is derived similarly with the steps above, except that at step 2, instead
of considering the conditional expectation of tr(U∗(W t+1)>W t+1), we explicitly
represent the zero-mean random variable Z in the inequality.

B Proofs for Proposition 1
Proof of Proposition 1. Recall definition of Gt, Gt := {∆i ≤ 1 − τ,∀i ≤ t} . We
partition its complement as Gct = ∪ti=1Gi−1 \ Gi . For i > 1, we first consider the
individual events:

Gi−1 \ Gi = Gi−1 ∩ Gci = {∆i > 1− τ} ∩ {∀j < i, ∆j ≤ 1− τ}

For any strictly increasing positive measurable function g, the above is equivalent to

Gi−1 \ Gi = {g(∆i) > g(1− τ) and ∀j < i, g(∆j) ≤ g(1− τ)}
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Since event Gi−1 occurs is equivalent to {1Gi−1 = 1}, we can write

Gi−1 \ Gi = {g(∆i) > g(1− τ) and ∀j < i, g(∆j) ≤ g(1− τ), and 1Gi−1
= 1}

Additionally, since for any j′ < j, Gj′ ⊃ Gj , that is, {1Gj = 1} implies {1Gj′ = 1},
we have

Gi−1 \ Gi
= {g(∆i) > g(1− τ) and ∀j < i, g(∆j) ≤ g(1− τ),1Gi−1

= 1,1Gj′ = 1,∀j′ < i− 1}
= {1Gi−1

g(∆i) > g(1− τ) and ∀j < i,1Gj−1
g(∆j) ≤ g(1− τ), and 1Gj = 1}

⊂ {1Gi−1 g(∆i) > g(1− τ) and ∀j < i,1Gj−1 g(∆j) ≤ g(1− τ)}

So the union of the terms Gi−1 \ Gi can be upper bounded as

∪ti=1Gi−1 \ Gi ⊂
∪ti=2{1Gi−1

g(∆i) > g(1− τ),1Gj−1
g(∆j) ≤ g(1− τ),∀1 ≤ j < i}

∪{1G0
g(∆1) > g(1− τ)}

Observe that the event above can also be written as

{ sup
1≤i≤t

1Gi−1
g(∆i) > g(1− τ)} .

Now we upper bound P
(
{sup1≤i≤t 1Gi−1

g(∆i) > g(1− τ)}
)

by applying a martin-
gale large deviation inequality. To achieve this, the key step is to find a suitable function
g such that the stochastic process

1G0
g(∆1),1G1

g(∆2), . . . ,1Gi−1
g(∆i), . . .

is a supermartingale. In this proof, we choose g : R→ R>0 to be g(x) = exp (sx) for
s = 1

1−τ ln 1
δ .

By Lemma 1,

E
[
1Gi exp

(
s∆i+1

)
|Fi
]

≤ 1Gi−1
exp

(
s∆i

(
1− 2ηi+1λkτ + (ηi+1)2Ci+1λ1

)
+ 2s2(ηi+1)2|Z|2

)
≤ 1Gi−1

exp
(
s∆i

(
1− 2ηi+1λkτ + (ηi+1)2Ci+1λ1

))
exp

(
s2(ηi+1)28(b+ ‖Σ∗‖F )2∆i

)
= 1Gi−1

exp

(
s∆i

(
1− 2ηi+1λkτ + (ηi+1)2Ci+1λ1 + s(ηi+1)28(b+ ‖Σ∗‖F )2

))
Since we choose the learning rate in Algorithm 1 such that

ηi+1 <
2λkτ

b(k + 1)λ1 + 8
1−τ ln 1

δ (b+ ‖Σ∗‖F )2
=

2λkτ

b(k + 1)λ1 + 8s(b+ ‖Σ∗‖F )2
.(B.2)

And since ηi+1 ≤
√

2−1
b , it can be seen that

Ci+1 = kb+ 2ηi+1b2 + (ηi+1)2b3 ≤ b(k + 1) (B.3)
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Combining Eq (B.2) and (B.3), we get

−2ηi+1λkτ + (ηi+1)2Ci+1λ1 + s(ηi+1)28(b+ ‖Σ∗‖F )2 ≤ 0

Therefore,
E
[
1Gi exp

(
s∆i+1

)
|Fi
]
≤ 1Gi−1 exp

(
s∆i

)
Thus, letting Mi = 1Gi−1

exp
(
s∆i

)
, (Mi)i≥1 forms a supermartingale. A version of

Doob’s inequality for supermartingale (2, p. 231) implies that

P (Gct ) = P
(
∪ti=1Gi−1 \ Gi

)
≤ P

(
sup
i≥1

1Gi−1
exp

(
s∆i

)
> exp (s(1− τ))

)
= P

(
sup
i≥1

Mi > exp (s(1− τ))

)
≤ E [M1]

exp (s(1− τ))
=

E
[
1G0

exp
(
s∆1

)]
exp (s(1− τ))

We bound the expectation as follows: By Inequality B.4 of Lemma 1,

exp
(
s∆1

)
1G0 ≤ exp

(
s

(
∆0(1− 2η1λk(1−∆0))− 2η1Z + (η1)2C1λ1∆0

))
1G0

Taking expectation on both sides,

E
[
1G0 exp

(
s∆1

)]
≤ exp

(
s

(
∆0(1− 2η1λk(1−∆0)) + (η1)2C1λ1∆0

))
E
[
exp

(
s(−2η1Z)

)]
≤ exp

(
s

(
∆0(1− 2η1λk(1−∆0)) + (η1)2C1λ1∆0

))
exp

(
2s2(η1)2|Z|2

)
≤ exp

(
s∆0

(
1− 2η1λkτ + (η1)2C1λ1 + s(η1)28(b+ ‖Σ∗‖F )2

))
≤ exp

(
s(1− τ)

(
1− 2η1λkτ + (η1)2C1λ1 + s(η1)28(b+ ‖Σ∗‖F )2

))
≤ exp (s(1− τ))

where the second inequality holds by Hoeffding’s lemma (using the same argument as
in Lemma 1), and the third and fourth inequality is by the fact that ∆0 ≤ (1− τ) holds
by our assumption. Finally,

E
[
1G0 exp

(
s∆1

)]
exp (s(1− τ))

≤ exp (−s(1− τ)) ≤ δ ,

since we set s = 1
1−τ ln 1

δ .

B.1 Auxiliary lemma for Proposition 1
Proof of Lemma 1. By V2 of Proposition 2, for Σ∗ with rank k,

tr(U∗P i+1) ≥ tr(U∗P i)
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+2ηi+1
k∑
`=1

λ`(1− u>` P iu`)(u>` P iu` −
∑
m 6=`

[1− u>mP ium]) + 2ηi+1Z

−(ηi+1)2Ci+1tr(Σ∗ − Σ∗P i)

From this, we can derive

∆i+1 ≤ ∆i − 2ηi+1
k∑
`=1

λ`(1− u>` P tu`)(1−∆i)− 2ηi+1Z + (ηi+1)2Ci+1λ1∆i

≤ ∆i − 2ηi+1λktr(U
∗ − U∗P i)(1−∆i)− 2ηi+1Z + (ηi+1)2Ci+1λ1∆i

= ∆i − 2ηi+1λk∆i(1−∆i)− 2ηi+1Z + (ηi+1)2Ci+1λ1∆i

= ∆i(1− 2ηi+1λk(1−∆i))− 2ηi+1Z + (ηi+1)2Ci+1λ1∆i

This implies that for any s > 0,

exp
(
s∆i+1

)
≤ exp

(
s

(
∆i(1− 2ηi+1λk(1−∆i))− 2ηi+1Z + (ηi+1)2Ci+1λ1∆i

))
Multiplying both sides of the inequality by 1Gi , we get

exp
(
s∆i+1

)
1Gi

≤ exp

(
s

(
∆i(1− 2ηi+1λk(1−∆i))− 2ηi+1Z + (ηi+1)2Ci+1λ1∆i

))
1Gi (B.4)

We can further upper bound the RHS of Inequality (B.4) above as

exp

(
s

(
∆i(1− 2ηi+1λk(1−∆i))− 2ηi+1Z + (ηi+1)2Ci+1λ1∆i

))
1Gi

≤ exp

(
s

(
∆i(1− 2ηi+1λkτ)− 2ηi+1Z + (ηi+1)2Ci+1λ1∆i

))
1Gi

≤ exp

(
s

(
∆i(1− 2ηi+1λkτ)− 2ηi+1Z + (ηi+1)2Ci+1λ1∆i

))
1Gi−1

≤ 1Gi−1 exp

(
s

(
∆i(1− 2ηi+1λkτ) + (ηi+1)2Ci+1λ1∆i

))
exp

(
s
(
− 2ηi+1Z

))
The first inequality is due to the fact that “{1Gi = 1} implies {∆i ≤ 1− τ}” and the
second inequality holds since Gi ⊂ Gi−1 . Incorporating this bound into inequality (B.4)
and taking conditional expectation w.r.t. Fi on both sides, we get

1Gi E
[
exp

(
s∆i+1

)
|Fi
]

= E
[
exp

(
s∆i+1

)
1Gi |Fi

]
≤ 1Gi−1 exp

(
s

(
∆i(1− 2ηi+1λkτ) + (ηi+1)2Ci+1λ1∆i

))
E
[
exp

(
s
(
− 2ηi+1Z

))
|Fi
]

Now we upper bound E
[
exp

(
s
(
− 2ηi+1Z

))
|Fi
]

: Since

−2ηi+1|Z| ≤ 2ηi+1(−Z) ≤ 2ηi+1|Z| ,
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and
E
[
2sηi+1(−Z)|Fi

]
= E

[
2sηi+1Z|Fi

]
= 0 ,

by Hoeffding’s lemma

E
[
exp

(
2sηi+1(−Z)|Fi

)]
≤ exp

(
s2(4ηi+1|Z|)2

8

)
= exp

(
2s2(ηi+1)2|Z|2

)
.

Combining this with the previous bound, we get

1Gi E
[
exp

(
s∆i+1

)
|Fi
]

≤ 1Gi−1
exp

(
s

(
∆i(1− 2ηi+1λkτ) + (ηi+1)2Ci+1λ1∆i

))
exp

(
2s2(ηi+1)2|Z|2

)

C Proofs for Proposition 2
Proof of Proposition 2. We consider

E
[
trU∗P t+1

∣∣Ft] = E
[
trU∗(W t+1)>(W t+1(W t+1)>)−1W t+1

∣∣Ft] ,
Since U∗ is positive semidefinite, we can write it as U∗ = ((U∗)1/2)2. By the proof of
Lemma 2,

(W t+1(W t+1)>)−1 � (1− (ηt+1)2‖rt+1‖2‖st+1‖2)Ik′

Letting V := W t+1(U∗)1/2, this implies that

V >
[
W t+1(W t+1)>)−1 − (1− (ηt+1)2‖rt+1‖2‖st+1‖2)Ik′

]
V � 0

That is, the matrix on the left-hand-side above is positive semi-definite. Since trace of a
positive semi-definite matrix is non-negative, we have

tr(V >W t+1(W t+1)>)−1V ) ≥ tr(V >(1− (ηt+1)2‖rt+1‖2‖st+1‖2)V )

By commutative property of trace, we further get

tr(U∗(W t+1)>[W t+1(W t+1)>]−1W t+1) = tr(V >W t+1(W t+1)>)−1V )

≥ tr(V >(1− (ηt+1)2‖rt+1‖2‖st+1‖2)V )

= (1− (ηt+1)2‖rt+1‖2‖st+1‖2)tr(U∗(W t+1)>W t+1)

Taking expectation on both sides, we get

E
[
trU∗P t+1

∣∣Ft] ≥ (1− (ηt+1)2‖rt+1‖2‖st+1‖2)E
[
tr(U∗(W t+1)>W t+1)

∣∣Ft]
Now we in turn lower bound E

[
tr[U∗(W t+1)>W t+1]

∣∣Ft] . First, we have

(W t+1)>W t+1 = (W t + ηt+1st+1(rt+1)>)>(W t + ηt+1st+1(rt+1)>)
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= P t + ηt+1rt+1(st+1)>W t + ηt+1(W t)>st+1(rt+1)> + (ηt+1)2‖st+1‖2rt+1(rt+1)>

This implies that

E
[
tr[U∗(W t+1)>W t+1]

∣∣Ft] = tr(U∗ E
[
(W t+1)>W t+1

∣∣Ft])
= tr(U∗P t) + ηt+1tr(E

[
U∗rt+1(st+1)>

∣∣Ft]W t)

+ηt+1tr(E
[
U∗(W t)>st+1(rt+1)>

∣∣Ft])
+(ηt+1)2 E

[
‖st+1‖2tr(U∗rt+1(rt+1)>)

∣∣Ft]
≥ tr(U∗P t) + ηt+1tr(U∗ E

[
rt+1(st+1)>

∣∣Ft]W t)

+ηt+1tr(U∗ E
[
(W t)>st+1(rt+1)>

∣∣Ft])
≥ tr(U∗P t) + 2ηt+1tr(U∗ E

[
(W t)>st+1(rt+1)>

∣∣Ft])
the second to last inequality follows since we can drop the non-negative term, and the
last inequality holds since the tr(A) = tr(A>) for any square matrix A. Since

E
[
st+1(rt+1)>

∣∣Ft] = W t(Σ∗ − Σ∗P t) ,

we have

trU∗ E
[
(W t)>st+1(rt+1)>

∣∣Ft] = trU∗(P tΣ∗ − P tΣ∗P t) .

By Lemma 3,

trU∗ E
[
(W t)>st+1(rt+1)>

∣∣Ft]
= trU∗(P tΣ∗ − P tΣ∗P t)

≥
k∑
i=1

λi(1− u>i P tui)(u>i P tui −
∑

j 6=i,j∈[k]

[1− u>j P tuj ])

Then we have,

E
[
tr[U∗(W t+1)>W t+1]

∣∣Ft] ≥ tr(U∗P t)
+2ηt+1

k∑
i=1

λi(1− u>i P tui)(u>i P tui −
∑

j 6=i,j∈[k]

[1− u>j P tuj ])

Now we can bound E
[
trU∗P t+1

∣∣Ft] as:

E
[
tr(U∗(W t+1)>[W t+1(W t+1)>]−1W t+1)

∣∣Ft]
≥ E

[
tr(U∗(W t+1)>W t+1)

∣∣Ft]− E
[
(ηt+1)2‖rt+1‖2‖st+1‖2tr[U∗(W t+1)>W t+1]

∣∣Ft]
≥ tr(U∗P t) + 2ηt+1

k∑
i=1

λi(1− u>i P tui)(u>i P tui −
∑

j 6=i,j∈[k]

[1− u>j P tuj ])

−E
[
(ηt+1)2‖rt+1‖2‖st+1‖2tr(U∗(W t+1)>W t+1)

∣∣Ft] (C.5)
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Note that the second term in the inequality above can be lower bounded as:

k∑
i=1

λi(1− u>i P tui)(u>i P tui −
∑

j 6=i,j∈[k]

[1− u>j P tuj ])

=

k∑
i=1

λi(1− u>i P tui)(
∑
j∈[k]

u>j P
tuj − (k − 1))

=

k∑
i=1

λi(1− u>i P tui)(1−∆t) ≥ λk∆t(1−∆t)

Since k′ ≤ d, and rows of W t are orthonormal, we get

‖st+1‖2 = ‖W tXt+1‖2 ≤ ‖Xt+1‖2 .

Similarly, ‖rt+1‖2 ≤ ‖Xt+1‖2 . Therefore,

‖st+1‖2tr(U∗(W t+1)>W t+1)

≤ ‖Xt+1‖2
(
trU∗P t + 2ηt+1trU∗rt+1(Xt+1)>P t + (ηt+1)2‖st+1‖2trU∗rt+1(rt+1)>

)
= ‖Xt+1‖2

(
trU∗P t + 2ηt+1(Xt+1)>P tU∗rt+1 + (ηt+1)2‖st+1‖2(rt+1)>U∗rt+1

)
≤ ‖Xt+1‖2

(
trU∗P t + 2ηt+1‖Xt+1‖2 + (ηt+1)2‖st+1‖2‖rt+1‖2

)
≤ ‖Xt+1‖2

(
trU∗P t + 2ηt+1‖Xt+1‖2 + (ηt+1)2‖Xt+1‖4

)
On the other hand, we have

E
[
‖rt+1‖2

∣∣Ft] = tr(Σ∗ − Σ∗P t)

Thus, the quadratic term (quadratic in ηt+1) in Eq (H.7) can be upper bounded as

E
[
(ηt+1)2‖rt+1‖2‖st+1‖2tr(U∗(W t+1)>W t+1)

∣∣Ft]
≤ (ηt+1)2Cto E

[
‖rt+1‖2

∣∣Ft] = (ηt+1)2Ctotr(Σ
∗ − Σ∗P t)

where

Cto := max
X
‖X‖2

(
trU∗P t + 2ηt+1‖X‖2 + (ηt+1‖X‖2)2

)
≤ max

X
‖X‖2

(
k + 2ηt+1‖X‖2 + (ηt+1‖X‖2)2

)
= kb+ 2ηt+1b2 + (ηt+1)2b3

Note that by our definition of Ct+1,

Ct+1 := kb+ 2ηt+1b2 + (ηt+1)2b3

10



We get that

E
[
(ηt+1)2‖rt+1‖2‖st+1‖2tr(U∗(W t+1)>W t+1)

∣∣Ft] ≤ Ct+1(ηt+1)2tr(Σ∗ − Σ∗P t) .

Since
λ1U

∗ � Σ∗ � λkU∗

We have

(I − P t)>λ1U
∗(I − P t) � (I − P t)>Σ∗(I − P t)

� (I − P t)>λkU∗(I − P t)

Note that the projection matrix satisfies (I−P t)> = (I−P t) and (I−P t)(I−P t) =
(I − P t). This implies that

λ1trU
∗(I − P t) ≥ trΣ∗(I − P t) ≥ λktrU∗(I − P t) (C.6)

Finally, plug the lower bound in Eq. (H.7) completes the proof:

E
[
tr(U∗P t+1)|Ft

]
≥ tr(U∗P t) + λk∆t(1−∆t)− (ηt+1)2Ct+1λ1tr(U

∗(I − P t))
≥ tr(U∗P t) + λk∆t(1−∆t)− (ηt+1)2Ct+1λ1∆t

The inequality of the statement in Version 2 can be obtained similarly, by setting

Z = 2

(
tr(U∗(W t)>st+1(rt+1)>)− E

[
tr(U∗(W t)>st+1(rt+1)>)

∣∣Ft])
It is clear that E

[
Z
∣∣Ft] = 0. Now we upper bound |Z|: Since

tr(U∗(W t)>st+1(rt+1)>) = trU∗P tXt+1(Xt+1)>(I − P t)

we get (subsequently, we denote P t by P , Xt+1 by X)

|Z| = |2tr(U∗PXX>(I − P ))− 2tr(U∗PΣ∗(I − P ))|

= 2|tr(XX> − Σ∗)(I − P )U∗P | ≤ 2
√
‖XX> − Σ∗‖2F ‖(I − P )U∗P‖2F

We first bound ‖(I − P )U∗P‖2F ,

‖(I − P )U∗P‖2F ≤ ‖(I − P )U∗‖2F = tr(U∗ − U∗P )

where the first inequality is due to the fact that P is a projection matrix so that norms
are at best preserved if not smaller; the second inequality is also due to the fact that
both U∗ and I − P are projection matrices, and thus (I − P )(I − P ) = I − P and
U∗U∗ = U∗. Now we bound ‖XX> − Σ∗‖2F :

‖XX> − Σ∗‖2F = tr(XX> − Σ∗)>(XX> − Σ∗)

11



= ‖X‖4 − 2X>Σ∗X + ‖Σ∗‖2F ≤ ‖X‖4 + ‖Σ∗‖2F

where the last inequality is due to the fact that Σ∗ is positive semidefinite, that is, for
any x, we have x>Σ∗x ≥ 0. Finally,

|Z| ≤ 2
√
‖XX> − Σ∗‖2F ‖(I − P )U∗P‖2F

≤ 2
√

(‖X‖4 + ‖Σ∗‖2F )tr(U∗ − U∗P )

≤ 2(‖X‖2 + ‖Σ∗‖F )
√

∆t ≤ 2(b+ ‖Σ∗‖F )
√

∆t

The third inequality is by the following argument: for any a ≥ 0, b ≥ 0, we have√
a2 + b2 ≤ a+ b, Letting a = ‖X‖2 and b = ‖Σ∗‖F leads to the inequality.

C.1 Auxiliary lemmas for Proposition 2
Proof of Lemma 2.

W t+1(W t+1)> = (W t + ηt+1st+1(rt+1)>)(W t + ηt+1st+1(rt+1)>)>

= (W t)(W t)> + ηt+1st+1(rt+1)>(W t)>

+ηt+1W trt+1(st+1)> + (ηt+1)2‖rt+1‖2st+1(st+1)>

= Ik′ + (ηt+1)2‖rt+1‖2st+1(st+1)>

where the last equality holds because W t has orthonormalized rows, and rt+1 is orthog-
onal to rows of W t. Let

E := (ηt+1)2‖rt+1‖2st+1(st+1)> .

Note that E is symmetric and positive semidefinite. We can eigen-decompose E as

E = QΛQ>

where Q is the eigenbasis and Λ is a diagonal matrix with real non-negative diagonal
values, with Λ11 ≥ Λ22,≥, . . .Λk′k′ , corresponding to the non-decreasing eigenvalues
of E. Then

(Ik′ + E)−1 = (QQ> +QΛQ>)−1 = Q(Ik′ + Λ)−1Q> ,

Since Ik′ + Λ is a diagonal matrix, for any i ∈ [k′], we have

(Ik′ + Λ)−1
ii =

1

1 + Λii
≥ 1− Λii ≥ 1− Λ11

This implies that the matrix

Q[(Ik′ + Λ)−1 − (1− Λ11)Ik′ ]Q
>

is positive semidefinite, that is,

Q(Ik′ + Λ)−1Q> � Q(1− Λ11)Ik′Q
> = (1− Λ11)Ik′

12



Thus,

(W t+1(W t+1)>)−1 = (Ik′ + E)−1 � (1− Λ11)Ik′

Finally, we compute the largest eigenvalue of E, λ1(E) := Λ11:

λ1(E) = max
‖y‖=1

y>Ey = max
‖y‖=1

(ηt+1)2‖rt+1‖2(y>st+1(st+1)>y)

= (ηt+1)2‖rt+1‖2 max
‖y‖=1

(〈st+1, y〉)2 = (ηt+1)2‖rt+1‖2‖st+1‖2

This completes the proof.

Proof of Lemma 3. We first prove statement 1. Since U∗ is symmetric and positive
semidefinite, we can write it as U∗ = ((U∗)1/2)2. So we have

tr(U∗ − U∗P t) = tr(U∗(I − P t))
= tr((U∗)1/2(I − P t)(I − P t)(U∗)1/2) = ‖(I − P t)(U∗)1/2‖2F

Therefore, tr(U∗) = tr(U∗P t) implies that

tr(U∗ − U∗P t) = ‖(I − P t)(U∗)1/2‖2F = 0

which implies
(I − P t)(U∗)1/2 = 0

where “0” denotes the zero matrix. Thus,

Γt = tr(P tΣ∗(I − P t)U∗) = tr(P tΣ∗(I − P t)(U∗)1/2(U∗)1/2) = tr0 = 0 .

Now we prove statement 2. First, we upper bound tr(P tΣ∗P tU∗):

tr(P tΣ∗P tU∗) = tr(

k′∑
p=1

k∑
i=1

k′∑
q=1

k∑
j=1

λi〈wp, ui〉〈wq, ui〉〈wq, uj〉wpu>j )

=
∑
i

λi
∑
j

∑
p

〈wp, ui〉〈wp, uj〉
∑
q

〈wq, ui〉〈wq, uj〉

=
∑
i

λi
∑
j

(u>i P
tuj)

2

Note that by Cauchy-Schwarz inequality,

(u>i P
tuj)

2 = (u>i P
t(P t)>uj)

2 ≤ ‖P tui‖2‖P tuj‖2 = (u>i P
tui)(u

>
j P

tuj)

On the other hand, for any i and j 6= i since ui ⊥ uj , we have

u>i P
tuj = u>i uj − u>i (I − P t)uj = −u>i (I − P t)uj

we have

(u>i P
tuj)

2 = (u>i (I − P t)uj)2 = (u>i (I − P t)(I − P t)uj)2

13



≤ ‖(I − P t)ui‖2‖(I − P t)uj‖2

= (‖ui‖2 − ‖P tui‖2)(‖uj‖2 − ‖P tuj‖2)

= (1− u>i P tui)(1− u>j P tuj)

where the inequality is by Cauchy-Schwarz inequality, and the third equality is by
combining orthogonality of projection P t and Pythagorean theorem. This implies that

tr(P tΣ∗P tU∗) =
∑
i

λi
∑
j

(u>i P
tuj)

2

=
∑
i

λi(u
>
i P

tui)
2 +

∑
i

λi
∑
j 6=i

(u>i P
tuj)

2

≤
∑
i

λi(u
>
i P

tui)
2 +

∑
i

λi
∑
j 6=i

(1− u>i P tui)(1− u>j P tuj)

Next, we expand tr(P tΣ∗U∗):

tr(P tΣ∗U∗) = tr(U∗P tΣ∗) = tr(
∑
i

uiu
>
i P

t
∑
j

λjuju
>
j )

=
∑
i

∑
j

λju
>
i P

tuju
>
i uj =

∑
i

λiu
>
i P

tui

Combining the upper bound on tr(P tΣ∗P tU∗), we get,

tr(P tΣ∗U∗)− tr(P tΣ∗P tU∗) =
∑
i

λiu
>
i P

tui − tr(P tΣ∗P tU∗)

≥
∑
i

λiu
>
i P

tui −
∑
i

λi(u
>
i P

tui)
2 −

∑
i

λi
∑
j 6=i

(1− u>i P tui)(1− u>j P tuj)

=
∑
i

λi(1− u>i P tui)(u>i P tui −
∑
j 6=i

[1− u>j P tuj ])

Recall that

∆t = k − tr(U∗P t) = k −
k∑
i=1

u>i P
tui ,

Therefore, the last term in the inequality above can be further lower bounded by
λk∆t(1−∆t) .

D Proof of Theorem 1
Proof of Theorem 1. Since by our assumption, ∆o ≤ 1 − τ, for any δ > 0, and since
we choose the learning rate such that

η ≤ min{ 2λkτ
8

1−τ ln 1
δ (b+ ‖Σ∗‖F )2 + b(k + 1)λ1

,

√
2− 1

b
} ,
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we can apply Proposition 1 to bound the probability of bad event, Gct as P (Gct ) ≤ δ . By
V1 of Proposition 2 (and let Ct+1 be as denoted therein),

E
[
tr(U∗P t+1)|Ft

]
≥ tr(U∗P t) + 2ηt+1λk∆t(1−∆t)− (ηt+1)2Ct+1λ1∆t ,

Rearranging the inequality above and adding k to both sides,

E
[
∆t+1|Ft

]
≤ ∆t − 2ηt+1λk∆t(1−∆t) + (ηt+1)2Ct+1λ1∆t

= ∆t

(
1− 2ηt+1λk(1−∆t) + (ηt+1)2Ct+1λ1

)
,

Multiplying both sides of the inequality above by 1Gt , we get

E
[
∆t+1|Ft

]
1Gt ≤ ∆t

(
1− 2ηt+1λk(1−∆t) + (ηt+1)2Ct+1λ1

)
1Gt ,

Since Gt is Ft-measurable, we have

E
[
∆t+1 1Gt |Ft

]
= E

[
∆t+1|Ft

]
1Gt ,

When 1Gt = 1, we have 1−∆t ≥ τ . Therefore,

E
[
∆t+1 1Gt |Ft

]
≤ ∆t

(
1− 2ηt+1λkτ + (ηt+1)2Ct+1λ1

)
1Gt

≤ ∆t

(
1− 2ηt+1λkτ + (ηt+1)2Ct+1λ1

)
1Gt−1

where the last inequality holds since Gt ⊂ Gt−1. Taking expectation over both sides, we
get the following recursion relation:

E
[
∆t+1 1Gt

]
≤ E

[
∆t 1Gt−1

](
1− 2ηt+1λkτ + (ηt+1)2Ct+1λ1

)
We further bound 1 − 2ηt+1τλk + (ηt+1)2Ct+1λ1 . First, note that since we require
ηt+1 ≤ λkτ

λ1b(k+3) , we get

ηt+1b ≤ λkτ

λ1(k + 3)
≤ τ

(k + 3)
≤ 1

k + 3
≤ 1

4
.

and
Ct+1 = b(k + 2ηt+1b+ (ηt+1)2b2) ≤ b(k + 1) .

Thus, we get

1− 2ηt+1τλk + (ηt+1)2Ct+1λ1 ≤ 1− 2ηt+1τλk + (ηt+1)2b(k + 1)λ1

Since our requirement of ηt+1 also implies that

ηt+1 ≤ 2λkτ

b(k + 1)λ1
,
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it guarantees that

0 < 1− 2ηt+1τλk + (ηt+1)2b(k + 1)λ1 . < 1

For any t, define αt := 2ηtτλk − (ηt)2b(k + 1)λ1 , we have

E
[
∆t+1 1Gt

]
≤ E

[
∆t 1Gt−1

] (
1− αt+1

)
,

Recursively applying this relation, we get

E
[
∆t+1 1Gt

]
≤ Πt+1

i=2(1− αi)E
[
∆1 1G0

]
Also note that

∆1 1G0
≤ (1− α1)∆0 ,

Therefore,
E
[
∆t+1 1Gt

]
≤ Πt+1

i=1(1− αi)∆0

Since for any x ∈ (0, 1), it holds that ln(1− x) ≤ −x; we get

Πt
i=1

(
1− αi

)
≤ exp

(
−

t∑
i=1

αi

)

Plugging in the value of αi’s, we get

E
[
∆t 1Gt−1

]
≤ exp

(
−

t∑
i=1

(
2ηiτλk − (ηi)2b(k + 1)λ1

))
Again, by our requirement on learning rate, we have for any t

ηt ≤ λkτ

λ1b(k + 3)
≤ λkτ

λ1b(k + 1)

Thus,
2ηiτλk − (ηi)2b(k + 1)λ1 ≥ ηiτλk > 0

Since we choose a constant learning rate η, this implies that

E
[
∆t 1Gt−1

]
≤ exp

(
−

t∑
i=1

ητλk

)
= exp (−tητλk)

Finally, since 1Gt ≤ 1Gt−1
, we get

E
[
∆t 1Gt

]
≤ E

[
∆t 1Gt−1

]
≤ exp (−tητλk)

Combining this with the definition of conditional expectation, we get

E
[
∆t|Gt

]
:=

E [∆t 1Gt ]

P (Gt)
≤ E [∆t 1Gt ]

1− δ
≤ 1

1− δ
exp (−tητλk)

where the first inequality is by our upper bound on the probability of bad event Gct .
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E Canonical (principal) angles between subspaces
Definition 1 ((author?) (5)). Let E and F be d-dimensional subspaces of Rp with
orthogonal projectors E and F . Denote the singular values of EF⊥ by s1 ≥ s2 · · · ≥.
The canonical angles between E and F are the numbers

θk(E ,F) = arcsin(sk)

for k = 1, . . . , d and the angle operator between E and F is the d× d matrix

Θ(E ,F) = diag(θ1, . . . , θd) .

subject to
‖x‖ = ‖y‖ = 1, xHxi = 0, yHyi = 0, i = 1, . . . , k − 1.

The vectors {x1, . . . , xm} and {y1, . . . , ym} are called the principal vectors.

Proposition 3. Let E and F be d-dimensional subspaces of Rp with orthogonal projec-
tors E and F . Then The singular values of EF⊥ are

s1, s2, . . . , sd, 0, . . . , 0.

And
‖ sin Θ(E ,F)‖2F = ‖EF⊥‖2F .

F Random initialization guarantee

Lemma 4. For any matrix U∗ =
∑k
i=1 uiu

T
i , where ui’s have unit-norm and are

orthogonal to each other. Suppose the entries of W o ∈ Rk′×d are drawn i.i.d. from
N (0, 1). Let P (W o) be the orthogonal projection matrix into the subspace spanned by
W o. Then with probability at least 1− 2k exp

(
−(ε2 − ε3)k′/4

)
− k′+1

dt2 ,

tr(U∗P (W o)) ≥ k′

d(1 + t)
k(1− ε)

Proof. Let λmin(A) and λmax(A) denote the smallest and largest eigenvalue of a real
symmetric matrix A, respectively. We have P (W o) = (W o)T (W o(W o)T )−1W o .
Since the matrix W o(W o)T ∈ Rk′×k′ is real, symmetric, and positive definite w.p. 1,
there exists orthogonal matrix Q ∈ Rk′×k′ and diagonal matrix Λ ∈ Rk′×k′ such that

(W o(W o)T = QΛQT

where diag(Λ) = [λ1, . . . , λk′ ], the positive eigenvalues of (W o(W o)T . Therefore,(
((W o(W o)T )−1

)
= QΛ−1QT

This implies that

λmin

(
((W o(W o)T )−1

)
=

1

λmax((W o(W o)T ))

17



(It is possible that W o is rank deficient. But in this case, we can still define the pseudo-
inverse of (W o(W o)T ) to be of form

Q

[
Λ−1

+ 0
0 0

]
QT

where Λ+ has the positive eigenvalues of Λ. And we can proceed similarly by only
considering λminofΛ+. ). For any t > 0,

P
(
λmin

(
((W o(W o)T )−1

)
<

1

d(1 + t)

)
= P

(
λmax(W o(W o)T ) > d+ td

)
= P

(
λmax(

1

d
W o(W o)T ) >

d+ td

d

)
Note that

1

d
W o(W o)T =

1

d

d∑
i=1

xix
T
i where xi ∼ N (0, Ik′)

Thus, we can view 1
dW

o(W o)T as the sample covariance matrix of E
[
xix

T
i

]
= Ik′ .

By Corollary 2.1 of (4), we get

P

(
|λ̃1 − λ1|

λ1
≥ t

)
≤ 1

d
(
k1

λ1t
)2 =

1

d

k2
1

λ2
1t

2

where λ1 = λmax(Ik′) = 1 and λ̃1 = λmax( 1
dW

o(W o)T ), k1 = (E
[
‖xixTi y1‖22 − λ2

1

]
)1/2,

and y1 is the eigenvector corresponding to λ1. Note that since y1 can be any unit vector
in Rk′ , for any random vector xi, we can choose y1 = e1 (in fact, since Gaussian
distribution is rotation-invariant, xTi y1 has the same distribution for any y1 on the
unit-sphere), and

E
[
‖xixTi y1‖22

]
= E

[
(xTi e1)2‖xi‖2

]
= E

[
x2
i1‖xi‖2

]
We define

Y (m) :=

m∑
j=1

Z2
j for Zj ∼ N (0, 1) ,

That is, Y (m) is a random variable drawn from Chi-squared distribution with degree
of freedom equal to m. Let Y1 ∼ Y (1), Y2 ∼ Y (k′ − 1) be drawn independently from
two Chi-squared distributions. We have

E
[
x2
i1‖xi‖2

]
= E

Z4
1 + Z2

1

k′−1∑
j=1

Z2
j

 = E
[
Y 2

1

]
+ E [Y1Y2]

= E
[
(Y 2

1

]
+ E [Y1]E [Y2] = 3 + k′ − 1 = k′ + 2

Then k2
1 = E

[
‖xixTi y1‖22 − λ2

1

]
≤= k′ + 2− 1 = k′ + 1 , and

P

(
|λ̃1 − λ1|

λ1
≥ t

)
≤ 1

d

k′ + 1

t2
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Thus,

P
(
λmax(

1

d
W o(W o)T ) >

d+ dt

d

)
≤ P

(
|λ̃1 − λ1|

λ1
≥ t

)
≤ 1

d

k′ + 1

t2

Therefore

P
(
λmin

(
((W o(W o)T )−1

)
<

1

d(1 + t)

)
≤ k′ + 1

dt2

Now, we lower bound tr(U∗P (W o)):

tr(U∗P (W o)) =

k∑
1

uTi (W o)T (W o(W o)T )−1W oui

Thus, with probability no less than 1− k′+1
dt2 ,

tr(U∗P (W o)) ≥ 1

d(t+ 1)

k∑
i=1

uTi (W o)TW oui =
1

d(t+ 1)

k∑
i=1

‖W oui‖22

Now, by the norm-preserving property of the random Gaussian matrix W o (e.g., see
Theorem 1.2 of (3)), w.p. at least 1− 2k exp

(
−(ε2 − ε3)k′/4

)
, for all ui, i ∈ [k],

‖W oui‖22‖ ≥ k′(1− ε)

This implies that, w.p. at least 1− 2k exp
(
−(ε2 − ε3)k′/4

)
− k′+1

dt2 ,

tr(U∗P (W o)) ≥ 1

d(1 + t)
k′k(1− ε)

Proof of Lemma 1. For any i, tr(U∗P (W o
i )) =

∑ki
`=1(w`)

TU∗w`, where w` are rows
sampled from the last iterate of the previous epoch, WT

i−1. Each row has equal probabil-
ity to be drawn, so for all `,

E
[
(w`)

TU∗w`
]

=
1

ki−1

ki−1∑
m=1

(wm)TU∗wm =
1

ki−1
tr(U∗P (WT

i−1)) .

Hence,

E [tr(U∗P (W o
i ))] = ki

ki∑
`=1

E
[
(w`)

TU∗w`
]

=
ki
ki−1

tr(U∗P (WT
i−1)) ,

where the expectation is taken over the randomness of uniform row-sampling operation.
Now taking expectation again over the randomness of Matrix Krasulina completes the
proof.
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G Full-rank extension: proofs of Theorem 2
In this section, we follow the same proof structure as that of Theorem 1 and adapts it to
show linear convergence of Algorithm 1 in the general full-rank case.

G.1 Extension of Prop. 1
Proposition 4 (Extension of Prop 1). Fix any 0 < δ ≤ 1

e . Let learning rate schedule
in Algorithm 1 be ηt = c

t+to
. Suppose W o is initialized such that ∆o ≤ 1−τ

2 for some
τ ∈ (0, 1). If

c ≥ 1

(λk − λk+1)τ
, and to ≥ max{

64Bc2 ln 1
δ

(∆o)2
, 1} .

then P (∪i≥1Gi−1 \ Gi) ≤ δ.

Proof. For simplicity of notation, for any i, we let Ei[es∆
i

] := E[es∆
i

1Gi−1
]. By

Lemma 5, for any s > 0,

Ei{es∆
i

} ≤ Ei{es{(1−
β

to+i )∆
i−1

} exp

(
sc2B

(to + i)2
+

s2c2B

(to + i)2

)
≤ Ei−1{es

(1)∆i−1

} exp

(
sc2B

(to + i)2
+

s2c2B

(to + i)2

)
where s(1) = s(1 − β

to+i ). Similarly, the following recurrence relation holds for
k = 0, . . . , i:

Ei−k{es
(k)∆i−k

} ≤ Ei−(k+1){es
(k+1)∆i−k−1

} exp

(
s(k)c2B

(to + i− k)2
+

(s(k))2c2B

(to + i− k)2

)
where s(0) := s, and for k ≥ 1, s(k) := Πk

t=1(1− β
to+(i−t+1) )s(0). Note (see, e.g., (1))

that ∀β > 0, k ≥ 1,

s(k) = Πk
t=1(1− β

to + (i− t+ 1)
)s ≤ (

to + i− k + 1

to + i
)βs

Since the bound is shrinking as β increases and β = 2c(λk − λk+1)τ ≥ 2,

s(k)

(t0 + i− k)2
≤ (

to + i− k + 1

to + i
)2 s

(to + i− k)2
≤ 4s

(to + i)2

Repeatedly applying the relation, we get

Ei{es∆
i

} ≤ es
(i)∆0

exp

(
i−1∑
k=0

( 4sc2B

(to + i)2
+

4s2c2B

(to + i)2

))

≤ exp

(
s(
to + 1

to + i
)β∆0 + (sc2B + s2c2B)

4i

(to + i)2

)
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Then we can apply Markov’s inequality, for any si > 0,

P (Gi−1 \ Gi) = P
(
∆i 1Gi−1 > 1− τ

)
≤ P

(
∆i 1Gi−1 > 2∆o

)
= P

(
1Gi−1

esi∆
i

> esi2∆o
)
≤

E
[
esi∆

i

1Gi−1

]
esi2∆o =

Ei[esi∆
i

]

esi2∆o

Combining this with the upper bound on Ei esi∆
i

, we get

P (Gi−1 \ Gi)

≤ exp

(
−si
(

∆o(2− (
to + 1

to + i
)β)− (B + siB)

4c2i

(to + i)2

))
≤ exp

(
−si
(

∆o − (B + siB)
4c2i

(to + i)2

))
since i ≥ 1. We choose si = 1

∆ ln (i+1)2

δ with ∆ = ∆o

2 .
Recall that we choose

to ≥ max{
64Bc2 ln 1

δ

(∆o)2
, 1} ,

Since δ < 1
e , we have to ≥ 64Bc2

(∆o)2 = 16Bc2

∆2 . Note that

−∆(to + i)

4Bc2
+

2 ln(i+ 1)2/δ

∆
≤ −∆(to + i)

4Bc2
+

ln(i+ to)
4/δ

∆

Consider the function

f(y) = − ∆y

4Bc2
+

ln y4/δ

∆
and its derivative

f ′(y) = − ∆

4Bc2
+

4

y∆

f ′(y) is smaller than zero whenever y ≥ 16Bc2

∆2 . And when y = 16Bc2

∆2 ln 1
δ , f(1) ≤ 0.

Thus, for our choice of to,

1 + si ≤ 2si ≤
∆(to + i)

4Bc2
,

which implies that

2∆− (B + siB)
4c2i

(to + i)2
≥ 2∆− (B + siB)

4c2

to + i
≥ ∆

and hence,

P (Gi−1 \ Gi) ≤ e−
1
∆ (ln

(1+i)2

δ )∆ =
δ

(i+ 1)2

Finally, we have

P (∪i≥1Gi−1 \ Gi) ≤
∞∑
i=1

P (Gi−1 \ Gi) ≤ δ .
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G.2 Auxiliary lemma for Prop. 4
Lemma 5 (Supermartingale construction: full rank case). Let k and b be defined as in
Eq (2.4), and ηt := c

t+to
for c, to > 0. Suppose G0 holds.

Let B := max

(
8(b+ ‖Σ∗‖F )2k,

(
kb+ 2cb2 + c2b3

)
λ1(d− k)

)
,

β := 2c(λk − λk+1)τ ,

Then for any i ≤ t, and for any constant s > 0,

E
[
1Gi exp

(
s∆i+1

)
|Fi
]

≤ 1Gi−1 exp

(
s∆i

(
1− β

i+ 1 + to

)
+ s(

c

i+ 1 + to
)2B + s2(

c

i+ 1 + to
)2B

)
.

Proof. By Prop 5

tr(U∗P i+1) ≥ tr(U∗P i) + 2ηi+1(λk − λk+1)∆i(1−∆t) + 2ηi+1Z

−(ηi+1)2Ci+1trΣ∗(I − P )

≥ tr(U∗P i) + 2ηi+1(λk − λk+1)∆i(1−∆t) + 2ηi+1Z

−(ηi+1)2Ci+1λ1(d− k)

Then we get

∆i+1 ≤ ∆i − 2ηi+1(λk − λk+1)∆iτ − 2ηi+1Z + (ηi+1)2Ci+1λ1(d− k)

= ∆i(1− 2ηi+1(λk − λk+1)τ)− 2ηi+1Z + (ηi+1)2Ci+1λ1(d− k)

Following the same argument as in Lemma 1, we get

E
[
1Gi exp

(
s∆i+1

)
|Fi
]

≤ 1Gi−1 exp
(
s∆i

(
1− 2ηi+1(λk − λk+1)τ

))
× exp

(
s(ηi+1)2Ci+1λ1(d− k) + 2s2(ηi+1)2|Z|2

)
.

Since by definition,

Ci+1 := kb+ 2ηi+1b2 + (ηi+1)2b3 ≤ kb+ 2η1b2 + (η1)2b3

≤ kb+ 2
c

1 + to
b2 + (

c

1 + to
)2b3

We get

Ci+1λ1(d− k) ≤
(
kb+ 2

c

1 + to
b2 + (

c

1 + to
)2b3

)
λ1(d− k) ≤ B ,

On the other hand, since

|Z| ≤ 2
√
‖XX> − Σ∗‖2F ‖(I − P )U∗P‖2F ≤ 2

√
(‖X‖4 + ‖Σ∗‖2F )tr(U∗ − U∗P )

22



≤ 2(‖X‖2 + ‖Σ∗‖F )
√
tr(U∗ − U∗P ) ≤ 2(b+ ‖Σ∗‖F )

√
k

We get

2|Z|2 ≤ 8(b+ ‖Σ∗‖F )2k ≤ B ,

Plug this into the bound on expectation completes the proof.

H Full-rank extension of Prop. 2
This section extends Prop. 2 from rank-k to the full rank case as stated below.

Proposition 5 (Iteration-wise subspace improvement: full rank case). At the t+ 1-th
iteration of Algorithm 1, the following holds:

(V1) Let Ct := kb+ 2ηtb2 + (ηt)2b3 . Then

E
[
tr(U∗P t+1)|Ft

]
≥ tr(U∗P t)

+2ηt+1(λk − λk+1)∆t(1−∆t)− (ηt+1)2Ct+1tr(Σ∗(I − P ))

(V2) There exists a random variable Z, with

E [Z|Ft] = 0 and |Z| ≤ 2(b+ ‖Σ∗‖F )
√

∆t

such that

tr(U∗P t+1) ≥ tr(U∗P t) + 2ηt+1(λk − λk+1)∆t(1−∆t)

+2ηt+1Z − (ηt+1)2Ct+1tr(Σ∗(I − P ))

Proof of Proposition 5. The proof is similar to proof of Proposition 2, with modification
of Lemma 6 and the variance term in Eq. C.6. We consider

E
[
trU∗P t+1

∣∣Ft] = E
[
trU∗(W t+1)>(W t+1(W t+1)>)−1W t+1

∣∣Ft] ,
Since U∗ is positive semidefinite, we can write it as U∗ = ((U∗)1/2)2. By the proof of
Lemma 2,

(W t+1(W t+1)>)−1 � (1− (ηt+1)2‖rt+1‖2‖st+1‖2)Ik′

Letting V := W t+1(U∗)1/2, this implies that

V >
[
W t+1(W t+1)>)−1 − (1− (ηt+1)2‖rt+1‖2‖st+1‖2)Ik′

]
V � 0

That is, the matrix on the left-hand-side above is positive semi-definite. Since trace of a
positive semi-definite matrix is non-negative, we have

tr(V >W t+1(W t+1)>)−1V ) ≥ tr(V >(1− (ηt+1)2‖rt+1‖2‖st+1‖2)V )
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By commutative property of trace, we further get

tr(U∗(W t+1)>[W t+1(W t+1)>]−1W t+1) = tr(V >W t+1(W t+1)>)−1V )

≥ tr(V >(1− (ηt+1)2‖rt+1‖2‖st+1‖2)V )

= (1− (ηt+1)2‖rt+1‖2‖st+1‖2)tr(U∗(W t+1)>W t+1)

Taking expectation on both sides, we get

E
[
trU∗P t+1

∣∣Ft] ≥ (1− (ηt+1)2‖rt+1‖2‖st+1‖2)E
[
tr(U∗(W t+1)>W t+1)

∣∣Ft]
Now we in turn lower bound E

[
tr[U∗(W t+1)>W t+1]

∣∣Ft] . First, we have

(W t+1)>W t+1 = (W t + ηt+1st+1(rt+1)>)>(W t + ηt+1st+1(rt+1)>)

= P t + ηt+1rt+1(st+1)>W t + ηt+1(W t)>st+1(rt+1)> + (ηt+1)2‖st+1‖2rt+1(rt+1)>

This implies that

E
[
tr[U∗(W t+1)>W t+1]

∣∣Ft] = tr(U∗ E
[
(W t+1)>W t+1

∣∣Ft])
= tr(U∗P t) + ηt+1trE

[
U∗rt+1(st+1)>

∣∣Ft]W t

+ηt+1tr(E
[
U∗(W t)>st+1(rt+1)>

∣∣Ft])
+(ηt+1)2 E

[
‖st+1‖2tr(U∗rt+1(rt+1)>)

∣∣Ft]
≥ tr(U∗P t) + ηt+1trU∗ E

[
rt+1(st+1)>

∣∣Ft]W t

+ηt+1tr(U∗ E
[
(W t)>st+1(rt+1)>

∣∣Ft])
≥ tr(U∗P t) + 2ηt+1tr(U∗ E

[
(W t)>st+1(rt+1)>

∣∣Ft])
the second to last inequality follows since we can drop the non-negative term, and the
last inequality holds since the tr(A) = tr(A>) for any square matrix A. Since

E
[
st+1(rt+1)>

∣∣Ft] = W t(Σ∗ − Σ∗P t) ,

we have

trU∗ E
[
(W t)>st+1(rt+1)>

∣∣Ft] = trU∗(P tΣ∗ − P tΣ∗P t) .

By Lemma 6,

trU∗ E
[
(W t)>st+1(rt+1)>

∣∣Ft] = trU∗(P tΣ∗ − P tΣ∗P t) ≥ (λk − λk+1)∆t(1−∆t) ,

Then we have,

E
[
tr[U∗(W t+1)>W t+1]

∣∣Ft] ≥ tr(U∗P t) + 2(λk − λk+1)∆t(1−∆t) .

Now we can bound E
[
trU∗P t+1

∣∣Ft] as:

E
[
tr(U∗(W t+1)>[W t+1(W t+1)>]−1W t+1)

∣∣Ft]
≥ E

[
tr(U∗(W t+1)>W t+1)

∣∣Ft]− E
[
(ηt+1)2‖rt+1‖2‖st+1‖2tr[U∗(W t+1)>W t+1]

∣∣Ft]
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≥ tr(U∗P t) + 2(λk − λk+1)∆t(1−∆t)

−E
[
(ηt+1)2‖rt+1‖2‖st+1‖2tr(U∗(W t+1)>W t+1)

∣∣Ft] (H.7)

Since k ≤ d, and rows of W t are orthonormal, we get

‖st+1‖2 = ‖W tXt+1‖2 ≤ ‖Xt+1‖2 .

Similarly, ‖rt+1‖2 ≤ ‖Xt+1‖2 . Therefore,

‖st+1‖2tr(U∗(W t+1)>W t+1)

≤ ‖Xt+1‖2
(
trU∗P t + 2ηt+1trU∗rt+1(Xt+1)>P t + (ηt+1)2‖st+1‖2trU∗rt+1(rt+1)>

)
= ‖Xt+1‖2

(
trU∗P t + 2ηt+1(Xt+1)>P tU∗rt+1 + (ηt+1)2‖st+1‖2(rt+1)>U∗rt+1

)
≤ ‖Xt+1‖2

(
trU∗P t + 2ηt+1‖Xt+1‖2 + (ηt+1)2‖st+1‖2‖rt+1‖2

)
≤ ‖Xt+1‖2

(
trU∗P t + 2ηt+1‖Xt+1‖2 + (ηt+1)2‖Xt+1‖4

)
On the other hand, we have

E
[
‖rt+1‖2

∣∣Ft] = tr(Σ∗ − Σ∗P t)

Thus, the quadratic term (quadratic in ηt+1) in Eq (H.7) can be upper bounded as

E
[
(ηt+1)2‖rt+1‖2‖st+1‖2tr(U∗(W t+1)>W t+1)

∣∣Ft]
≤ (ηt+1)2Cto E

[
‖rt+1‖2

∣∣Ft] = (ηt+1)2Ctotr(Σ
∗ − Σ∗P t)

where

Cto := max
X
‖X‖2

(
trU∗P t + 2ηt+1‖X‖2 + (ηt+1‖X‖2)2

)
≤ max

X
‖X‖2

(
k + 2ηt+1‖X‖2 + (ηt+1‖X‖2)2

)
= kb+ 2ηt+1b2 + (ηt+1)2b3

Note that by our definition of Ct+1,

Ct+1 := kb+ 2ηt+1b2 + (ηt+1)2b3

We get that

E
[
(ηt+1)2‖rt+1‖2‖st+1‖2tr(U∗(W t+1)>W t+1)

∣∣Ft] ≤ Ct+1(ηt+1)2tr(Σ∗ − Σ∗P t) .

Finally, plug this bound in Eq. (H.7) completes the proof:

E
[
tr(U∗P t+1)|Ft

]
≥ tr(U∗P t) + (λk − λk+1)∆t(1−∆t)− (ηt+1)2Ct+1tr(Σ∗(I − P t))
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The inequality of the statement in Version 2 can be obtained similarly, by setting

Z = 2

(
tr(U∗(W t)>st+1(rt+1)>)− E

[
tr(U∗(W t)>st+1(rt+1)>)

∣∣Ft])
It is clear that E

[
Z
∣∣Ft] = 0. Now we upper bound |Z|: Since

tr(U∗(W t)>st+1(rt+1)>) = trU∗P tXt+1(Xt+1)>(I − P t)

we get (subsequently, we denote P t by P , Xt+1 by X)

|Z| = |2tr(U∗PXX>(I − P ))− 2tr(U∗PΣ∗(I − P ))|

= 2|tr(XX> − Σ∗)(I − P )U∗P | ≤ 2
√
‖XX> − Σ∗‖2F ‖(I − P )U∗P‖2F

We first bound ‖(I − P )U∗P‖2F ,

‖(I − P )U∗P‖2F ≤ ‖(I − P )U∗‖2F = tr(U∗ − U∗P )

where the first inequality is due to the fact that P is a projection matrix so that norms
are at best preserved if not smaller; the second inequality is also due to the fact that
both U∗ and I − P are projection matrices, and thus (I − P )(I − P ) = I − P and
U∗U∗ = U∗. Now we bound ‖XX> − Σ∗‖2F :

‖XX> − Σ∗‖2F = tr(XX> − Σ∗)>(XX> − Σ∗)

= ‖X‖4 − 2X>Σ∗X + ‖Σ∗‖2F ≤ ‖X‖4 + ‖Σ∗‖2F

where the last inequality is due to the fact that Σ∗ is positive semidefinite, that is, for
any x, we have x>Σ∗x ≥ 0. Finally,

|Z| ≤ 2
√
‖XX> − Σ∗‖2F ‖(I − P )U∗P‖2F

≤ 2
√

(‖X‖4 + ‖Σ∗‖2F )tr(U∗ − U∗P )

≤ 2(‖X‖2 + ‖Σ∗‖F )
√

∆t ≤ 2(b+ ‖Σ∗‖F )
√

∆t

The third inequality is by the following argument: For any x ≥ 0, y ≥ 0, we have√
x2 + y2 ≤ x+ y, Letting x = ‖X‖2 and y = ‖Σ∗‖F leads to the inequality.

H.1 Auxiliary lemmas for Proposition 5
Lemma 6 (extension of Lemma 3 to full-rank case). Let Σ∗ be of full rank, and
Γt := tr(U∗P tΣ∗(Id − P t)) , Then the following holds:

1. tr(U∗P t) = tr(U∗) implies that Γt = 0 .
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2. Γt ≥ (λk − λk+1)∆t(1−∆t) .

Proof of Lemma 6. We first prove statement 1. Since U∗ is symmetric and positive
semidefinite, we can write it as U∗ = ((U∗)1/2)2. So we have

tr(U∗ − U∗P t) = tr(U∗(I − P t))
= tr((U∗)1/2(I − P t)(I − P t)(U∗)1/2) = ‖(I − P t)(U∗)1/2‖2F

Therefore, tr(U∗) = tr(U∗P t) implies that

tr(U∗ − U∗P t) = ‖(I − P t)(U∗)1/2‖2F = 0

which implies
(I − P t)(U∗)1/2 = 0

where “0” denotes the zero matrix. Thus,

Γt = tr(P tΣ∗(I − P t)U∗) = tr(P tΣ∗(I − P t)(U∗)1/2(U∗)1/2) = tr0 = 0 ,

Now we prove statement 2. Let

Σ∗≤k :=

k∑
i=1

λiuiu
T
i and Σ∗>k :=

d∑
j=k+1

λjuju
T
j ,

We can decompose Σ∗ as
Σ∗ = Σ∗≤k + Σ∗>k ,

and we get

Γt = tr(U∗P tΣ∗≤k(Id − P t)) + tr(U∗P tΣ∗>k(Id − P t))
= tr(U∗P tΣ∗≤k(Id − P t))− tr(U∗P tΣ∗>kP t) ,

which is by the fact that

tr(U∗P tΣ∗>k) = tr(P tΣ∗>kU
∗) = 0 ,

tr(U∗P tΣ∗≤k(Id − P t)) = tr(U∗P t
∑
i≤k

λiuiu
T
i (Id − P t))

=
∑
i≤k

λitr(U
∗P tuiu

T
i (Id − P t)) =

∑
i≤k

λi[tr(u
T
i P

tui)− tr(U∗P tuiuTi P t)]

=
∑
i≤k

λitr(u
T
i P

t(I − U∗)P tui) =
∑
i≤k

λitr(((I − U∗)P tui)T (I − U∗)P tui)

Therefore, each term tr(uTi P
t(I − U∗)P tui) is non-negative, and we have

λitr(u
T
i P

t(I − U∗)P tui) ≥ λktr(uTi P t(I − U∗)P tui)
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Implying that

tr(U∗P tΣ∗≤k(Id − P t)) ≥ λk
∑
i≤k

tr(uTi P
t(I − U∗)P tui)

= λktr(P
t(I − U∗)P tU∗)

On the other hand,

tr(U∗P tΣ∗>kP
t) = tr(U∗P t

∑
j>k

λjuju
T
j P

t)

=
∑
j>k

λjtr(U
∗P tuju

T
j P

t) =
∑
j>k

λjtr(u
T
j P

tU∗P tuj)

=
∑
j>k

λjtr((U
∗P tuj)

TU∗P tuj) ≤
∑
j>k

λk+1tr((U
∗P tuj)

TU∗P tuj)

= λk+1

∑
j>k

tr(uTj P
tU∗P tuj) = λk+1tr(P

tU∗>kP
tU∗) = λk+1tr(P

t(I − U∗)P tU∗)

where the upper bound holds because the terms tr((U∗P tuj)TU∗P tuj) are non-
negative, and the last equality is by Lemma 7. Thus,

Γt ≥ (λk − λk+1)tr(P t(I − U∗)P tU∗)

Finally, we apply the result in Lemma 3 to lower bound tr(P t(I − U∗)P tU∗): In
Lemma 3, it was shown that

tr(PΣ∗≤k(I − P )U∗)

≥
∑
i≤k

λi(1− uTi P tui)(uTi P tui − Σj 6=i[1− uTj P tuj ])

If we set all eigenvalues λ1, . . . , λk in Σ≤k to be 1, then Σ∗≤k becomes U∗. So by the
inequality above,

tr(P tU∗(I − P t)U∗)
≥
∑
i≤k

(1− uTi P tui)(uTi P tui − Σj 6=i[1− uTj P tuj ])

= ∆t(1−∆t)

Also since

tr(P tU∗(I − P t)U∗) = tr(P tU∗U∗)− tr(P tU∗P tU∗) = tr(P tU∗)− tr(P tU∗P tU∗)
= tr(P tU∗P t)− tr(P tU∗P tU∗) = tr(P tU∗P t(I − U∗)) ,

So we get

Γt ≥ (λk − λk+1)tr(P t(I − U∗)P tU∗) ≥ (λk − λk+1)∆t(1−∆t)
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Lemma 7 (Matrix equality). Let U∗>k :=
∑d
i=k+1 uiu

T
i , and U∗ :=

∑d
i<k uju

T
j such

that {u1, . . . , ud} forms a orthonormal basis of Rd. Then U∗>k = I − U∗.

Proof. To prove that U∗>k = I − U∗, we only need to find an invertible matrix R and
show that

U∗>kR = (I − U∗)R

Then it implies that

U∗>k = U∗>kRR
−1 = (I − U∗)RR−1 = (I − U∗)

Note that {u1, . . . , ud} forms a orthonormal basis, so letting

R :=

 ↑ . . . ↑
u1 . . . ud
↓ . . . ↓

 and x =

uT1 y. . .
uTd y

 ,

we have RRT = RTR = I . Let M?i denote the i-th column of matrix M , then

(U∗>kR)?i =
∑
j>k

uju
T
j ui

{
0, for i ≤ j
ui, for i > j

And

((I − U∗)R)?i = ui −
∑
j≤k

uju
T
j ui =

{
0, for i ≤ j
ui, for i > j

Thus, U∗>kR = (I − U∗)R, which finishes the proof.

H.2 Proof of Theorem 2
Proof. By our choice of learning rate and the initialization condition, the conditions in
Proposition 4 holds for any t > i, we apply it and get

P (Gt) ≥ 1− δ ,

This proves the first statement. In contrast to the proof of Theorem 1, by Prop. 5, the
recurrence relation in the general case (that is, without low-rank assumption) is

trU∗P t ≥ 1Gt−1
(tr(U∗P t−1)

+2ηt(λk − λk+1)∆t−1(1−∆t−1) + 2ηtZ − (ηt)2CttrΣ∗(I − P ))

This implies that

∆t ≤ ∆t−1 − 2ηt(λk − λk+1)∆t−1(1−∆t−1) + 2ηtZ + (ηt)2Ctλ1(d− k)]

≤ ∆t−1 − 2ηt(λk − λk+1)∆t−1(1−∆t−1) + 2ηtZ + (ηt)2B]

We can multiply both sides by indicator variable 1Gt−1
and get

1Gt−1
∆t ≤ 1Gt−1

[∆t−1 − 2ηt(λk − λk+1)∆t−1(1−∆t−1) + 2ηtZ + (ηt)2B]
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≤ 1Gt−1 ∆t−1 − 2ηt(λk − λk+1)1Gt−1 ∆t−1τ + 2ηtZ 1Gt−1 +(ηt)2B 1Gt−1

≤ 1Gt−1 ∆t−1 − 2ηt(λk − λk+1)1Gt−1 ∆t−1τ + 2ηtZ + (ηt)2B

where the second inequality holds since Gt−1 holds implies that ∆t < 1− τ . Let β be
defined as in Lemma 5, this implies that

1Gt−1
∆t ≤ 1Gt−1

∆t−1(1− β

to + t
) + (

c

to + t
)2B + 2ηtZ

Taking expectation, we get

E[1Gt−1
∆t] ≤ E[1Gt−1

∆t−1](1− β

to + t
) +

c2B

(t+ to)2

≤ E[1Gt−2
∆t−1](1− β

to + t
) +

c2B

(t+ to)2

We subsequently denote by Et[·] := E[1Gt−1 ·] for convenience. So the above inequality
can be re-written as

Et[∆t] ≤ Et−1[∆t−1](1− β

to + t
) +

c2B

(t+ to)2

Since by our choice of parameter c in the learning rate, β = 2(λk − λk+1)τc > 1, we
can apply Lemma 8 by letting ut ← Et+to [∆t+to ] (we temporarily change the notation
Et[∆t] to Et+to [∆t+to ] to match the notation in Lemma 8), t ← to + t, a ← β, and
b← c2B

Et[∆t] ≤ (
to + 1

to + t+ 1
)β∆o +

c2B

β − 1
(
to + 2

to + 1
)β+1 1

to + t+ 1

Also, since (λk − λk+1)τc > 1, β − 1 > (λk − λk+1)τc, and β > 2. Thus

Et[∆t] ≤ (
to + 1

to + t+ 1
)2∆o +

c2B

(λk − λk+1)τc
(
to + 2

to + 1
)β+1 1

to + t+ 1

= (
to + 1

to + t+ 1
)2∆o +

cB

(λk − λk+1)τ
(
to + 2

to + 1
)β+1 1

to + t+ 1

Finally, note that

E
[
∆t|Gt

]
=

Et[∆t]

P (Gt)

≤ 1

1− δ
{( to + 1

to + t+ 1
)2∆o +

cB

(λk − λk+1)τ
(
to + 2

to + 1
)β+1 1

to + t+ 1
} .

Lemma 8 (Lemma D1 of (1)). Consider a nonnegative sequence (ut : t ≥ to), such
that for some constants a, b > 0 and for all t > to ≥ 0, ut ≤ (1− a

t )ut−1 + b
t2 . Then,

if a > 1,

ut ≤ (
to + 1

t+ 1
)auto +

b

a− 1
(1 +

1

to + 1
)a+1 1

t+ 1
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