
Appendix
A Proof of Lemma 1

Proof of Lemma 1. The dynamical system is given by(
Q(l)

C(l)

)
=

 σ2
w E
u∼N (0,Q(l−1))

φ2(u) + σ2
b

1
Q(l−1)

[
σ2
w E

(u1,u2)∼N (0,Σ(Q(l−1),C(l−1)))
φ(u1)φ(u2) + σ2

b

]  ≡M [(
Q(l−1)

C(l−1)

)]
.

(20)

Since Q(l) = σ2
wQ̂

(l−1) + σ2
b , convergence of Q(l) to a fixed point is equivalent to convergence of

Q̂(l). If we assume Q(l) has converged to Q∗, the system in eq. 20 reduces to

MQ∗(C) =
1

Q∗

[
σ2
w E

(u1,u2)∼N (0,Σ(Q∗,C))
φ(u1)φ(u2) + σ2

b

]
(21)

Linearizing the above equation gives

MQ∗(C) =MQ∗(C
∗) +

∂MQ∗(C
∗)

∂C︸ ︷︷ ︸
≡χ

(C − C∗) +O
(
(C − C∗)2

)

and using a Cholesky decomposition and denoting by Dx a standard Gaussian measure, we have

χC∗ =
1

Q∗
∂

∂C

[
σ2
w E

(u1,u2)∼N (0,Σ(Q∗,C))
φ(u1)φ(u2) + σ2

b

]
C=C∗

=
σ2
w

Q∗

∫
Dz1Dz2φ(

√
Q∗z1 + µb)

∂

∂C
φ(
√
Q∗

(
Cz1 +

√
1− C2z2

)
+ µb)C=C∗

=
σ2
w

Q∗

∫
Dz1Dz2φ(

√
Q∗z1 + µb)φ

′(
√
Q∗

(
Cz1 +

√
1− C2z2

)
+ µb)

√
Q∗

(
z1 −

z2C√
1− C2

)
and using

∫
Dzg(z)z =

∫
Dzg′(z) which holds for any g(z)

= σ2
w E

(u1,u2)∼N (0,Σ(Q∗,C))
φ′(u1)φ′(u2).

The time scale of convergence dictated by the rate χ is obtained by solving the linear equation for
ε(l) = C(l) − C∗, which gives ε(l) = ε0e

−l/ξ and thus in the linear regime we have

e−1/ξ =
ε(l+1)

ε(l)
=
MQ∗(C

(l))− C∗

C(l) − C∗
≈
C∗ + χ

(
C(l) − C∗

)
− C∗

C(l) − C∗
= χ

ξ = − 1

logχ
.

Since a smooth convex function can intersect a linear function at no more than two points unless the
two are equal (since otherwise the gradient must change sign twice implying negative curvature at
some point), in order to show thatMQ∗(C) can have at most two fixed points in [0, 1] it suffices to
show that it is convex in this range. A calculation similar to the one above gives:

∂2MQ∗(C)

∂C2
= σ2

wQ∗ E
(u1,u2)∼N (0,Σ(Q∗,C))

φ′′(u1)φ′′(u2).

If φ is odd, so is φ′′ and then the expression above is non-negative for C ∈ [0, 1] according to Lemma
2 in [8]. It is obviously also non-negative simply if φ′′ is uniformly non-negative. The result applies to
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quantized activation as well since we can replace the Heaviside function with a smooth approximation
that is identical to within machine precision, and apply the above argument.

Since a fixed point is only stable if the slope χ is smaller than 1 and there are at most two fixed points
in [0, 1], there can be at most one stable fixed point. It follows that the fixed point of the dynamics
does not depend on initialization as long as C(0) ≥ 0. While there may be another stable fixed
point in [−1, 0), the network will still be unable to distinguish between any two inputs that are either
completely uncorrelated or positively correlated, which will generally prevent learning aside from
trivial tasks where data points in different classes are always negatively correlated, and thus the data
is linearly separable.

B Covariances of post-activations

In the main text we review results on asymptotic normality of pre-activations α(l)(x) of deep feed-
forward networks at the infinite width limit. The analysis of signal propagation in such networks is
based on studying convergence of the covariances of these pre-activations to their fixed points. The
convergence rate in eq. 6 and the corresponding time scale in eq. 7 that gives the typical maximal
trainable depth are thus the main objects of interest.

It will be convenient at times to consider instead the evolution of the covariances of the post-activations
α̂(l)(x) = φ(α(l)(x)). We do this by defining, analogously to eq. 3,(

Eα̂(l)
i (x)α̂

(l)
i (x) Eα̂(l)

i (x)α̂
(l)
i (x′)

Eα̂(l)
i (x)α̂

(l)
i (x′) Eα̂(l)

i (x′)α̂
(l)
i (x′)

)
=

(
Σ̂(l)(x, x) Σ̂(l)(x, x′)

Σ̂(l)(x, x′) Σ̂(l)(x′, x′)

)
+
(
µ̂(l)
)2
(

1 1
1 1

)

= Q̂(l)

(
1 Ĉ(l)

Ĉ(l) 1

)
+
(
µ̂(l)
)2
(

1 1
1 1

)
(22)

For a given x, x′ the quantities Q(l), C(l) are trivially related to µ̂(l−1), Q̂(l−1), Ĉ(l−1) via eq. 2,
which gives

Q(l) = σ2
w

(
Q̂(l−1) +

(
µ̂(l−1)

)2
)

+ σ2
b

C(l) =
σ2
w

(
Q̂(l−1)Ĉ(l−1) +

(
µ̂(l−1)

)2)
+ σ2

b

Q(l)
.

The covariance map for the hidden states analogous to eq. 5 is simply

M̂µ̂∗,Q̂∗(Ĉ) =
1

Q̂∗
E

(u1,u2)∼N (µ̂∗,Σ̂(Q̂∗,Ĉ))
φ(u1)φ(u2) (23)

where Σ̂(Q̂∗, Ĉ) =

(
σ2
wQ̂
∗ + σ2

b σ2
wQ̂
∗Ĉ + σ2

b

σ2
wQ̂
∗Ĉ + σ2

b σ2
wQ̂
∗ + σ2

b

)
. The convergence rates for 5 are identical

since

∂MQ∗(C
(l))

∂C(l)
=
∂C(l+1)

∂C(l)
=

1

Q∗

∂σ2
w

(
Q̂∗Ĉ(l)

)
+ σ2

b

∂C(l)

=
σ2
wQ̂
∗

Q∗
∂Ĉ(l)

∂Ĉ(l−1)

∂Ĉ(l−1)

∂C(l)
=

∂Ĉ(l)

∂Ĉ(l−1)
=
∂M̂µ̂∗,Q̂∗(Ĉ

(l−1))

∂Ĉ(l−1)

giving

χ = lim
l→∞

∂MQ∗(C
(l))

∂C(l)
= lim
l→∞

∂M̂µ̂∗,Q̂∗(Ĉ
(l−1))

∂Ĉ(l−1)
= χ̂.
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C Calculation of the fixed point slope for sign-activation

For convinience, we use the hidden states covariances and mapping Ĉ, Q̂,M̂ as defined in appendix
B, as they have a linear relationship to the pre-activation at the fixed point. Using a Cholesky
decomposition on the equation 10: χ = 4σ2

w E
(ua,ub)∼N (0,Σ(Q∗,C∗))

δ(ua)δ(ub), we get

4σ2
w

∫
u1

∫
u2

1

2π
exp

(
−u

2
1 + u2

2

2

)
δ(
√
Q∗u1)δ

(√
Q∗
(
C∗u1 +

√
1− (C∗)2u2

))
du1du2.

The delta functions enforces: u1 = 0, µ2 = 0, giving us

χ =
2

π

σ2
w

Q∗
√

1− (C∗)2
.

Then, using Q∗ = σ2
wQ̂
∗ + σ2

b , and since Q̂∗ = 1 for sign activation:

χ =
2

π

σ2
w

(σ2
w + σ2

b )
√

1− (C∗)2
.

While this equation is written for the fixed point C∗, this equation can describe the slope ofM(C)
for every value of C. Rather than directly calculatingM(C) using equation 4, it is surprisingly time
saving to calculate it by using our expression for χ(C) = dM(C)

dC :

M(C)− const =

∫ C

0

χ(C ′)dC ′ =
2

π

σ2
w

(σ2
w + σ2

b )
arcsin(C).

We know thatM(C = 1) = 1, from which we can compute the constant

const =M(1)− 2

π

σ2
w

(σ2
w + σ2

b )
arcsin(1) =

σ2
b

σ2
w + σ2

b

.

In conclusion:

M(C) =
2σ2
w

π arcsin (C) + σ2
b

σ2
w + σ2

b

It’s also worth noting that for the hidden-states, the mapping for sign activation is:

M̂(Ĉ) =
2

π
arcsin

(
Ĉσ2

w + σ2
b

σ2
w + σ2

b

)

In addition to the fixed point M̂(Ĉ = 1) = 1, the covariance mapping function suggests an additional
fixed point within the range [0, 1). In the case of σ2

b = 0, The entire network becomes anti-symmetric
upon initialization and C = −1 becomes an infinitely unstable fixed point as well.

D Stochastic Rounding

One possible way to counter the negative effects of quantization which has proven itself in the past,
is by adding noise to the rounding process. Being a commonplace method in machine learning, we
would like to explore the effects of stochastic rounding on the dynamics of the neural network. When
using this method the sign activation becomes probabilistic and can be modeled as:

φ(x) = sign(x+ n) (24)
when n ∼ Uniform[−1, 1] is randomized for every neuron. Rather than working with a uniformly
distributed noise, we replace it with a normal-distributed noise. Therefore, φ(u) = sign(u+ n), for
n ∼ N (0, a2). We justify this using a numeric simulation presented in figure 4, and in Appendix D.1
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we find that the expression for stochastic rounding mapping (for hidden states) M̂sr(Ĉ) is:

M̂sr(Ĉ) =
2

π
arcsin

(
1

B

Ĉσ2
w + σ2

b

σ2
w + σ2

b

)
(25)

whereB =

√
1 +

(
a
Q∗

)2

(2Q∗ + a2). While the new mapping function for Ĉ does not reach infinite

slope at any point (since C ≤ 1, B > 1), the noise also eliminates Ĉ = 1 as a fixed point. This result
is consistent with the findings of [26] who have shown a similar phenomena when using dropout.
Due to the arcsin function being a convex, monotonically increasing function in the area 0 < C < 1,
We can also conclude that adding noise (and therefore, increasing B) can only decrease the fixed
point slope. See L.2 for proof, and figure 4 for illustration.
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Figure 4: A simulation comparing M̂(Ĉ) for deterministic and stochastic sign activations. For the
Gaussian noise, we used the distribution N (0, 1

3 ), so both Gauss and Uniform stochastic activations
have the same first and second moments. In all cases, the stochastic activation with the Gauss noise
was indistinguishable from the one with the uniform noise.

D.1 Development of the mean field equations for stochastic rounding

We now want to use the stochastic sign activation function to evaluate how it effects the M̂(C).
Using equation 6, and we get:

χ = 4σ2
w

∫ ∞
−∞

dn1

∫ ∞
−∞

dn2

∫ ∞
−∞

du1

∫ ∞
−∞

du2
1

2π

1

2πa2
exp

(
− n2

1

2a2

)
exp

(
− n2

2

2a2

)

exp

(
−u

2
1

2

)
exp

(
−u

2
2

2

)
δ
(√

Q∗u1 + n1

)
δ
(√

Q∗
(
Cu1 +

√
1− (C)2u2

)
+ n2

)
We use the delta functions to enforce: u1 = − n1√

Q∗
, u2 = − n2−C(n1)

√
Q∗
√

1−(C)2
and get:

χ =
2σ2

w

πQ∗a2
√

1− (C)2

1

2π

∫ ∞
−∞

∫ ∞
−∞

exp

(
− n2

1

2a2

)
exp

(
− n2

2

2a2

)
(26)

exp

(
− (n1)2

2Q∗

)
exp

(
− (n2 − C(n1))

2

2Q∗(1− (C)2)

)
dn1dn2

Which can otherwise be written as:
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2σ2
w

πQ∗a2
√

1− (C)2

1

2π

∫ ∞
−∞

∫ ∞
−∞

exp

[
−1

2
D

]
dn1dn2

D =
n2

1

(
1− (C)2

) (
a2 + (Q∗)

2
)

+ n2
2Q
∗ (1− (C)2

)
+ a2n2

2 − 2a2n1n2C + a2n2
1(C)2

Q∗ (1− (C)2) a2

So:

χ =
2σ2

w

πQ∗a2
√

1− (C)2

1

2π

∫ ∞
−∞

∫ ∞
−∞

exp

[
−1

2

1

Q∗ (1− (C)2) a2
( n1 n2 ) Σ−1

(
n1

n2

)]
dn1dn2

(27)

Σ−1 =

( (
1− (C)2

)
a2 +

(
1− (C)2

)
(Q∗)

2
+ a2(C)2 −a2C

−a2C Q∗
(
1− (C)2

)
+ a2

)
Solving the Gaussian we get:

|Σ|−1
=
∣∣Σ−1

∣∣ =

(
Q∗
(
1− (C)2

)
+ a2

)2 − (a2C
)2

(Q∗ (1− (C)2) a2)
2 = (28)

(Q∗)2
(
1− (C)2

)2
+ 2a2Q∗

(
1− (C)2

)
+ a4 − a4(C)2

(Q∗ (1− (C)2) a2)
2 =

(Q∗)2
(
1− (C)2

)2
+ a2

(
2Q∗ + a2

) (
1− (C)2

)
(Q∗)2 (1− (C)2)

2
a4

Resulting:

χ =
2σ2

w

πQ∗a2
√

1− (C)2

1

2π

(
2π
√
|Σ|
)

=
2σ2

w

πQ∗a2
√

1− (C)2

√
(Q∗)2 (1− (C)2) a4

(Q∗)2 (1− (C)2) + a2 (2Q∗ + a2)

(29)
And we finally get:

χ =
2σ2

w

πQ∗

√
(1− (C)2) +

(
a
Q∗

)2

(2Q∗ + a2)

For the rest of this section, We will use the shortcut B ≡
√

1 +
(
a
Q∗

)2

(2Q∗ + a2) We can now

write the equation as:

χ =
2σ2

w

πQ∗
√(

1−
(
C
B

)2) (30)

for x = C∗

B , dCdx = B

M̂(Ĉ) =

∫
dM̂(Ĉ)

dĈ
dĈ =

∫
dM̂(C)

dC

dĈ

dC
dC =

∫
χ
dĈ

dC

dC

dx
dx
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When we again drop the constant so M̂(Ĉ = 1) = 1, and get:

M̂(Ĉ) =
2

π
arcsin

(
C

B

)
(31)

Based on this equation, we can also use a Taylor expansion, to estimate Ĉ∗, and we get the solution:

Ĉ∗ ' 1− 4

π2

σ2
w

Q∗B

1 +

√
1 +

(π
2

)4

(B2 −B)

(
Q∗

σ2
w

)2
 (32)

E Calculations of Q(l) and χ for general quantized activations

We start by evaluating Q̂, the hidden-state covariance (see appendix B) for the general quantization
activation function defined in 13, using equation 22

Q̂(l) = E
u∼N (0,Q(l))

(
A+

N−1∑
i=1

H (u− gi)hi

)2

−
(
µ(l)
)2

,

where:

µ(l) = E
u∼N (0,Q(l))

(
A+

N−1∑
i=1

H (u− gi)hi

)
= A+

N−1∑
i=1

hiΦ

(
− gi√

Q(l)

)
. (33)

Here, we use Φ as the normal cumulative distribution function. The constant A cancels out, and we
can expand the multiplication:

Q̂(l) =

N−1∑
i=1

N−1∑
j=1

hihj

(
E [H (u− gi)H (u− gj)]− Φ

(
− gi√

Q(l)

)
Φ

(
− gj√

Q(l)

))
,

And since H (u− gi)H (u− gj) = H
(
u− gmax(i,j)

)
Q̂(l) =

N−1∑
i=1

N−1∑
j=1

hihj

(
Φ

(
−max(gi, gj)√

Q(l)

)
− Φ

(
− gi√

Q(l)

)
Φ

(
− gj√

Q(l)

))
. (34)

Φ (−x) Φ (−y) = Φ (−max (x, y)) Φ (−min(x, y)), so we can see that:
Φ (−max (x, y))− Φ (−x) Φ (−y) = Φ (−max (x, y)) (1− Φ (−min(x, y)))

And by using the CDF property Φ(−x) = 1− Φ(x), we get

Q̂(l) =

N−1∑
i=1

N−1∑
j=1

hihjΦ

(
−max(gi, gj)√

Q(l)

)
Φ

(
min(gi, gj)√

Q(l)

)
, (35)

from which we can easily compute Q(l+1). In Appendix F, we develop an approximation forM(Ĉ).
However, for our more immediate concerns, we will go straight to evaluating the equation for the
fixed point slope, from eq. 6:

χ = σ2
w

∑N−1
i=1

∑N−1
j=1

∫∫
u1,u2∼N (0,Σ(Q∗,C∗))

hihj

δ
(√
Q∗u1 − gi

)
δ

(√
Q∗
(
C∗u1 +

√
1− (C∗)

2
u2

)
− gj

)
=

σ2
w

2π
√
Q∗

∑N−1
i=1

∑N−1
j=1

∫
exp

[
− 1

2
g2i
Q∗

]
exp

[
− 1

2u
2
2

]
hihj

δ

(√
Q∗
(
C∗ gi√

Q∗
+

√
1− (C∗)

2
u2

)
− gj

)
=
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σ2
w

2πQ∗
√

1− (C∗)
2

N−1∑
i=1

N−1∑
j=1

exp

[
−1

2

g2
i

Q∗

]
exp

−1

2

(gj − C∗gi)2

Q∗
(

1− (C∗)
2
)
hihj

which can be simplified to:

χ =
σ2
w

2πQ∗
√

1− (C∗)
2

N−1∑
i=1

N−1∑
j=1

hihj exp

−g2
i − 2C∗gigj + g2

j

2Q∗
(

1− (C∗)
2
)
 . (36)

F The general quantized activations mapping- Approximation and numeric
evaluation

F.1 The covariance mapping of a general quantized activation

We once again use the hidden states covariances Q̂,Ĉ Using eq. 5 for general quantized activation,
we get the expression:

Ĉ(l)Q̂(l) = E
u1,u2∼N (0,Σ(Q(l),C(l)))

(
N−1∑
i=1

hiH (u1 − gi)−A

)(
N−1∑
i=1

hiH (u2 − gj)−A

)
−
(
µ(l)
)2

,

where we can use eq. 33 and expand it to:

Ĉ(l)Q̂(l) =

N−1∑
i=1

N−1∑
j=1

(
E

u1,u2∼N (0,Σ(Ql,Cl))
[H (u1 − gi)H (u2 − gj)]− Φ

(
−gi√
Q(l)

)
Φ

(
−gj√
Q(l)

))
.

When the offsets are different than zero, there is no exact solution for the expectancy when u1, u2 are
correlated. Article [29] suggests an approximation for finding M̂(Ĉ), when C(Ĉ) =

Q∗Cσ2
w+σ2

b

Q∗σ2
w+σ2

b
:

M̂(Ĉ) ' arcsin(C∗)
2πQ∗

∑N−1
i=1

∑N−1
j=1 hihj ·

exp
(
− 1

2
C

arcsin(C)Q∗
√

1−C2

(
g2
i + g2

j − gigj 2C
1+
√

1−C2

)) (37)

We found the approximation to hold well in the area C ∼ 0 , and ∀i, gi < Q∗. Therefore, when Q∗
is known, this equation can be used to evaluate C∗ with reduced complexity.

F.2 Quick numeric method to approximate the fixed point slope, for σb > 0

Using eq. 37, we suggest a numeric algorithm to evaluate the fixed point slope for σb > 0, for any
quantized activation function:

1. Evaluate Q by iterative usage of eq. 14. Start with arbitrary value Q̂ = 1.0 and repeat T
times.

2. Use eq. 37 to evaluate M̂(Ĉ = 0) (Reminder: C(Ĉ = 0) =
σ2
b

Q̂σ2
w+σ2

b

)

3. Use eq. 15 to evaluate χ(Ĉ = 0)

4. Estimate Ĉ∗ by C(Ĉ=0)

1−χ(Ĉ=0)
(First order approximation), and use equation 15 to find the fixed

point slope.

We found this algorithm to be very efficient and accurate when studying the dynamics in the area of
σb > 0. Results of using this estimation are displayed in figure 5.

G Beyond constant-spaced quantized activations

Our main focus in this article, have been the quantized activations with constant spacing. We
now want to study the effects of using more complex activation functions on the dynamics of the
network. We will do so by defining a new family of quantized activation functions, the linear-spacing
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Figure 5: Grid-Approximation of the depth scale ξ for constant-spaced activations of different
quantization levels, as a function of the initialization parameters. D = 1 was used as the constant
space between offsets. For this approximation, we used the algorithm described in F.2. It is apparent
that the maximal depth scale for all quantization levels is achievable for σb ' 0.

activations- For any given values of h, c1 > 0, c2 ∈ R, the function parameters in accordance with
equation 13, are:

∀i ∈ {1, .., N − 1},m ≡
(
k − N

2 − 2
)
, hi = h,

g̃i = D̃0m
(

1 + D̃1|m|
) (38)

This family of functions can be thought of a second order generalization of the constant-spaced
functions, which correspond to the special case D̃1 = 0. This family of functions is important, as it
also includes sigmoid-like quantized activation functions (given for values of D̃1 > 0). To evaluate
the dynamics of the new family, we again use eq. 16 and the depth scale definition eq. 7, and run a
grid search over the normalized values of D̃1, D̃0, calculating the depth scale for each combination
of parameters. The results of the grid search for several different quantization levels are presented in
Figure 6. In all of the tested activations, the maximal depthscale that we found was identical, within
numeric error range, to the maximal depthscale found for constant-spaced activations, indicating that
the additional degree of freedom does not help improving the dynamical properties of the activation.

H Additional MNIST training-results

When studying the empirical effects of the initialization parameters on trainability when using a 10
states quantization, and seen that the longest trainable network is achieved when using the D̃opt,
the optimal normalized distance between offsets, as proposed by our theory. Additional test have
been made to other quantization levels as well and gave similar results. It is unclear from the results,
however, whether the degradation of deep networks is caused by the unoptimized propagation of the
forward pass, or by the unoptimized backward pass. To isolate the effects of the forward pass which
are of more interest to us, we measured the effects of σw on a 10 states quantization once more, but
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Figure 6: Evaluation of the depth scale ξ for linear-spaced quantized activation, with the initialization
σb = 0. The search resolution is 1000× 1000 for each quantization level. The maximum depth-scale
on each grid for square spacing activations is always achievable for the constant spacing as well,
where D̃1 = 0.
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Figure 7: Test accuracy of a 10-states activation in feed-forward network, over the MNIST data-set,
with different initialization values and optimized STE for backward propagation of gradients. When
compared with the 3, we can see that adjusting the networks for better backward propagation of the
gradients does not have a significant effect on the trainability of deep networks.

optimized the STE to allow clean gradient propagation using ρ−1 = σw

√
erf
(

1√
2Q∗

)
, when using

σw and Q∗ based on each run’s initialization values. Figure 7 shows the results of this experiment,
and confirms that the optimal initialization is dominated by the forward pass.
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Figure 8: Time evolution of the test accuracy. Line 1&2: The evolution of the heat maps presented in
figure 3, at an early stage of training (Training accuracy) . Bottom line: Test accuracy at an advanced
stage of training (16000 steps), for the same deployment. Those results align with the results of [26],
showing that even in a late stage of training, networks with layers exceeding ∼ 6ξ are untrainable.

I Simplified Optimization of the initialization parameters

Sections 4 describes an algorithm for computation of the value of the initialization parameter σw,
that would allow the best signal propagation in the network for any quantized activation function.
However, when dealing with the constant spaced activation functions of the form:

φN (x) = −1 +

N−1∑
i=1

2

N − 1
H

(
x− 2

N − 1

(
i− N

2

))
,

we find that our suggested method of initialization quickly converges to the Xavier initialization
[9], as the quantization levels increases. For simple initialization, we suggest a small modification
for the Xavier method that accounts for quantization: When Fin and Fout are the fan-in and fan-
out of the layer, rather than simply computing the standard error for weights initialization using
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σw =
√

2
Fin+Fout

as in the case of normal Xavier, we suggest that using a factor of

αN = 1 +
1.23

(N + 0.2)
2

(when N is the number of activation states), so that:

σw = αN ·
√

2

Fin + Fout
We see that for the continuous case, our activation function becomes hard-tangent and our factor
becomes limN→∞ αN = 1. αN was estimated by computing the value σw that ensures D√

Q
= D̃opt

for states ranging from 1 to 128, and fitting the results σw(N) to the function 1 + a
(N−b)2 , which

behaved accordingly. For the case where the number of states is larger than 128, the factor αN is
small enough for the error to be irrelevant. Figure 10 shows a comparison between the standard
Xavier and our modified initialization for 3-states activation, where αN is at it’s peak.

J Backwards signal propagation for straight through estimator

While we use quantized activations for the forward pass, the backward propagation of quantized neural
networks is, in our case, done by straight through estimators (STE). When using constant-spaced
quantized activations, we choose a STE to imitate the backward pass of the hard-tanh function:

φρ(x) =


−ρ−1 x < −1

xρ −1 ≤ x ≤ 1

ρ−1 x > 1

where ρ > 0 is a parameter that controls the slope of the hard-tanh, so the backward equation is
determined by the derivative:

φ′ρ(x) =

{
ρ |x| < 1

0 else
(39)

The moments of a random N ×N matrix A are given by m(i)

A
= 1

NEtr
(
A
i
)

. In the case of eq. 9,
and our STE φρ, the equation is reduced to

m
(1)

JJT
=

1

N
Etr
(
φ′ρ(u

∗)W
(
φ′ρ(u

∗)W
))

where u∗i ∼ N (0, Q∗) .i.d and Dφ′(u∗) is a diagonal matrix with φ′(u∗) on the diagonal. This gives

m
(1)

JJT
= σ2

w

∫ (
φ′ρ(
√
Q∗z)

)2

Dz

where Dz = 1√
2π

exp
(
−z2

2

)
. Then obtain:

m
(1)

JJT
= σ2

wρ
2

1/
√
Q∗∫

−1/
√
Q∗

Du = σ2
wρ

2erf
(

1√
2Q∗

)
. (40)

Assuming we already have the value σw, Q∗, we can set ρ−1 = σw

√
erf
(

1√
2Q∗

)
to ensure mJJT =

1, and thus avoid vanishing and exploding gradients. In our main results, we avoided modifying the
STE parameter ρ in order to keep the experiment simple, and used the trivial STE using ρ = 1.
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Table 1: Results Summary
Test Error (Mean)

Layers Xavier Modified
10 3.3± 0.4% 2.9± 0.2%
20 5.6± 1.4% 4.5± 0.7%
30 5.6± 0.5% 4.6± 0.4%
35 7.2± 0.4% 5.9± 0.4%
40 21± 11% 13.5± 7.5%

Figure 10: Comparison of our suggested initialization with the Xavier Gaussian initialization,
for MNIST training using a 3-states quantized activation for layer numbers near the depth scale
6ξmax ' 37. For each number of layers and initialization, we used a grid search to find best learning
rate from the values [0.25, 0.5, 1, 2, 4, 10]× 10−3, with all other run parameters as described in the
experimental part of section 5. We ran 25 seeds using that learning rate, and the plot describes the
mean and standard error of the test accuracy, at every step. In all cases, our suggested modification
outperforms Xavier initialization by a small margin. With 40 layers, the network depth exceeds the
theoretical depth scale, and all trainings fail under the 20000 steps limitation.
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K Comparing convergence in C and Q directions

In previous papers studying signal propagation in feed-forward networks [24, 26, 30], it has been
argued that the convergence in Q direction is significantly faster than the convergence in the C
direction. Under this assumption, one can derive the approximate depth-scale by analyzing conver-
gence in the C direction only. The claim was established using empirical evidence [24] and using
an approximated Taylor expansion of the activation function [26], by showing that the slope χc at
C∗ = 1 is always larger than the slope χq at Q∗. In our case, however, it is invalid to assume that
the Taylor expansion of the quantized activation is correctly approximating the function behaviour,
and either way C∗ = 1 is an infinitely unstable fixed point and the convergence there can not be
used as a baseline for comparison with the convergence in the Q direction. It is therefore necessary
to assert that this assumption holds for quantized activations as well. We will start by comparing
χc,χq analytically for general quantized activation function in the limit where the σw is very small
or very large, show that our assumption may fail in the case of some nontrivial activation functions
and provide empirical evidence that the condition χc(C = C∗) > χq(Q = Q∗) holds for trivial
activation functions.

First, we argue that it is sufficient to show that χc(C = C∗) > χq(Q = Q∗) for the depthscale in the
C direction (ξC) to be indicative of the full system-convergence. This is true because the mapping
function of Q is independent of the value of C. In the case of where χc(C = C∗) = χq(Q = Q∗),
we can, at the worst case, consider that C will only start converging once Q has converged, in which
case the system would converge after a KcξC +Kqξq where Kc,Kq are some constants.

Going back to eq. 15, using g̃i = gi√
Q

, and picking the minimal value of C = 0 (M(C) is convex) :

χc >
σ2
w

Q

∑N−1
i=1

∑N−1
j=1 hihj

1
2π exp

[
− g̃i

2+g̃j
2

2

]
=

σ2
w

Q

∑N−1
i=1

∑N−1
j=1 hihjφ (g̃i)φ (g̃j)

(41)

We do a similar derivation for the mapping of Q. From eq. 35, using
dΦ( a√

x
)

dx = −a
2x3/2φ

(
a√
x

)
, and

denoting G+
i,j = max(g̃i, g̃j), G

−
i,j = min(g̃i, g̃j) we get that:

χq =
dM(Q)

dQ
=
σ2
w

2Q

N−1∑
i=1

N−1∑
j=1

hihj
[
G+
i,jφ

(
G+
i,j

)
Φ
(
G−i,j

)
−G−i,jφ

(
G−i,j

)
Φ
(
−G+

i,j

)]
(42)

Combining those results, we get that:

χq
χc
≤ 1

2

∑N−1
i=1

∑N−1
j=1 hihj

[
G+
i,jφ

(
G+
i,j

)
Φ
(
G−i,j

)
−G−i,jφ

(
G−i,j

)
Φ
(
−G+

i,j

)]∑N−1
i=1

∑N−1
j=1 hihjφ

(
G+
i,j

)
φ
(
G−i,j

) (43)

From this result, we can immediately see that when taking σw →∞, resulting, G−/+i,j → 0, we get
that χqχc → 0, so χq � χc.

To analyze the behaviour of σw → 0, we will consider the continuous activation functions:

φ (x) =

{
x (1− α |x|) |x| < A

1 else
(44)

where for α = 0 we get an hard-tanh and for α > 0 we get a sigmoid like function. The derivative of
this function is:

φ′ (x) =

{
1− 2α |x| |x| < A

0 else
. (45)

We also calculate the derivative ∂M(Q)
∂Q directly from eq. 4 and get:

χq(Q) =
1

Q
σ2
wE [φ′ (x)φ (x)x] (46)
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where X N(0, Q). We will also use the previous result χc(C) > χc(0) = σ2
wE
[
φ′ (x)

2
]
. If we look

at values where σw is small, resulting small enough Q so values outside the region x < |A| can be
ignored, and we get:

χq =
σ2
w

Q
E [φ′ (x)φ (x)x] =

σ2
w

Q
E
[(

1− 3α |x|+ 2α2x2
)
x2
]

(47)

which sums up to:

χq = σ2
w

(
1− 6α

√
2Q

π
+ 2α2Q (3!!)

)
= σ2

w

(
1− 6α

√
Q

√
2

π
+ 6α2Q

)
(48)

Similarly,

χc(C = 0) = σ2
wE
[
(1− 2αE |x|)2

]
= σ2

w

(
1 + 4α2Q− 4α

√
Q

√
2

π

)
. (49)

The condition χc ≥ χq therefore translates to:

1 + 4α2Q− 4α
√
Q

√
2

π
> 1− 6α

√
Q

√
2

π
+ 6α2Q (50)

or simply α
√

2
π > α2

√
Q
(
3− 4

π

)
. We can immediately see that in the non-trivial case of α < 0,

the activation functions will not comply with the condition (Q can be infinitely small), and Q may,
indeed, converge slower than C. For α = 0, we can see that the convergence of Q and C is identical.

For the case of α > 0, we get the new condition α
√
Q <

√
2
π

(3− 4
π )
' .462

To see if this is true we need to estimate what is the region where our “small Q” assumption is
valid. First, to keep the function continuous we can calculate A = 1−

√
1−4α

2α , and we will check the
condition in the case

√
(Q) = A

3 (so the probability of x > A is small), giving us the condition
.462 > 1−

√
1−4α
6 > 1

6 which is always true.

To conclude the analytical analysis, we saw that for large values of Q (when σw is large) χq > χc
for quantized activation functions, and that for small σw, Q we can expect the convergence rates to
match on trivial continuous activation functions. To check the intermediate range and to verify those
results for quantized activation, we numerically calculate the values of χq, χc using equations 41,42.
Results of this experiment are shown in figure 12.
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Figure 12: Empirical comparison of the convergence rate (Fixed point slope) of C and Q for
different quantized activation function, and varying hyperparameters (σw). The activation function’s
offsets, for each value of β (β ∝ α from eq. 44) and for given number of activation states, is
calculated by gi = 2

n−1

(
i− n

2

) (
1 + β

n2 |i− n/2|
)

. In accordance with our theoretical derivation,

limσw→∞
χq
χc

= 0 and limσw→0
χq
χc
≤ 1 if α ≥ 0. Our results also show that the gap between χc and

χq is generally wider when the number of activation states is low, and that the condition χc > χq
holds for all hyperparameters for all trivial activation functions (β > 0)
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L Additional Proofs

L.1

Proof that fixed point slope for sign activation can only be optimal for σb = 0. We would like to
prove the the optimal slope at the fixed point for sign activation can only be achieved when we
take σbto zero. First, we will use the implicit function theorem to calculate dĈ∗

dσb
(Ĉ is the hidden

states covariance, as described in appendix B), using the fixed point equation:

F (Ĉ∗, σb) = Ĉ∗ − 2

π
arcsin (C∗) = 0

when C∗ =
Ĉ∗σ2

w+σ2
b

σ2
w+σ2

b
, Q∗ = σ2

w + σ2
b :

∂F

∂Ĉ∗
= 1− χ

When we χ can be expressed using 11. Also:

∂F

∂σb
= − 2

π

1√
1− (C∗)

2

∂C∗

∂σb
=

− 2

π

1√
1− (C∗)

2

2σbσ
2
w

(
1− Ĉ∗

)
(σ2
w + σ2

b )
2 = −χ

2σb

(
1− Ĉ∗

)
Q∗

and using the implicit function theorem:

dĈ∗

dσb
= −

∂F
∂σb
∂F

∂Ĉ∗

=
χ

1− χ

2σb

(
1− Ĉ∗

)
Q∗

we can now use it to calculate:

dχ

dσb
=

2σ2
w

π (σ2
w + σ2

b )

√
1− (C∗)

2

[
−2σb
Q∗

+
C∗

1− (C∗)
2

dC

dσb

]

while:

dC

dσb
=

σ2
w

σ2
w + σ2

b

dC∗

dσb
+

2σb
σ2
w + σ2

b

− C∗σ2
w + σ2

b

(σ2
w + σ2

b )
2σb =

1

Q∗

(
σ2
w

dC∗

dσb
+ 2σb (1− C∗)

)
so:

dχ

dσb
=

2σ2
w

π (Q∗)
2
√

1− (C∗)
2

[
+

C∗

1− (C∗)
2

(
σ2
w

dC∗

dσb
+ 2σb (1− C∗)

)
− 2σb

]
=
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dχ

dσb
=

2σ2
w

π (Q∗)
2
√

1− (C∗)
2

[
+

C∗

1− (C∗)
2

(
σ2
w

χ2σb
1− χ

(1− C∗)
)

+ 2σb
C∗

1 + (C∗)
− 2σb

]
=

2σ2
w

π (Q∗)
2

(1 + C∗)

√
1− (C∗)

2

 C∗

1− C∗
σ2
w

χ

1− χ

2σb

(
1− Ĉ∗

)
Q∗

− 2σb

 =

4σ2
wσb

π (Q∗)
2

(1 + C∗)

√
1− (C∗)

2

 C∗Q∗(
1− Ĉ∗

)
σ2
w

σ2
w

χ

1− χ

(
1− Ĉ∗

)
Q∗

− 1

 =

2σbχ

(Q∗) (1 + C∗)

[
χC∗

1− χ
− 1

]
we learn that sign

(
dχ
dσb

)
depends on χC∗

1−χ − 1. if for some value of σb, σw, χC
∗

1−χ > 1, then, χC
∗

1−χ − 1

will remain positive when increasing σb, since dχ
dσb

> 0 and dC∗

dσb
> 0 results d

dσb

χC∗

1−χ > 0. The
optimal (highest) value of χ for the given value of σw will therefore be achieved in the limit σb →∞,
and we can use the slope equation to calculate it:

lim
σb→∞

χ = lim
σb→∞

2σ2
w

π

√
(σ2
w + σ2

b )
2 −

(
Ĉ∗σ2

w + σ2
b

)2
= 0

(for this we use the fact that Ĉ∗ > 0 for σb > 0)

And this contradicts our assumption that this is the highest value of χ, so dχ
dσb

must be negative for all
values of σb, σw.

L.2

Proof that stochastic rounding results smaller slope at the fixed point. We have shown that the the
covariance mapping function with stochastic rounding is M̂(Ĉ) = f(CuB ), when we denoteCu(Ĉ) =
Ĉσ2

w+σ2
b

σ2
w+σ2

b
, C∗u = Cu(Ĉ∗), and f(x) is a convex function for 0 ≤ x ≤ 1 and the variable B ≥ 1 is

increasing as the variance of the stochastic rounding increase, and B = 1 gives us the mapping for
deterministic function. We will show that dχ

∗

dB < 0, when χ∗ is the fixed point slope. Using the
implicit function theorem as we did in proof L.1, for the function:

F (Ĉ∗, B) = Ĉ∗ − M̂(Ĉ∗) = 0

for ∂F

∂Ĉ∗
we get:

∂F

∂Ĉ∗
= 1− χ∗ > 0

when we used the definition of χ∗ as the fixed point slop. For ∂F∂B , we get

∂F

∂B
= −f ′

(
Cu
B

)
· −Cu
B2

> 0
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using the implicit function theorem:

dĈ∗

dB
= −

dF
dB
dF

dĈ∗

< 0

and since dĈ∗u
dĈ∗

=
σ2
w

σ2
w+σ2

b
> 0 this also means that:

dC∗

dB
< 0 (51)

from eq. 30 we know that:

χ∗ =
2σ2

w

πQ∗

√(
1−

(
C∗u
B

)2
)

we can immediately see that for C ≡ C∗u
B , we get dχ

∗

dC
> 0, and from eq. 51 we get that dC

dB =

B dC∗
dB −C

∗
u

B2 < 0 so the chain rule gives us dχ∗

dB < 0.

M Neural tangent kernel for quantized activations

We consider the dynamics of training for deep, wide neural networks. We argue that the error at an
average test point will not improve during early stages of training if the signal propagation conditions
are not satisfied, and thus ensuring signal propagation should have a beneficial effect on generalization
error.

M.1 NTK setup

We consider full-batch gradient descent with regression loss in a continuous time setting. Defining a
fitting error ζi = f(xi)− yi 5, the loss function is given by

ϕ =
1

2Nd

Nd∑
i=1

ζ2
i .

where Nd is the number of data points. The weights evolve in time according to

∂θp
∂t

= − ∂ϕ
∂θp

= − 1

Nd

Nd∑
i=1

∂f(xi)

∂θp
ζi

for all weights θp. The evolution of the network function is then given by

∂f(xi)

∂t
=
∑
p

∂f(xi)

∂θp

∂θp
∂t

= − 1

Nd

∑
p

∂f(xi)

∂θp

∂f(xj)

∂θp
ζi ≡ −

1

Nd
[Θζ]i

where p indexes all the weights of the neural network and we have defined the Gram matrix Θ ∈
RNd×Nd by

Θ(xi, xj) =
∑
p

∂f(xi)

∂θp

∂f(xj)

∂θp
. (52)

This matrix is referred to as the Neural Tangent Kernel (NTK) in [14]. When considering this object
at the infinite width limit, it is convenient to adopt the following parametrization for a fully connected
network f : Rn0 → RnL+1 :

φ(α(0)(x)) = x
α(l)(x) = σw√

nl−1
W (l)φ(α(l−1)(x)) + σbb

(l), l = 1, ..., L

f(x) = α(L+1)(x)

(53)

5This can be generalized to other loss functions [16].
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for input x ∈ Rn0 and weight matrices W (l) ∈ Rnl×nl−1 . The weights are initialized using
W

(l)
ij ∼ N (0, 1), b

(l)
i ∼ N (0, 1). The output of this NTK network is identical to that of a standard

network, yet the gradients are rescaled such that Θ remains finite when taking the infinite width limit.
For an appropriately chosen learning rate the dynamics of learning in the NTK network can be made
identical to those of a standard network [16].

In [14], under some technical conditions, Θ was shown to be essentially constant during training at
the sequential limit lim

nL−1→∞
... lim
n2→∞

lim
n1→∞

. At this limit, adapting Theorem 1 of [14] to allowing

arbitrary variances for the weights and biases, one obtains the following asymptotic form of Θ at the
sequential infinite width limit:

Θ(x, x′) =

L+1∑
l=1

L+1

Π
j=l+1

Σ′(j)(x, x′)Σ(l)(x, x′) (54)

where

Σ(1)(x, x′) =
σ2
w

n0
xTx′ + σ2

b

Σ(l)(x, x′) = σ2
w E

(u1,u2)∼N (0,Σ(l−1)|
x,x′

)
φ(u1)φ(u2) + σ2

b

Σ(l)
∣∣
x,x′

=

(
Σ(l)(x, x) Σ(l)(x, x′)
Σ(l)(x, x′) Σ(l)(x′, x′)

)
.

(55)

are the covariances of the pre-activations and

Σ′(l)(x, x′) = σ2
w E

(u1,u2)∼N (0,Σ(l)|x,x′ )
φ′(u1)φ′(u2).

In [2] it was also shown that for finite width ReLU networks EΘ = Θ and concentrates about its
expectation with the fluctuations scaling inversely with layer width. It follows that when taking the
layer widths to infinity in arbitrary order for ReLU networks one recovers Θ, and empirically Θ
concentrates well around Θ for other choices of nonlinearities [16]. We note that even when using the
standard scaling 1, for very wide networks where the effect of individual weights will be negligible,
even though the asymptotic for of the NTK at infinite width may be different, it will still change little
in the initial phases of training.

M.2 Continuous activations

We write the NTK for a feed-forward network in the NTK parametrization 53, omitting the dependence
on x of f, α(l) to lighten notation

∂f

∂W
(l)
ij

=
σw√
nl−1

∂f

∂α
(l)
i

φ(α
(l−1
j ) =

σw√
nl−1

∂f

∂φ(α
(l)
i )

∂φ(α
(l)
i )

∂α
(l)
i

φ(α
(l−1)
j )

=

nl+1∑
k=1

σw√
nl−1

∂f

∂α
(l+1)
k

∂α
(l+1)
k

∂φ(α
(l)
i )

∂φ(α
(l)
i )

∂α
(l)
i

φ(α
(l−1)
j )

=
σw√
nl−1

nl+1∑
k=1

∂f

∂α
(l+1)
k

σw√
nl
W

(l+1)
ki

∂φ(α
(l)
i )

∂α
(l)
i

φ(α
(l−1)
j )

restoring the x dependence and defining a diagonal matrix D(l)(x) = diag( σw√nl
∂φ(α

(l)
i (x))

∂α
(l)
i (x)

) we have

∂f(x)

∂W
(l)
ij

=
σw√
nl−1

[(
∂f(x)

∂α(l+1)(x)

)T
W (l+1)D(l)(x)

]
i

φ(α
(l−1)
j (x))
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we can repeat the process for the elements of ∂f(x)
∂α(l+1) finally obtaining

∂f(x)

∂W
(l)
ij

=
σw√
nl−1

[
W (L+1)D(L)(x)W (L)...W (l+1)D(l)(x)

]
i
φ(α

(l−1)
j (x)) ≡ σw√

nl−1
β̂

(l)
i (x)α̂

(l)
j (x)

and we similarly obtain

∂f(x)

∂b
(l)
i

= σbβ̂
(l)
i (x).

The NTK thus takes the form

Θ(x, x′) =
∑
l,il

∂f(x)

∂W
(l)
ilil−1

∂f(x′)

∂W
(l)
ilil−1

+
∑
l,il

∂f(x)

∂b
(l)
il

∂f(x′)

∂b
(l)
il

= σ2
w

L+1∑
l=1

1
nl−1

〈
β̂(l)(x), β̂(l)(x′)

〉 〈
α̂(l)(x), α̂(l)(x′)

〉
+ σ2

b

〈
β̂(l)(x), β̂(l)(x′)

〉
According to [14, 2], this tends to 54 at the infinite width limit.

M.3 Quantized activations

We now consider dynamics in function space with quantized activations. Analyzing a single network
in this fashion is hopeless since the network function is not a continuous function of the weights and
so the dynamics will not be continuous. We can instead consider a stochastic rounding scheme where
the post-activations are defined according to

α̂
(l)
i = sign(α

(l)
i − z

(l)
i )

and z(l)
i ∼ Unif([−1, 1]). The connection between this setup and the straight-through estimator

(STE) was first observed in [13]. We denote the set of all z(l)
i by {z}. Considering the dynamics of

an ensemble average such that the loss function is given by

ϕ =
1

2Nd

Nd∑
i=1

(E{z}f(xi)− yi)2 =
1

2Nd

Nd∑
i=1

ζ2
i

We have

∂E
z
(l)
i
f

∂α
(l)
i

=
∂

∂α
(l)
i

(
p(α

(l)
i − z

(l)
i > 0|α(l)

i ) f |
α̂

(l)
i =1

+ (1− p(α(l)
i − z

(l)
i > 0|α(l)

i )) f |
α̂

(l)
i =−1

)

=
∂p(α

(l)
i − z

(l)
i > 0|α(l)

i )

∂α
(l)
i

(
f |
α̂

(l)
i =1

− f |
α̂

(l)
i =−1

)
=

1

2
1
∣∣∣α(l)
i

∣∣∣≤1

(
f |
α̂

(l)
i =1

− f |
α̂

(l)
i =−1

)
.

If we now consider any smooth extension of γ of α̂(l)
i such that [−1, 1] ⊆ Im(γ) and denote by f̃ a

copy of f where we replace α̂(l)
i by γ. We then have

f |
α̂

(l)
i =1
−f |

α̂
(l)
i =−1

= f̃
∣∣∣
γ=1
− f̃
∣∣∣
γ=−1

=
∂f̃

∂γ

∣∣∣∣∣
γ=0

+O

 ∂3f̃

∂γ3

∣∣∣∣∣
γ=0

 =
∂f̃

∂γ

∣∣∣∣∣
γ=0

+O

 ∂3f̃

∂γ3

∣∣∣∣∣
γ=0
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=
∂f̃

∂γ

∣∣∣∣∣
γ=±1

+O

 ∂2f̃

∂γ2

∣∣∣∣∣
γ=0

 =
∂f

∂α̂
(l)
i

∣∣∣∣∣
α̂

(l)
i =±1

+O

 ∂2f̃

∂γ2

∣∣∣∣∣
γ=0

 =
∂E

z
(l)
i
f

∂α̂
(l)
i

+O

 ∂2f̃

∂γ2

∣∣∣∣∣
γ=0

 .

If we neglect these higher order terms (which should be small since the influence of a single neuron
on the output is generally small, and should vanish at the infinite width limit) and note that the above
approximation holds if we condition on {z}\{z(l)

i }, we obtain

∂E{z}f

∂α
(l)
i

≈ 1
∣∣∣α(l)
i

∣∣∣≤1

∂E{z}f

∂α̂
(l)
i

. (56)

We can now repeat the calculation of the NTK using eq. 56, obtaining

∂E{z}f

∂W
(l)
ij

=
σw√
nl−1

∂E{z}f

∂α
(l)
i

φ(α
(l−1
j ) ≈ σw√

nl−1

∂f

∂φ(α
(l)
i )

1
∣∣∣α(l)
i

∣∣∣≤1
φ(α

(l−1)
j )

=
σw√
nl−1

nl+1∑
k=1

∂f

∂α
(l+1)
k

σw√
nl
W

(l+1)
ki 1

∣∣∣α(l)
i

∣∣∣≤1
φ(α

(l−1)
j ).

Defining D(l)
STE(x) = diag( σw√nl1

∣∣∣α(l)
i

∣∣∣≤1
) and applying eq. 56 repeatedly at each layer up until L+ 1

gives

∂f(x)

∂W
(l)
ij

≈ σw√
nl−1

[
W (L+1)D

(L)
STE(x)W (L)...W (l+1)D

(l)
STE(x)

]
i
φ(α

(l−1)
j (x)) ≡ σw√

nl−1
β̂

(l)
STE,i(x)α̂

(l)
j (x)

∂f(x)

∂b
(l)
i

≈ σbβ̂(l)
STE,i(x).

and thus applying 52 gives
∂E{z}f(x)

∂t
≈ − 1

Nd

∑
i

ΘSTE(x, xi)ζi

where

ΘSTE(x, x′) = σ2
w

L+1∑
l=1

1

nl−1

〈
β̂

(l)
STE(x), β̂

(l)
STE(x′)

〉〈
α̂(l)(x), α̂(l)(x′)

〉
+ σ2

b

〈
β̂

(l)
STE(x), β̂

(l)
STE(x′)

〉
.

A trivial generalization of the calculation of the asymptotic form of Θ(x, x′) at the infinite width
limit in [14] shows that at this limit ΘSTE(x, x′) tends to

ΘSTE(x, x′) =

L+1∑
l=1

L+1

Π
j=l+1

Σ
′(j)
STE(x, x′)Σ(l)(x, x′) (57)

where Σ(l)(x, x′) is defined in eq. 55,

Σ
′(l)
STE(x, x′) = σ2

w E
(u1,u2)∼N (0,Σ(l)|x,x′ )

φ′STE(u1)φ′STE(u2).
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and we define the hard-tanh function,

φSTE(x) =


1 1 ≤ x
x −1 < x < 1

−1 x ≤ −1

. (58)

for which φ′STE(y) = 1|y|≤1. The form of ΘSTE(x, x′) is thus obtained by replacing the sign activation
with eq. 58 but only during the backwards pass (and not during the forward pass), in line with the
motivation of the STE in [13]. We note that the dynamics of this ensemble average correspond to
those of the update scheme in eq. 19 with ρ = 1. Other choices will introduce a dependence on ρ in
ΘSTE(x, x′) but will not change the fact that it can be expressed as a function of the covariances of
the inputs in eq. 55.

M.4 Asymptotic NTK and generalization

We now consider a very deep network such that the covariance map approaches its fixed point

Σ∗|x,x′ = Q∗
(

1 C∗

C∗ 1

)
.

Θ(l)(x, x′) for very deep networks will approach a matrix of the form

lim
L→∞

1

L+ 1
Θ(L+1)(x, x′) = Θ∗(x, x′) = αδ(x, x′) + β(1− δ(x, x′)) (59)

for some constants α, β and δ(x, x′) is a Kronecker delta.

To understand the generalization properties of such a network, we can consider the evolution of the
error at some test point z that is not part of the training set. It will be given by

∂ζ(z)

∂t
= − L

Nd

Nd∑
i=1

Θ∗(z, xi)ζ(xi) = −βL
Nd

Nd∑
i=1

ζ(xi)

which at initialization is independent of our choice of z. Since it is also independent of the true label
of z this will mean that the generalization error will typically not decrease 6.

We conclude that for networks deep enough that the covariance map converges, in the initial phase
of training before Θ changes considerably there will be no improvement in the generalization error
at a typical test point. Conversely, this suggests that satisfying the signal propagation condition
χ = 1 will facilitate generalization. Presumably, if convergence to the fixed point is slow, instead
of the form in eq. 59, Θ will exhibit some finite scale of decay from its value on the diagonal as a
function of the distance between the inputs. This will enable points in the training set near z that
share the same label, and where the error has the same sign as ζ(z), to influence ∂ζ(z)

∂t thus reducing
the error at z. This argument is independent of the value of β, and provides further motivation for the
study of critical initialization schemes that exhibit slow convergence to the fixed point [26]. Such
initialization schemes have also been motivated in the past by concerns of trainability (i.e. ensuring
stable signal propagation from the inputs to the hidden states of a deep network, and preventing
vanishing/exploding gradients). This phenomenon could perhaps be the basis for the improvements
in generalization observed when using critical initialization schemes, which have hitherto been
unexplained.

To explore whether rapid convergence of the covariance map is correlated with a lack of structure in
the NTK, we define a coarse metric for non-trivial structure in the off-diagonal terms of the NTK that
should facilitate generalization. Given a row of the NTK Θi = Θ(xi, ·) ∈ RNd , we define our signal

6Aside from some trivial cases such as learning a constant function.
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to be the sum of off-diagonal terms in this row that share a label with xi:

Si =
∑
j 6= i
yj = yi

Θ(xi, xj)

while the corresponding noise measure is simply
Ni = ‖Θi‖1 − Si.

The idea behind this metric is that the fitting error at some ζ(xj) with yi = yj will be closer
on average to ζ(xi) than ζ(xj) such that yj 6= yi. If xi is not part of the training set, ∂ζ(xi)∂t =

− 1
Nd

Nd∑
j=1,j 6=i

Θ(xi, xj)ζ(xj). Thus if the elements of Θ with the same label as xi are large and

positive there will be a large magnitude contribution to ∂ζ(xi)
∂t that has the opposite sign as ζ(xi)

and thus ζ(xi) will decrease quickly over time. The noise in this case is the size of the other entries.
Generalization error should thus improve if the signal-to-noise ratio

SNR =
1

Nd

∑
i

Si
Ni

(60)

is large and

S =
1

Nd

∑
i

Si (61)

is large as well. The latter condition is important since in the case of networks with small weight
variance SNR may be large but S itself vanishes and so will any change in the generalization error.
For both networks with tanh and quantized activatsion we observe that the regime where SNR and S
are both large corresponds to the one where the signal propagation time scale in eq. 7 is large as well,
as shown in Figure 13.

In this experiment, the network architecture is given by 1 with L = 30 and all hidden layers of width
300. Note that for a finite width network with constant layer widths the difference between the NTK
and that of a network given by 53 will be a constant factor. The quantities in the plot are averaged
over 450 MNIST data points for the tanh network and 200 images for the quantized network, and
5 different initializations. The NTK for the network with quantized activations is calculated by
replacing the terms in the backwards pass with the STE equivalents, as in 57. We note that a similar
degradation in the generalization ability when the signal propagation conditions are not satisfied has
been described previously in the case of wide networks where only the last layer is trained [15].

M.5 Change of asymptotic NTK during training

We have argued above that based on the structure of the NTK at initialization for networks where the
covariance map has converged, we expect no initial improvement in the generalization error. At later
times, if we assume that the Taylor expansion of Θ∗t exists

Θ∗t (z, x
′) =

∞∑
i=0

tk

k!

∂kΘ∗0(z, x′)

∂tk

we can see directly that Θ∗t (z, x
′) will be independent of z as well, since the summands in the RHS

are. This argument thus extends to later times asymptotically at the infinite width limit, or for finite
width until such time as deviations from the asymptotic form of the NTK influence the dynamics.
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Figure 13: Off-diagonal structure in the NTK is correlated with signal propagation. The signal
(eq. 61) that is expected to improve generalization, the signal-to-noise ratio (eq. 60) and the signal
propagation time scale (eq. 7) are plotted for different architectures. All quantities are normalized
by the maximal value in the range of parameters shown. Left: For networks with tanh activations
with different weight variance σ2

w, the time scale ξ behaves non-monotonically. The SNR decreases
monotonically, while the signal S spikes around the same value of σ2

w where signal propagation
is best achieved. Thus the point that maximizes both SNR and S is close to the one where signal
propagation is also maximal. Right: For networks with quantized activations, as the quantization level
increases so does the SNR and the signal itself. We also observe the same non-monotonic behaviour
based on the parity of the number of states in all three.
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