
Table S1: Dataset sizes
Task Train Valid Test

Language Modeling 32207059 N/A 2147130 (Random-split) / 44314 (Heldout families)
Secondary Structure 8678 2170 513 (CB513) / 115 (TS115) / 21 (CASP12)
Contact Prediction 25299 224 40 (CASP12)
Remote Homology 12312 736 718 (Fold) / 1254 (Superfamily) / 1272 (Family)
Fluorescence 21446 5362 27217
Stability 53679 2447 12839

A Appendix467

A.1 Dataset Details468

In Table S1 we show the size of all train, validation, and test sets.469

We provide further details about dataset sources, preprocessing decisions, data splitting, and experi-470

mental challenges in obtaining labels for each of our supervised tasks below. For ease of reading,471

each section starts with the following items:472

(Dataset) The source of the dataset and creation of train/test splits.473

(Labeling) The current approach to acquiring supervised labels for this task.474

A.1.1 Secondary Structure Details475

(Dataset) We use a training and validation set from Klausen et al. [31], which is filtered such that no476

two proteins have greater than 25% sequence identity. We use three test sets, CB513 [33], CASP12477

[49], and TS115 [50]. The training set is also filtered at the 25% identity threshold with these test478

sets. This filtering tests the model’s ability to generalize in the interesting case where test proteins479

are not closely related to train proteins.480

(Labeling) Determining the secondary structure of a protein experimentally requires high-resolution481

imaging of the structure, a particularly labor intensive task for structural biologists. Imaging often482

uses Cryo Electron-Microscopy or X-Ray Crystallography, which can take between weeks and483

years and can cost over $200, 000 [51].484

A.1.2 Contact Prediction Details485

(Dataset) We use training, validation, and test sets from ProteinNet [26], which uses a test set based486

on the CASP12 [49] competition, with training and validation sets filtered at the 30% sequence487

identity threshold. This tests the ability of the model to generalize to proteins that are not closely488

related to any train proteins.489

(Labeling) Determining the contacts of a protein requires knowing its full 3D structure. As with490

secondary structure, determining the 3D structure requires imaging a protein.491

A.1.3 Remote Homology Details492

(Dataset) We use a training, validation, and test set from [35], derived from the SCOP 1.75 database493

[52] of hierarchically classified protein domains. All proteins of a given fold are further categorized494

into related superfamilies. Entire superfamilies are held out from the training set, allowing us to495

evaluate how the model generalizes across evolutionary distance when structure is preserved.496

(Labeling) Each fold is annotated from the structure of the sequence, which SCOP pulls from the497

Protein DataBank [52, 53]. Finding new superfamilies with the same fold is a challenging task,498

requiring sequencing in extreme environments as is often done in metagenomics [54].499

A.1.4 Fluorescence Details500

(Dataset) We use data generated by an experimental technique called Deep Mutational Scanning501

(DMS) [38]. This technique allows for extensive characterizations of small neighborhoods of502

a parent protein through mutagenesis. We create training, validation, and test splits ourselves,503

13



partitioning the data so that train and validation are in a Hamming distance 3 neighborhood of the504

original protein, while test data is a sample from the Hamming distance 4-15 neighborhood.505

(Labeling) DMS is efficient for local characterization near a single protein, but its samples become506

vanishingly small once neighborhoods start to expand outside of Hamming distance 2.507

A.1.5 Stability Details508

(Dataset) We use data generated by a novel combination of parallel DNA synthesis and protein509

stability measurements [40]. We create training, validation, and test splits ourselves, partitioning510

the data so that training and validation sets come from four rounds of experimental data measuring511

stability for many candidate proteins, while our test set consists of seventeen 1-Hamming distance512

neighborhoods around promising proteins observed in the four rounds of experimentation.513

(Labeling) This approach for observing stability is powerful because of its throughput, allowing the514

authors to find the most stable proteins ever observed for certain classes [40]. The authors observe515

that the computational methods used to guide their selection at each stage could be improved,516

meaning that in this case better models could actually lead to better labeled data in a virtuous cycle.517

A.2 Supervised Architectures518

For each task, we fixed one supervised architecture and tried one-hot, alignment-based, and neural net519

based features. We did not perform hyperparameter tuning or significant architecture optimization, as520

the main goal was to compare feature extraction techniques.521

For each task we define the supervised architecture below. If this is a state of the art architecture from522

other work, we highlight any novel training procedure or inputs they take.523

A.2.1 Secondary Structure Architecture524

We used the NetSurfP2.0 model from Klausen et al [31]. The model consists of two convolutional525

layers followed by two bidirection LSTM layers and a linear output layer. The convolutional layers526

have filter size 32 and kernel size 129 and 257, respectively. The bidirectional LSTM layers have527

1024 hidden units each.528

In the original model, the authors take in the outputs of an HMM-HMM alignment method called529

HHblits [14] in addition to a one-hot encoding of the sequence, giving 50-dimensional inputs at each530

position. They train the model on multiple tasks including secondary structure prediction (3 and 8531

class), bond-angle prediction, and solvent accessibility prediction. For clarity, we only compared532

to the model trained without the multitask training, which in our experiments contributed an extra533

one to two percent in test accuracy. In addition to multitask training, they balance the losses between534

different tasks to achieve maximum accuracy on secondary structure prediction. All features and535

code to do the full multitask training is available in our repository.536

A.2.2 Contact Prediction Architecture537

We used a supervised network inspired by the RaptorX-Contact model from Ma et al [48]. Since a538

contact map is a 2D pairwise prediction, we form a 2D input from our 1D features by concatenating539

the features at position i and j for all i, j. This 2D input is then passed through a convolutional540

residual network with. The 2D network contains 30 residual blocks with two convolutional layers541

each. Each convolution in the residual block has filter size 64 and a kernel size of 3.542

The original RaptorX method inputs uses alignment-based methods to find similar proteins, then543

passes these through CCMpred [55] - a Markov Random Field based contact prediction method. This544

outputs a 2D featurization including mutual information and pairwise potential. This, along with545

1D HMM alignment features and the one-hot encoding of each amino acid are fed their network.546

Unfortunately the code and features are not publically available, so we used the 1D alignment-based547

features available in ProteinNet [26] instead. While this improved performance significantly, the548

numbers reported by RaptorX are higher than those we obtained with our implementation.549

A.2.3 Remote Homology Architecture550

Remote homology requires a single prediction for each protein. To obtain a sequence-length invariant551

protein embedding we compute an attention-weighted mean of the amino acid embeddings. More552
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precisely, we predict an attention value for each position in the sequence using a trainable dense553

layer, then use those attention values to compute an attention-weighted mean protein embedding.554

This protein embedding is then passed through a 512 hidden unit dense layer, a relu nonlinearity,555

and a final linear output layer to predict logits for all 1195 classes. We note that Hou et al. [35]556

propose a deep architecture for this task and report state of the art performance. When we compared557

the performance of this supervised architecture to that of the attention-weighted mean above, the558

attention-based embedding performed better for all featurizations. As such, we choose to report559

results using the simpler attention-based downstream architecture.560

The current state of the art method in this problem, DeepSF [35], takes in a one-hot encoding of the561

amino acids, predicted secondary structure labels, predicted solvent accessibility labels, and a 1D562

alignment-based features. In an ablation study, the authors show that the secondary structure labels563

are most useful for performance of their model. We report only one-hot and alignment-based results564

in the main paper to maintain consistency with alignment-based featurizations for other tasks. All565

input features used by DeepSF are available in our repository.566

A.2.4 Protein Engineering Architectures567

Protein engineering also requires a single prediction for each protein. Therefore we use the same568

architecture as we do for remote homology, computing an attention-weighted mean protein embedding,569

a dense layer with 512 hidden units, a relu nonlinearity and a final linear output layer to predict the570

quantity of interest (either stability or fluorescence).571

Since we create these training, validation, and test splits ourselves, no clear previous state of the art572

exists. Related work on protein engineering has used a similar architecture by computing a single573

protein embedding followed by some form of projection (linear or with a small feed forward network)574

[12, 28]. These methods also do not take in alignment-based features and only use one-hot amino575

acids as inputs.576

A.3 Training Details577

Self-supervised models were all trained on four NVIDIA V100 GPUs on AWS for 1 week. Training578

used a learning rate of 10−3 with a linear warm up schedule, the Adam optimizer, and a 10%579

dropout rate. Since proteins vary in length significantly, we use variable batch sizes depending on the580

length of the protein. These sizes also differ based on model architecture, as some models (e.g. the581

Transformer) have significantly higher memory requirements. Specific batch sizes for each model at582

each protein length are available in our repository.583

Supervised models were trained on two GPUs until convergence (no increase in validation accuracy584

for 10 epochs) with the exception of the memory-intensive Contact Prediction task, which was585

trained on four GPUs until convergence. Training used a learning rate of 10−4 with a linear warm up586

schedule, the Adam optimizer, and a 10% dropout rate. We backpropagated fully through all models587

during supervised fine-tuning.588

In addition, due to high memory requirements of some downstream tasks (especially contact predic-589

tion) we use memory saving gradients [56] to fit more examples per batch on the GPU.590

A.4 Pfam Heldout Families591

The following Pfam clans were held out during self-supervised training: CL0635, CL0624, CL0355,592

CL0100, CL0417, CL0630. The following Pfam families were held out during self-supervised593

training: PF18346, PF14604, PF18697, PF03577, PF01112, PF03417. First, a “clan” is a cluster of594

families grouped by the maintainers of Pfam based on shared function or evolutionary origin (see595

[30] for details). We chose holdout clans and families in pairs, where a clan of novel function is held596

out together with a family that is similar in sequence but different evolutionarily or functionally. This597

serves to simultaneously test generalization across large distances (entirely held out families) and598

between similar looking unseen groups (e.g. the paired holdout clan and holdout family).599
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Table S2: Detailed secondary structure results
Three-Way Accuracy (Q3) Eight-Way Accuracy (Q8)

CB513 CASP12 TS115 CB513 CASP12 TS115

No Pretrain
Transformer 0.70 0.68 0.73 0.51 0.52 0.58
LSTM 0.71 0.69 0.74 0.47 0.48 0.52
ResNet 0.70 0.68 0.73 0.55 0.56 0.61

Pretrain
Transformer 0.73 0.71 0.77 0.59 0.59 0.64
LSTM 0.75 0.70 0.78 0.59 0.57 0.66
ResNet 0.75 0.72 0.78 0.58 0.58 0.64

Supervised [11] LSTM 0.73 0.70 0.76 0.58 0.57 0.65
UniRep [12] mLSTM 0.73 0.72 0.77 0.57 0.59 0.63

Baseline One-hot 0.69 0.68 0.72 0.52 0.53 0.58
Alignment 0.8 0.76 0.81 0.63 0.61 0.68

A.5 Bepler Supervised Training600

We perform supervised pretraining using the same architecture described in Bepler et al. [11]. We601

train on the same tasks, a paired remote homology task and contact map prediction task. However,602

in order to accurately report results on downstream secondary structure, contact map, and remote603

homology datasets, which were filtered by sequence identity, we perform this same sequence identity604

filtering on the supervised pretraining set. This reduced the supervised pretraining dataset size by605

75% which likely reduced the effectiveness of the supervised pretraining. Both filtered and unfiltered606

supervised pretraining datasets are made available in our repository.607

A.6 Detailed Results on Supervised Tasks608

Here we provide detailed results on each task, examining multiple metrics and test-conditions to609

further determine what the models are learning.610

A.6.1 Secondary Structure Results611

We perform both three-class and eight-class secondary structure classification following the DSSP612

labeling system [57]. Three way classification tags each position as either Helix, Strand or Other.613

Eight-way classification breaks these three labels into more specialized classes, for example Helix is614

broken into 3-turn, 4-turn or 5-turn helix. Table S2 shows results on these tasks. We note that test-set615

performance is comparable for all three test sets, in particular alignment does better at both eight-way616

and three-way classification by a large margin.617

We follow the standard notation, where Q3 refers to three-way classification accuracy and Q8 refers618

to eight-way classification accuracy.619

A.6.2 Contact Prediction Results620

We report all metrics commonly used to capture contact prediction results [48] in tables S4 and S5.621

The metrics “P@K” are precision for the top K contacts, where all contacts are sorted from highest622

confidence to lowest confidence. Note that L is the length of the protein, so “P@L/2”, for example,623

denotes the precision for the L/2 most likely predicted contacts in a protein of length L. In Table624

S4 we report all metrics for medium range contacts, which are contacts for positions between five625

and twelve amino acids apart. In Table S5 we report all metrics for long range contacts, which are626

contacts for positions greater than 12 amino acids apart.627

All results decay as we transition from short range to long range contacts, which we note is not628

the case for many state of the art methods from recent CASP competitions [47, 48]. That said, for629

long-range contacts, the pretrained LSTM does report higher precision for top predictions than the630

simple alignment-based features we use here, highlighting the potential for further gains in the future.631
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Table S3: Detailed short-range contact prediction results. Short range contacts are contacts between
positions separated by 6 to 11 positions, inclusive.

Pr Recall F1 AUPRC P@L P@L/2 P@L/5

No Pretrain
Transformer 0.05 0.93 0.09 0.11 0.1 0.12 0.13
LSTM 0.05 0.93 0.09 0.29 0.23 0.3 0.38
ResNet 0.05 0.93 0.09 0.27 0.21 0.28 0.36

Pretrain
Transformer 0.05 0.93 0.09 0.3 0.23 0.3 0.38
LSTM 0.05 0.93 0.09 0.39 0.27 0.36 0.49
ResNet 0.05 0.74 0.08 0.22 0.18 0.23 0.3

Supervised [11] LSTM 0.05 0.93 0.09 0.33 0.25 0.33 0.43
UniRep [12] mLSTM 0.05 0.92 0.09 0.36 0.25 0.33 0.43

Baseline One-hot 0.05 0.93 0.09 0.28 0.22 0.29 0.36
Alignment 0.05 1.0 0.10 0.51 0.35 0.5 0.66

Table S4: Detailed medium-range contact prediction results. Medium range contacts are contacts
between positions separated by 12 to 23 positions, inclusive.

Pr Recall F1 AUPRC P@L P@L/2 P@L/5

No Pretrain
Transformer 0.03 0.88 0.06 0.07 0.07 0.07 0.09
LSTM 0.03 0.88 0.06 0.2 0.16 0.2 0.27
ResNet 0.03 0.88 0.06 0.18 0.14 0.18 0.23

Pretrain
Transformer 0.03 0.88 0.06 0.19 0.16 0.2 0.25
LSTM 0.03 0.88 0.06 0.31 0.21 0.29 0.39
ResNet 0.03 0.69 0.06 0.15 0.11 0.15 0.2

Supervised [11] LSTM 0.03 0.88 0.06 0.26 0.19 0.25 0.33
UniRep [12] mLSTM 0.03 0.87 0.06 0.29 0.2 0.26 0.34

Baseline One-hot 0.03 0.88 0.06 0.18 0.15 0.18 0.23
Alignment 0.03 0.98 0.06 0.45 0.32 0.45 0.59

Table S5: Detailed long-range contact prediction results. Long range contacts are contacts between
positions separated by 24 or more positions, inclusive.

Pr Recall F1 AUPRC P@L P@L/2 P@L/5

No Pretrain
Transformer 0.02 0.87 0.03 0.05 0.07 0.09 0.11
LSTM 0.02 0.87 0.03 0.11 0.16 0.2 0.25
ResNet 0.02 0.86 0.03 0.1 0.14 0.19 0.24

Pretrain
Transformer 0.02 0.87 0.03 0.11 0.17 0.21 0.26
LSTM 0.02 0.87 0.03 0.2 0.26 0.32 0.39
ResNet 0.02 0.61 0.03 0.09 0.14 0.17 0.21

Supervised [11] LSTM 0.02 0.87 0.03 0.14 0.22 0.27 0.33
UniRep [12] mLSTM 0.02 0.85 0.03 0.18 0.24 0.29 0.35

Baseline One-hot 0.02 0.87 0.03 0.08 0.12 0.15 0.2
Alignment 0.02 0.86 0.03 0.15 0.23 0.29 0.35
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Table S6: Detailed remote homology prediction results
Fold Superfamily Family

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

No Pretrain
Transformer 0.09 0.21 0.07 0.2 0.31 0.58
LSTM 0.12 0.28 0.13 0.29 0.68 0.85
ResNet 0.1 0.24 0.07 0.19 0.39 0.6

Pretrain
Transformer 0.21 0.37 0.34 0.51 0.88 0.94
LSTM 0.26 0.43 0.43 0.59 0.92 0.97
ResNet 0.17 0.29 0.31 0.44 0.77 0.87

Supervised [11] LSTM 0.17 0.30 0.20 0.36 0.79 0.91
UniRep [12] mLSTM 0.23 0.39 0.38 0.54 0.87 0.94

Baseline One-hot 0.09 0.21 0.08 0.21 0.39 0.66
Alignment 0.09 0.21 0.09 0.24 0.53 0.77

Table S7: Detailed fluorescence prediction results. ρ denotes Spearman ρ.
Full Test Set Bright Mode Only Dark Mode Only

MSE ρ MSE ρ MSE ρ

No Pretrain
Transformer 2.59 0.22 0.08 0.08 3.79 0
LSTM 2.35 0.21 0.11 0.05 3.43 -0.01
ResNet 2.79 -0.28 0.07 -0.07 4.1 -0.01

Pretrain
Transformer 0.22 0.68 0.09 0.60 0.29 0.05
LSTM 0.19 0.67 0.12 0.62 0.22 0.04
ResNet 3.04 0.21 0.12 0.05 4.45 0.02

Supervised [11] LSTM 2.17 0.33 0.08 0.06 3.17 0.02
UniRep [12] mLSTM 0.20 0.67 0.13 0.63 0.24 0.04

Baseline One-hot 2.69 0.14 0.08 0.03 3.95 0.0

A.6.3 Remote Homology Results632

In Table S6, we report results on three remote homology test datasets constructed in Hou et al [35].633

Recall that “Fold” has the most distantly related proteins from train, while “Superfamily” and “Family”634

are increasingly related (see Section A.1.3 for more details). This is reflected in the accuracies in635

Table S6, which increase drastically as the test sets get easier.636

A.6.4 Fluorescence Results637

Fluorescence distribution in the train, validation, and test sets is bimodal, with one mode correspond-638

ing to bright proteins and one mode corresponding to dark proteins. The dark mode is significantly639

more diverse in the test set than the train and validation sets, which makes sense as most random640

mutations will destroy the refined structure necessary for fluorescence. With this in mind, we report641

Spearman’s ρ and mean-squared-error (MSE) on the whole test-set, on only dark mode, and on only642

the bright mode in Table S7. The drop in MSE for both modes shows that pretraining helps our best643

models distinguish between dark and bright proteins. However low Spearman’s ρ for the dark mode644

suggests that models are not able to rank proteins within this mode.645

18



Table S8: Overall stability prediction results
Spearman’s ρ Accuracy

No Pretrain
Transformer -0.06 0.5
LSTM 0.28 0.6
ResNet 0.61 0.68

Pretrain
Transformer 0.73 0.70
LSTM 0.69 0.69
ResNet 0.73 0.66

Supervised [11] LSTM 0.64 0.67
UniRep [12] mLSTM 0.73 0.69

Baseline One-hot 0.19 0.58

A.6.5 Stability Results646

Table S9: Stability prediction results broken down by protein topology
ααα αββα βαββ ββαββ

ρ Acc ρ Acc ρ Acc ρ Acc

No Pretrain
Transformer -0.39 0.49 -0.41 0.47 0.52 0.5 0.25 0.52
LSTM -0.07 0.57 0.39 0.7 -0.43 0.56 -0.34 0.56
ResNet 0.64 0.69 0.16 0.69 0.63 0.67 0.65 0.67

Pretrain
Transformer 0.66 0.68 0.48 0.73 0.65 0.71 0.65 0.67
LSTM 0.71 0.7 0.17 0.73 0.68 0.67 0.67 0.7
ResNet 0.68 0.68 0.15 0.63 0.61 0.68 0.6 0.68

Supervised [11] LSTM 0.33 0.66 0.24 0.79 0.54 0.7 0.58 0.53
UniRep [12] mLSTM 0.72 0.66 0.11 0.76 0.68 0.66 0.65 0.67

Baseline One-hot 0.58 0.59 0.04 0.58 -0.05 0.58 0.54 0.58

The goal of the Rocklin et al. [40] experiment was to find highly stable proteins. In the last stage647

of this experiment they examine variants of the the most promising candidate proteins. Therefore648

we wish to measure both whether our model was able to learn the landscape around these candidate649

proteins, as well as whether it successfully identified those variants with greater stability than the650

original parent proteins. In Table S8 we report Spearman’s ρ to measure the degree to which the651

landscape was learned. In addition, we report classification accuracy of whether a mutation is652

beneficial or harmful using the predicted stability of the parent protein as a decision boundary.653

In Table S9 report all metrics separately for each of the four protein topologies tested in Rocklin et654

al [40], where α denotes a helix and β denotes a strand (or β-sheet). We do this because success655

rates varied significantly by topology in their experiments, so some topologies (such as ααα were656

much easier to optimize than others (such as αββα). We find that our prediction success also varies657

significantly by topology.658
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