
Thompson Sampling for Multinomial Logit
Contextual Bandits

Min-hwan Oh
Columbia University

New York, NY
m.oh@columbia.edu

Garud Iyengar
Columbia University

New York, NY
garud@ieor.columbia.edu

Abstract

We consider a dynamic assortment selection problem where the goal is to offer
a sequence of assortments that maximizes the expected cumulative revenue, or
alternatively, minimize the expected regret. The feedback here is the item that the
user picks from the assortment. The distinguishing feature in this work is that this
feedback is given by a multinomial logit choice model. The utility of each item is
a dynamic function of contextual information of both the item and the user. We
refer to this problem as the multinomial logit contextual bandit. We propose two
Thompson sampling algorithms for this multinomial logit contextual bandit. Our
first algorithm maintains a posterior distribution of the unknown parameter and
establishes Õ(d

√
T )1 Bayesian regret over T rounds with d dimensional context

vector. The second algorithm approximates the posterior by a Gaussian distribution
and uses a new optimistic sampling procedure to address the issues that arise
in worst-case regret analysis. This algorithm achieves Õ(d3/2

√
T ) worst-case

(frequentist) regret bound. The numerical experiments show that the practical
performance of both methods is in line with the theoretical guarantees.

1 Introduction

In the stochastic multi-armed bandit (MAB) problem [10, 27], the learning agent selects one of
N actions (or items) and receives a revenue feedback corresponding to the chosen action in each
round. The objective is to maximize the cumulative revenue over a finite horizon of length T , or
alternatively, to minimize the cumulative regret defined as the difference in cumulative revenues of the
optimal strategy and the agent’s strategy. The main challenge in MAB problems is to appropriately
balance the trade-off between exploitation, i.e., pulling the best empirical arm, and exploration,
i.e., experimenting with arms which are not sufficiently pulled. The balancing strategies for this
exploration-exploitation trade-off typically fall into two categories: upper confidence bound (UCB)
methods [9, 18] and Thompson sampling (TS) based methods [42]. (Besides UCB and TS, one may
also consider ε-greedy approach [24].)

UCB methods maintain a confidence set for the unknown true parameter, and in each step, choose the
most optimistic parameter from this set, and pull the optimal arm corresponding to this optimistic
parameter value. The confidence set is updated based on the revenue feedback which is revealed
after an arm is pulled. TS assumes a prior distribution over the parameters defining the reward
distribution. At each step, a parameter value is sampled from the posterior distribution, and an
optimal arm corresponding to a sampled parameter is pulled. Upon observing the reward for each
round, the posterior distribution is updated via Bayes rule. TS has been successfully applied in a wide
range of settings [40, 13, 38].

1Õ suppresses logarithmic dependence.
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While UCB algorithms have simple implementations and good theoretical regret bounds [29], TS
has been shown to achieve better empirical performance in many simulated and real-world settings
without sacrificing simplicity [13, 23]. In order to bridge this gap, many recent studies have been
focused on the analysis of worst-case regret and Bayesian regret in TS approaches for both contextual
bandits and reinforcement learning settings [5, 7, 38, 3]. The main technical difficulty in analyzing
regret in the TS lies in controlling the deviation introduced by the randomness in the algorithm.

In this paper, we consider a dynamic assortment selection with contextual information, which is a
combinatorial variant of the contextual bandit problem. The goal is to offer a sequence of assortments
of at most K items from a set of N possible items that minimize regret. The feedback here is
the particular item chosen by the user from the offered assortment. This problem arises in many
real-world applications such as online retailing, streaming services, news feed, online advertising, etc.
We assume that the item choice is given by a multinomial logit (MNL) choice model [33]. This is one
of the most widely used models in dynamic assortment optimization literature [12, 37, 39, 6, 7, 14].
The utility of each item that defines the MNL choice probability is assumed to be a linear function of
a d-dimensional contextual information, or a set of d features. This contextual information can be a
combined information of both the item and the user, and is allowed to change over time.

The MNL contextual bandit is a multinomial generalization of generalized linear contextual bandits
[23, 30], particularly logistic bandits, that reduces to generalized linear bandits when the assortment
contains a single item. However, this extension is non-trivial since the MNL model cannot be
expressed in the form of a generalized linear model [15]; hence, the results of generalized linear
bandits do not directly apply. Also, in contrast to the standard contextual bandit problems, in the MNL
contextual bandit, the item choice (feedback) is a function of the entire offered assortment. Thus,
regret analysis is more complicated. Furthermore, we allow the context vector to vary arbitrarily in
time; thus, offering the same assortment repeatedly several times to learn the parameter values [6, 7]
is no longer an effective strategy.

We propose two Thompson sampling algorithms for this multinomial logit contextual bandit. To our
knowledge, these are the first TS algorithms for this problem.

(a) The first algorithm maintains a posterior distribution of the true parameter and establishes
Õ(d
√
T ) Bayesian regret.

(b) The second algorithm approximates the posterior by a Gaussian distribution and uses a new
optimistic sampling procedure to address the issues that arise in worst-case regret analysis. We
establish Õ(d3/2

√
T ) worst-case (frequentist) regret bound for this algorithm.

The additional
√
d factor in the regret of the second algorithm is due to the deviation from the random

sampling in TS which is addressed in the worst-case regret analysis and is consistent with the results
in TS methods for linear bandits [5, 3]. Both regret bounds are free of candidate item set size N ,
which implies that our TS algorithms can be applied to a large item set. The TS algorithms we propose
are efficient to implement as long as the assortment optimization step is solved efficiently, for which
our TS algorithms can exploit efficient polynomial-time algorithms [36, 20], which is a significant
advantage over the previously proposed UCB method in [15] which computes the confidence bound
for each assortment (i.e., for each of the total N choose K assortments). Furthermore, the numerical
experiments show that the practical performance of the proposed methods is in line with the theoretical
guarantees.

2 Related Work

The MNL model [34, 33, 32] is one of the most widely used choice models for assortment selection
problems. The problem of computing the optimal assortment (static assortment optimization problem),
when the MNL parameters, i.e., user preferences, are known a priori, is well-studied [41, 21, 22].
Our work belongs to the literature on dynamic assortment optimization. [12] consider the setting
where the demand for items in an assortment is independent. [37] and [39] consider the problem
of minimizing regret under the MNL choice model and present an “explore first then exploit later”
approach. [37] showed O(N2 log2 T ) regret bound, where N is the number of total candidate items.
[39] later improved the bound to O(N log T ). However, these methods require a priori knowledge of
“separability” between the true optimal assortment and the other sub-optimal alternatives.
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More recent work by [6, 7, 16, 14, 15] also incorporated MNL models into dynamic assortment
optimization and formulated the problem into an online regret minimization problem without requiring
a priori knowledge on separability. [6] proposed UCB-style algorithm which shows Õ(

√
NT ) regret

bound. [7] achieve the same order of the regret bound Õ(
√
NT ) using TS approach with improved

empirical performance. [14] show a matching lower bound of Ω(
√
NT ). All of this previous

work on MNL bandits assumes each item is associated with a unique parameter, i.e., one cannot
learn across items. In our proposed MNL contextual bandits, the utility of item i at round t is of
the form x>tiθ

∗ some fixed but unknown utility parameter θ∗; hence, we can learn across items.
When the feature dimension d�

√
N , learning across items allows one to reduce the regret bound

from Õ(
√
NT ) to Õ(d

√
T ). However, one cannot directly incorporate (time-varying) contextual

information into the previous work (see, e.g. [6, 7]) since these methods require that the same
assortment be offered repeatedly for a random number of rounds until an outside choice (no purchase)
is observed. [15] proposed a UCB method which establishes Õ(d

√
T ) regret bound for the MNL

contextual bandit similar to our settings. Apart from the fact that their method is UCB based, there is
another fundamental difference between [15] and our work. [15] enumerates the exponentially many
(N choose K) assortments and builds confidence bounds for each of them. In contrast, our methods
only maintain uncertainty for each of the N different items.

It is also worth mentioning work in the personalized MNL-bandit problem [25, 17, 11]. These works
consider each item utility separately and learnN different parameters; hence there is no generalization
across different items, which is different from our setting. Perhaps, the most related one among
these personalized MNL bandit methods is [17], which proposed a TS algorithm for their problem.
However, they only provide the Bayesian regret which is relatively easier to control compared to
the worst-case regret (we discuss this aspect in Section 5), and again their method (as well as other
personalized MNL bandit methods) still considers learning N separate parameters for each of the
items; hence it is not scalable for a large item set (i.e., large N ).

Linear contextual bandits [2, 9, 19, 36, 1, 18, 5] have been widely studied. [23] and [30] extend the
linear contextual bandit to scalar, monotone, generalized linear bandit using a UCB-type approach.
In most of these linear bandits or generalized linear bandits, balancing exploitation and exploration
can be done simply by taking an action that maximizes the sum of mean reward and the variance.
[5] define TS for linear contextual bandit as a Bayesian algorithm where a Gaussian prior over θ∗ is
updated according to the observed rewards, a random sample is drawn from the posterior, and the
corresponding optimal arm is selected at each step. They show Õ(d3/2

√
T ) worst-case regret bound.

Following the work of [5], [3] show that the TS does not need to sample from an actual Bayesian
posterior distribution and that any distribution satisfying suitable concentration and anti-concentration
properties guarantees a small regret and provide an alternative proof of TS achieving the same regret
bound Õ(d3/2

√
T ). However, these results in (generalized) linear contextual bandits (either UCB

or TS) do not apply directly to our MNL contextual bandit problem, since the choice probability
of an item in an assortment is non-linear and non-monotone in the MNL parameter θ∗. It is also
worthwhile to mention a line of work in other combinatorial bandit problems [35, 43, 26] mostly
with semi-bandit feedback or cascading feedback. Our work is distinct from these combinatorial
bandit problems since in cascading or semi-bandit settings, the mapping from the item context to the
user feedback is still independent of other items in an offered set; hence it does not take substitution
effect into account. On the other hand, MNL choice feedback is a function of the entire assortment
which makes our analysis more challenging.

3 Problem Formulation

3.1 Notations

For a vector x ∈ Rd, we use ‖x‖ to denote its `2-norm and x> its transpose. The weighted `2-norm
associated with a positive-definite matrix V is defined by ‖x‖V :=

√
x>V x. The minimum and

maximum singular values of a matrix V are written as λmin(V ) and ‖V ‖, respectively. The trace of a
matrix V is trace(V ). For two symmetric matrices V and W of the same dimensions, V �W means
that V −W is positive semi-definite. We define [n] for a positive integer n to be a set containing
positive integers up to n, i.e., {1, 2, ..., n}. Finally, we define S to be the set of candidate assortments
with size constraint at most K, i.e., S = {S ⊂ [N ] : |S| ≤ K}.
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3.2 MNL Contextual Bandits

We formulate the problem of the MNL contextual bandit as follows. The decision-making agent can
choose an assortment as a subset of the item set containing N distinct items, indexed by i ∈ [N ].
At round t, feature vectors xti ∈ Rd for every item i ∈ [N ] are revealed to the agent. Each feature
vector combines the information of the user and the corresponding item i. For example, suppose
the user at round t is characterized by a feature vector vt and the item i has a feature vector wti
(note that we allow feature vectors for an item and a user to change over time), then we can use
xti = vec(vtw

>
ti ), the vectorized outer-product of vt and wti, as the combined feature vector of item

i a at round t. If vt is not available, we can use item dependent features only xti = wti. Given this
contextual information, at every round t, the agent selects an assortment St ∈ S and observes the
user choice represented as a binary vector yt ∈ {0, 1}|St| where yti = 1 if the i-th item in assortment
St is chosen by the user and ytj = 0 for all non-chosen items j ∈ St. Note that

∑
i∈St yti ≤ 1 and

we allow an “outside option” (i = 0) which means the user does not choose any items offered in St,
i.e., yti = 0 for all i ∈ St. This user choice is given by the MNL choice model. Under this model,
the probability that a user chooses item i ∈ St is given by,

pti(St, θ
∗) =

exp{x>tiθ∗}
1 +

∑
j∈St exp{x>tjθ∗}

where θ∗ ∈ Rd is an unknown time-invariant parameter and 1 in the denominator accounts for the
outside option with pt0(St, θ

∗) = 1/(1 +
∑
j∈St exp{x>tjθ∗}). Then, the choice response variable

yt = (yt0, yt1, ..., ytK) is a sample from this multinomial distribution:
yt ∼ multinomial

(
1, pt0(St, θ

∗), pt1(St, θ
∗), ..., ptK(St, θ

∗)
)

where 1 represents yt is a single-trial sample. Also, we define noise εti := yti − pti(St, θ∗). Since
εti is bounded in [0, 1], εti is σ2-sub-Gaussian with σ2 = 1/4. It is important to note that εti is not
independent across i ∈ St due to the substitution effect in the MNL model.

The revenue parameter for each item i is also revealed at round t, denoted by rti. Note that rti is the
revenue incurred by item i if item i is chosen by the user at round t. Without loss of generality, we
assume |rti| ≤ 1 for all i and t. Then, the expected revenue corresponding to assortment St is given
by

Rt(St, θ
∗) =

∑
i∈St

rti exp{x>tiθ∗}
1 +

∑
j∈St exp{x>tjθ∗}

.

Let S∗t be the offline optimal assortment at round t under full information when θ∗ is known, i.e., if
the true MNL probabilities pti(S, θ∗) are known a priori:

S∗t = arg max
S∈S

Rt(S, θ
∗).

Consider a planning horizon T , where assortments can be offered at rounds t = 1, ..., T . The
agent does not know the value of θ∗ (hence pti(S, θ∗) is not known) and can only make sequential
assortment decisions, S1, ..., ST at rounds 1, ..., T respectively. Hence, the main challenge is how to
construct an algorithm that simultaneously learns the unknown parameter θ∗ and sequentially makes
the decisions on offered assortments based on past choices and observed responses to maximize
cumulative expected revenues over the planning horizon. The performance of an algorithm is usually
measured by the regret, which is the gap between the expected revenue generated by the assortment
chosen by the algorithm and that of the offline optimal assortment. We define the (worst-case)
cumulative expected regret as

R(T, θ∗) =

T∑
t=1

E
[
Rt(S

∗
t , θ
∗)−Rt(St, θ∗) | θ∗

]
where Rt(S∗t , θ

∗) is the expected revenue corresponding to the offline optimal assortment at round
t, and the expectation is taken over random parameters and possible randomization in a learning
algorithm. When it is clear that we condition on a fixed θ∗, we denoteR(T ) := R(T, θ∗) in the rest
of the paper. In Bayesian settings, i.e., when θ∗ is randomly generated or the learning agent has a
prior belief in θ∗, the Bayesian cumulative regret [38] over T horizon is defined as

RBayes(T ) = Eθ∗ [R(T, θ∗)] =

T∑
t=1

E
[
Rt(S

∗
t , θ
∗)−Rt(St, θ∗)

]
4



where the expectation is taken also over the distribution of θ∗. In other words,RBayes(T ) is a weighted
average ofR(T, θ∗) under the prior on θ∗.

3.3 Assumptions

We introduce general assumptions on the structure of the problem.
Assumption 1. ‖xti‖ ≤ 1 for all t and i. Also, ‖θ∗‖ ≤ 1.

This assumption is used to make the regret bounds scale-free for convenience and is in fact standard
in the bandit literature. If ‖xti‖ ≤ C and ‖θ∗‖ ≤ C for some constant C instead, then our regret
bounds would increase by a factor of C.
Assumption 2. There exists κ > 0 such that for every item i ∈ S and any S ∈ S and all round t
infS∈S,θ∈Rd pti(S, θ)pt0(S, θ) ≥ κ.

Note that this is equivalent to a standard assumption in generalized linear contextual bandit literature
[23, 30] to ensure the Fisher information matrix is invertible and is adapted to suit our MNL setting.
We discuss the need for this assumption in detail in Appendix A.

4 Algorithm: TS-MNL

In this section, we describe TS-MNL, our first TS algorithm for the MNL contextual bandit problem,
and present its Bayesian regret bound. We first provide the definition of the posterior distribution
Qt on the unknown parameter θ∗. At the beginning of the learning phase, the agent knows that θ∗ is
distributed according to Q0, the prior distribution. Now, at each round t, the agent has access to the
observations up to round t, Dt = {Xτ , yτ}t−1

τ=1 where Xτ = {xτi}i∈Sτ . Then the agent combines
Q0 and Dt to define the posterior distribution Qt(θ):

Qt(θ) ∝ Q0(θ)p(Dt|θ), where p(Dt|θ) =

t−1∏
τ=1

∏
i∈Sτ

(pτi(Sτ , θ))
yτi (1)

and the “∝” notation hides the partition function
∫
φ
Q0(φ)p(Dt|φ)dφ in the denominator. In other

words, the posterior distribution is proportional to the product of the prior distribution and the
likelihood function. Note that there is no conjugate prior for the MNL model. Hence, sampling from
Qt is intractable. In order to overcome this intractability, one may draw an approximate sampling
using Markov chain Monte Carlo [8]. For ease of exposition, we assume the following in this section
and in the Bayesian regret analysis. We will later provide a remedy for this intractability in the
modification of our algorithm for the worst-case regret analysis.
Assumption 3. We can sample from Qt(θ).

In each round t, TS-MNL algorithm consists of three major steps. First, it randomly samples a
parameter θ̃t from the posterior distribution Qt. Second, it computes the assortment choice St under
this sampled parameter θ̃t. Finally, St is offered to the user and feedback yt is observed. The
pseudocode of TS-MNL is presented in Algorithm 1.

Algorithm 1 TS-MNL

1: Input: prior distribution Q0

2: for all t = 1 to T do
3: Observe xti and rti for all i ∈ [N ]

4: Sample θ̃t from the posterior distribution Qt in Eq.(1)
5: Compute St = arg maxS∈S Rt(S, θ̃t)
6: Offer St and observe yt (user choice at round t)
7: end for

Combinatorial Optimization. Algorithm 1 has the combinatorial optimization step in Line 5. There
are efficient polynomial-time algorithms available to solve this combinatorial optimization problem
[37, 20] for given utility estimates under the sampled parameter. In particular, we can use the solution
of the linear programming (LP) formulation presented in [20] for this optimization step.
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4.1 Bayesian Regret of TS-MNL

We state the Bayesian cumulative regret bound for Algorithm 1 in Theorem 1. We also provide an
overview of establishing the regret bound.
Theorem 1. Suppose we run TS-MNL (Algorithm 1) for a total of T rounds with assortment size
constraint K. Then the Bayesian regret of the algorithm is upper-bounded by

RBayes(T ) ≤ O(1) +

[
1

κ

√
2d log

(
1 +

TK

d2

)
+ 2 log T +

√
d

κ

]
·

√
2dT log

(
1 +

TK

d2

)
= O

(
d
√
T log

(
1 +

TK

d2

))
.

Theorem 1 establishes Õ(d
√
T ) Bayesian regret. [15] established the lower bound Ω(d

√
T/K)

for MNL contextual bandits under almost identical settings. When K is small and fixed (which
is typically true in many applications), Theorem 1 demonstrates that TS-MNL is almost optimal.
Furthermore, the regret bound is completely free of N ; hence TS-MNL is applicable to the case of a
large number of items (large N ). Also, if K ≤ d2, the regret bound becomes free of K. In Section 6,
we introduce modifications to TS-MNL for the worst-case regret analysis which include the explicit
use of regularized MLE for parameter estimation and sampling from the Gaussian distribution instead
of maintaining the actual posterior to overcome the intractability. The concentration results derived
for the Bayesian regret analysis in this section serve as a building block for the worst-case regret
analysis for the modified algorithm.

The proof outline of Theorem 1 is motivated by [38, 43]. Given Ft which contains all available
information up to round t, θ̃t and θ∗ are i.i.d. with the posterior distribution Qt in the Bayesian
perspective. Also, the optimization step is a fixed combinatorial optimization and {xti}i∈[N ] are
fixed given Ft. Hence, conditioning on Ft, St and S∗t are also i.i.d. Therefore, the expected regret
pertaining to the random sampling is 0.; Then, we control the estimation error of θ∗ for which we
utilize the finite-sample concentration results for MNL parameter. The proofs are left to Appendix B.

5 Worst-Case Regret

Algorithm 1 is still valid under a frequentist setting, i.e., when the true parameter is not a random
variable but a fixed parameter. However, when analyzing the worst-case regret (also known as
frequentist regret) for the algorithm, the main technical difficulty lies in controlling the deviation in
performance due to the random sampling of the algorithm. Note that in Bayesian regret analysis,
controlling this sampling deviation is not addressed because of the assumption that θ̃t and θ∗ are i.i.d.
conditioning on Ft . However, this does not hold anymore when θ∗ is fixed; hence the worst-case
regret analysis needs to ensure that the deviation due to sampling is small enough. To see this, we
decompose the worst-case immediate regret into a few components.

R(t) = E[Rt(S
∗
t , θ
∗)−Rt(St, θ∗)]

= E[Rt(S
∗
t , θ
∗)−Rt(S∗t , θ̃t)] + E[Rt(S

∗
t , θ̃t)−Rt(St, θ̃t)] + E[Rt(St, θ̃t)−Rt(St, θ∗)]

≤ E[Rt(S
∗
t , θ
∗)−Rt(S∗t , θ̃t)] + E[Rt(St, θ̃t)−Rt(St, θ∗)] (2)

The inequality comes from the fact that our assortment choice at round t, St, is optimal under θ̃t;
hence Rt(S∗t , θ̃t) ≤ Rt(St, θ̃t). The second term E[Rt(St, θ̃t)− Rt(St, θ∗)] in Eq.(2) is relatively
easier to control. We can show that the term can be bounded by combining the upper-bound for the
estimation error |x>(θ̂t − θ∗)| and the concentration of the sampling probability of θ̃t. However,
controlling the first term E[Rt(S

∗
t , θ
∗) − Rt(S∗t , θ̃t)] in Eq.(2) is more challenging in frequentist

analysis. First, note that E[Rt(S
∗
t , θ
∗)−Rt(S∗t , θ̃t)] = 0 in the Bayesian regret by the assumption

that θ∗ and θ̂t are i.i.d. conditioning on Ft as mentioned earlier. However, this is no longer true in the
worst-case regret analysis. In the worst-case regret analysis of TS, this term is controlled by showing
that a sampled parameter is optimistic frequently enough. In other words, we need to lower-bound the
probability of the sampled parameter being optimistic, i.e., P

(
Rt(S

∗
t , θ̃t) ≥ Rt(S

∗
t , θ
∗) | Ft

)
≥ p

for some parameter free p > 0.

6



To describe the challenge in our MNL contextual bandit problem, we present the following lemma
which shows that the expected revenue for the optimal assortment is monotonically increasing with
an increase in the utility estimates.

Lemma 1 ([6], Lemma 4.2). Suppose S∗t is the optimal assortment under the true parameter θ∗ at
round t, i.e., S∗t = arg maxS∈S Rt(S, θ

∗). Also suppose that x>tiθ
∗ ≤ x>tiθ

′ for all i ∈ S∗t . Then
Rt(S

∗
t , θ
∗) ≤ Rt(S∗t , θ′).

Note that Lemma 1 shows the monotonicity of expected revenue only for the optimal assortment and
it does not claim that the expected revenue is generally a monotone function for all assortments. This
lemma implies that we can lower-bound the probability of having an optimistic expected revenue
under the sampled parameter.

P
(
Rt(S

∗
t , θ̃t) ≥ Rt(S∗t , θ∗) | Ft

)
≥ P

(
x>ti θ̃t ≥ x>tiθ∗,∀i ∈ S∗t | Ft

)
However, this makes the probability of being optimistic exponentially small in the size of the
assortment S∗t , i.e., exponentially small in O(K), which in turn results in exponential dependence
on O(K) in the worst-case regret bound. In order to overcome such an issue, we adopt a few
modifications in the algorithm which we discuss in the following section.

6 TS-MNL with Optimistic Sampling

Sampling from Gaussian Distribution. We modify our TS algorithm to a generic randomized
algorithm constructed on the regularized MLE rather than sampling from an actual Bayesian posterior.
[3] show that TS does not need to sample from an actual posterior distribution and that any distri-
bution satisfying suitable concentration and anti-concentration properties guarantees a small regret.
Specifically, instead of sampling from the posterior Qt, we sample θ̃t from Gaussian distribution
N
(
θ̂t, α

2
tV
−1
t

)
where θ̂t is the regularized MLE, the minimizer of Eq.(3), and αt is the confidence

radius. This way, we ensure tractability of the sampling distribution. Furthermore, this Gaussian
approximation allows us to adopt optimistic sampling (which we discuss below) in an efficient
manner.

Optimistic Sampling. The optimistic sampling we present here is a key ingredient in avoiding the
theoretical challenges present in the worst-case regret analysis. For optimistic sampling, instead of
drawing a single sample θ̃t, we draw M independent samples {θ̃(j)

t }Mj=1 from N
(
θ̂t, α

2
tV
−1
t

)
(the

exact value of M is specified in Theorem 2). Then we compute the optimistic utility estimate ũti for
each i ∈ [N ]:

ũti = max
j
x>ti θ̃

(j)
t .

We define R̃t(S) to be the expected revenue of assortment S based on ũti:

R̃t(S) =

∑
i∈S rti exp {ũti}

1 +
∑
j∈S exp {ũtj}

Note that this optimistic sampling scheme is different from that proposed in [7]. The setting in [7]
is non-contextual, and they use a 1-dimensional Gaussian random variable to correlate the samples
of the utility of the K items in order to ensure the probability that all samples are simultaneously
optimistic is a constant. This correlated sampling reduces the overall variance severely, hence they
propose taking K samples instead of a single sample to increase the variance. In contrast, we take
multiple samples of the multivariate Gaussian distribution to directly ensure that the probability of an
optimistic sample is sufficiently large.

The pseudocode of the modified algorithm is presented in Algorithm 2. As before, we can utilize
the LP solution [20] for the optimization step in Line 6. The modified algorithm now explicitly
maintains the matrix Vt and computes the regularized MLE θ̂t. Note that αT can be replaced by

αt = O
(√

d log
(
1 + tK

dλ

)
+ 4 log t

)
at round t, if the planning horizon T is not known and the

analysis holds for either case.
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Algorithm 2 TS-MNL with Optimistic Sampling

1: Input: sample size M , confidence radius αT , penalty parameter λ
2: for all t = 1 to T do
3: Observe xti and rti for all i ∈ [N ]

4: Sample {θ̃(j)
t }Mj=1 independently from N (θ̂t, α

2
TV
−1
t )

5: Compute ũti = maxj x
>
ti θ̃

(j)
t for all i ∈ [N ]

6: Compute St = arg maxS∈S R̃t(S)
7: Offer St and observe yt (user choice at round t)
8: Update Vt+1 ← Vt +

∑
i∈St xtix

>
ti

9: Compute the regularized MLE θ̂t by minimizing

−
t∑

τ=1

∑
i∈Sτ

yτi log pτi(Sτ , θ) +
λ

2
‖θ‖2. (3)

10: end for

6.1 Worst-Case Regret of TS-MNL with Optimistic Sampling

Theorem 2. Suppose we run TS-MNL with “optimistic sampling” (Algorithm 2) for a total of T
rounds with optimistic sample size M = d1− logK

log(1−1/(4
√
eπ))
e, the penalty parameter λ ≥ 1 and

assortment size constraint K. Then the worst-case regret of the algorithm is upper-bounded by

R(T ) ≤ O(1) + 16
√
eπβT

(√
2dT log

(
1 +

TK

dλ

)
+

√
8T

λ
log 2T

)

+ (αT + βT )

√
2dT log

(
1 +

TK

dλ

)

where αT = 1
2κ

√
d log

(
1 + TK

dλ

)
+ 4 log T +

√
λ
κ and βT = αT

√
2d log(MT ).

Theorem 2 establishes Õ(d3/2
√
T ) worst-case regret, which matches the regret bounds of TS methods

for linear contextual bandits [5, 3] up to logarithmic factor. The regret bound shows no dependence
on N , and has an additional O(

√
log logK) dependence due to optimistic sampling which is very

small for any reasonable assortment size K. Compared to Theorem 1, the additional factor
√
d comes

from the deviation of the random sampling which is addressed in the worst-case regret analysis.

The proof of Theorem 2 utilizes the anti-concentration property of the maximum of Gaussian random
variables for ensuring frequent optimism. In particular, we show in the following lemma that the
proposed optimistic sampling can ensure a constant probability of optimism.

Lemma 2. Suppose ‖θ̂t − θ∗‖Vt ≤ 1
2κ

√
d log

(
1 + tK

dλ

)
+ 4 log t +

√
λ
κ and we take optimistic

samples of size M = d1− logK

log(1−1/(4
√
eπ))
e. Then we have

P
(
R̃t(St) > Rt(S

∗
t , θ
∗) | Ft

)
≥ 1

4
√
eπ
.

The inverse of the lower-bounding probability 4
√
eπ can be interpreted as the expected time between

any two optimistic assortment selections. In other words, our modified algorithm is optimistic at least
with a constant frequency. Then, using this frequent optimism, we can ensure that the cumulative
regret due to the random sampling can be bounded. Along with this result, we show the concentrations
of both regularized MLE and TS samples to establish the regret bound in Theorem 2. The proofs are
left to Appendix D.
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7 Numerical Study

In this section, we perform numerical evaluations to analyze two variants of our proposed algorithm:
TS-MNL with optimistic sampling (Algorithm 2) and TS-MNL with the Gaussian approximation for
the posterior distribution. We perform both synthetic experiments as well as simulated experiments
using a real-world dataset: MovieLens dataset.2 We simulated instances of the MNL contextual bandit
problem with varying parameter values.
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Figure 1: Regret growth with T for a UCB method and TS-MNL variants on MNL contextual bandits.

We report the worst-case cumulative expected regret for each of the experiments. For the synthetic
experiments, we randomly draw θ∗ for each instance and hence we can directly compute the expected
regret using θ∗. For the experiments using MovieLens dataset, we use offline regression using the
entire dataset to estimate the unknown parameter θ∗ and compare with the estimates from online
experiments. The details of the experimental setup and additional experimental results are presented
in Appendix G.

Figure 1 shows the performances averaged over 40 independent instances for each experiment. For
comparison, we evaluate the performances of our TS-MNL algorithms along with the performances
of the UCB method proposed in [15]. The performances of the proposed two variants of TS-MNL are
observed to be superior to that of the UCB method on the synthetic data in our experiments, which
is consistent with the other empirical evidence of TS methods in the literature. The experiments
with MovieLens dataset (and the additional experiments shown in Appendix G) suggest that our
methods can be used and effective for problem instances with a large number of items, i.e., large N .
Furthermore, TS-MNL with optimistic sampling consistently performs better than TS-MNL with
Gaussian approximation only. The results of these experiments support our theoretical analysis: TS-
MNL with optimistic sampling takes advantage of the MNL structure and can guarantee a worst-case
statistical efficiency.

8 Discussions

In this paper, we study the dynamic assortment selection problem under an MNL model with contex-
tual information. We propose two TS algorithms for the MNL contextual bandits which learn the
parameters of the underlying choice model while simultaneously maximizing the cumulative revenue.
We provide their theoretical performance bounds and show attractive numerical performances in
our experiments. We also discuss the challenges which arise in worst-case regret analysis for this
combinatorial action selection problem under the MNL model. We believe that these challenges
are potentially present in many other problems involving combinatorial action selections with con-
text/feature information beyond the MNL model. To our knowledge, the worst-case regret analysis
in this work is the first frequentist regret guarantee for contextual bandits with combinatorial action
selection of any kind. We believe that our proposed optimistic sampling framework can be useful for
other combinatorial contextual bandit problems.

2https://grouplens.org/datasets/movielens/
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Appendices for Thompson Sampling for MNL Contextual Bandits

A Regularized Maximum Likelihood Estimation for MNL Model

We briefly discuss regularized maximum likelihood estimation (MLE) for MNL model – specifically
the estimation of the unknown parameter θ∗ of the MNL model with the rigde penalty. First, recall
that yt ∈ {0, 1}|St| is the user choice where yti is the i-th component of yt. Then, the likelihood
function under parameter θ is then given by

L(Dn|θ) =

n∏
t=1

∏
i∈St

(pti(St, θ))
yti

where Dn = {Xt, St, yt}nt=1 and Xt = {xti}i∈[N ]. Taking the negative logarithm gives

`n(θ) = − logL(Dn|θ) = −
n∑
t=1

∑
i∈St

yti log pti(St, θ)

which is known as the cross-entropy error function for the multi-class classification problem. Now,
the ridge penalized maximum likelihood estimation for MNL model is given by the following
minimization problem:

θ̂ = arg min
θ

[
`n(θ) +

λ

2
‖θ‖2

]
(4)

with the penalty parameter λ ≥ 1.

Taking the gradient of this penalized log-likelihood function with respect to θ, we obtain

∇θ
[
`n(θ) +

λ

2
‖θ‖22

]
=

n∑
t=1

∑
i∈St

(pti(St, θ)− yti)xti + λθ. (5)

Instead of using the regularized MLE for the parameter estimation, one could consider using the
MLE without regularization. For this, however, one may consider performing a random initialization
(random exploration) to ensure that the matrix Vt is invertible. This necessity comes from the classical
likelihood theory [28]: as the sample size n goes to infinity, we know the MLE θ̂ML

n is asymptotically
normal, with θ̂ML

n − θ∗ → N (0, I−1
θ∗ ) where Iθ∗ is the Fisher information matrix. In the MNL

model, Iθ∗ is lower bounded by
∑
t

∑
i∈St pti(St, θ

∗)pt0(St, θ
∗)xtix

>
ti (see Lemma 4). Hence, if

pti(St, θ
∗)pt0(St, θ

∗) ≥ κ > 0, then we can ensure that Iθ∗ is invertible and prevent asymptotic
variance of x>θ̂ML

n from going to infinity for any x. When performing random exploration instead of
the regularization, the length of such exploration needs to be specified to ensure that the minimum
eigenvalue of the matrix Vt is large enough — we discuss in detail in Appendix F.

B Proof of Theorem 1: Bayesian Regret Analysis

Let Ft denote the filtration which contains all available information up to round t. Recall that
θ̃t is independently drawn from the posterior distribution Qt in Algorithm 1 and also note that in
our Bayesian setting the posterior belief in θ∗ is distributed as Qt conditioning on Ft. Therefore,
conditioning on Ft, θ̃t and θ∗t are i.i.d. with Qt. Also note that our optimization oracle is a fixed
combinatorial optimization algorithm and {xti}i∈[N ] are fixed given Ft. Hence, conditioning on Ft,
St and S∗ are also i.i.d.

B.1 Confidence Bound for Expected Revenue

We define a upper confidence expected revenue as

Ut(S, θ̂t) =

∑
i∈S rti exp

{
x>ti θ̂t + αt‖xti‖V −1

t

}
1 +

∑
j∈S exp

{
x>tj θ̂t + αt‖xtj‖V −1

t

}
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where αt > 0 is the confidence width and its value is specified later (Lemma 4). Also, we define
Vt =

∑t
τ=1

∑
i∈Sτ xτix

>
τi. Note that this upper confidence expected revenue Ut is constructed for

the sake of the analysis presented in this section and does not affect the proposed algorithm (or its
assortment selection). We first decompose the immediate regret using Ut.

E[R(t) | Ft] = E
[
Rt(S

∗
t , θ
∗)−Rt(St, θ∗) | Ft

]
= E

[
Rt(S

∗
t , θ
∗)− Ut(S∗t , θ̂t) | Ft

]
+ E

[
Ut(S

∗
t , θ̂t)− Ut(St, θ̂t) | Ft

]
+ E

[
Ut(St, θ̂t)−Rt(St, θ∗) | Ft

]
.

Notice that E
[
Ut(S

∗
t , θ̂t)− Ut(St, θ̂t) | Ft

]
= 0 since conditioning on Ft, St and S∗ are i.i.d. and

Ut is a deterministic function. Hence, for the Bayesian cumulative regret, we are left bound the two
quantitiesR1

Bayes(T ) andR2
Bayes(T ) as the following:

T∑
t=1

E[R(t) | Ft] =

T∑
t=1

E
[
Rt(S

∗
t , θ
∗)− Ut(S∗t , θ̂t) | Ft

]
︸ ︷︷ ︸

R1
Bayes(T )

+

T∑
t=1

E
[
Ut(St, θ̂t)−Rt(St, θ∗) | Ft

]
︸ ︷︷ ︸

R2
Bayes(T )

In the following sections, we present the upper-bounds for R1
Bayes(T ) and R2

Bayes(T ). Then we
combine the results to establish the Bayesian cumulative regret for TS-MNL (Algorithm 1).

B.2 BoundingR1
Bayes(T )

Before we present the upper bound forR1
Bayes(T ), we introduce the following lemma which utilizes

the structure of the MNL model. Lemma 3 shows that the expected revenue Rt (and hence Ut) has
a Lipschitz property, i.e., Lemma 3 ensures that we can control the difference between expected
revenues by bounding with maximum difference in utilities.
Lemma 3. For any two utility parameters ut = [ut1, ..., utN ] and u′t = [u′t1, ..., u

′
tN ], we have∑

i∈S rti exp (uti)

1 +
∑
j∈S exp (utj)

−
∑
i∈S rti exp(u′ti)

1 +
∑
j∈S exp(u′tj)

≤ max
i∈S
|uti − u′ti| .

In particular, if uti ≥ u′ti for all i, then∑
i∈S rti exp (uti)

1 +
∑
j∈S exp (utj)

−
∑
i∈S rti exp(u′ti)

1 +
∑
j∈S exp(u′tj)

≤ max
i∈S

(uti − u′ti) .

Note that in the statement of Lemma 3 we use the explicit form of expected revenues (with generic
utility parameters) in order to accommodate both Rt and Ut. Now, Lemma 4 below shows that the
true parameter θ∗ lies within an ellipsoid centered at θ̂t with confidence radius αt. This is the result
for the non-i.i.d. finite-sample confidence bound for the MNL parameter.

Lemma 4. Define αt = 1
2κ

√
d log

(
1 + tK

dλ

)
+ 4 log t+

√
λ
κ . If θ̂t is the solution to the regularized

MLE in Eq.(4) at round t, then
‖θ̂t − θ∗‖Vt ≤ αt

holds for all t with a probability 1−O
(

1
t2

)
.

If θ∗ is indeed within the confidence region for all t, i.e., if the high probability event of Lemma 4
holds, then one can show that x>ti θ̂t + αt‖xti‖V −1

t
≥ x>tiθ

∗ for all i. Hence, Ut(S∗t , θ̂t) is greater
than Rt(S∗t , θ

∗). Then,R1
Bayes(T ) can be upper-bounded by 0. However, there is a small probability

of failure for the confidence region which we need to take into consideration. The following lemma
formally state the result.

Lemma 5. Let the upper confidence expected revenue Ut(S∗t , θ̂t) be defined with the confidence

width αt = 1
2κ

√
d log

(
1 + tK

dλ

)
+ 4 log t+

√
λ
κ . Then, we have

T∑
t=1

E
[
Rt(S

∗
t , θ
∗)− Ut(S∗t , θ̂t) | Ft

]
= O(1).
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B.3 BoundingR2
Bayes(T )

This portion of the regret is controlled by the concentration of the upper-confidence expected revenue
Ut(St, θ̂t) to the true expected revenue Rt(St, θ∗). We can first use Lemma 3 to upper-bound
R2

Bayes(T ) by the expected maximum difference in utilities. Now, suppose that θ∗ resides within the
confidence region with the radius αt for all rounds t (Lemma 4). Then the same holds for the radius
αT since αT ≥ αt. Using this fact and Cauchy-Schwartz inequality, we can further boundR2

Bayes(T )
by Eq.(6).

T∑
t=1

E
[
Ut(St, θ̂t)−Rt(St, θ∗) | Ft

]
≤

T∑
t=1

E
[
max
i∈St

(
x>ti θ̂t + αt‖xti‖V −1

t
− x>tiθ∗

)
| Ft

]

≤ 2αT

T∑
t=1

E
[
max
i∈St
‖xti‖V −1

t
| Ft

]
(6)

Then, we are left to control the sum of the expectations in Eq.(6). Specifically, we provide a worst-
case bound on

∑T
t=1 maxi∈St ‖xti‖V −1

t
for any realization of random variables in Lemma 6, which

presents a self-normalized bound.

Lemma 6. Define VT = V +
∑T
t=1

∑
i∈St xtix

>
ti where V = λId. Then we have

T∑
t=1

max
i∈St
‖xti‖V −1

t
≤

√
2dT log

(
1 +

TK

dλ

)
.

Combining the results of Lemma 6 and Eq.(6), we have
T∑
t=1

E
[
Ut(St, θ̂t)−Rt(St, θ∗) | Ft

]
≤ 2αT

√
2dT log

(
1 +

TK

dλ

)
+O(1)

where αT = 1
2κ

√
d log

(
1 + TK

dλ

)
+ 4 log T +

√
λ
κ and O(1) comes from the failure event of the

concentration of θ̂t in Lemma 4.

B.4 CombiningR1
Bayes(T ) andR2

Bayes(T )

Combining the bounds forR1
Bayes(T ) andR2

Bayes(T ), we have

RBayes(T ) ≤ O(1) +

[
1

κ

√
2d log

(
1 +

TK

dλ

)
+ 2 log T +

√
λ

κ

]
·

√
2dT log

(
1 +

TK

dλ

)
.

For completeness, we choose λ = d to get the regret bound shown in Theorem 1 which gives the
Bayesian regret RBayes(T ) = O

(
d
√
T log

(
1 + TK

d2

))
. Since Algorithm 1 itself does not use the

regularized MLE for parameter estimation, one may optimize over the choice of λ in the regret bound.

C Proofs of Lemmas for Theorem 1

C.1 Proof of Lemma 3

Proof. By the mean value theorem, there exists ūti := (1− c)uti + cu′ti for some c ∈ (0, 1) with∑
i∈S rti exp (uti)

1 +
∑
j∈S exp (utj)

−
∑
i∈S rti exp(u′ti)

1 +
∑
j∈S exp(u′tj)

=
∑
i∈S

rtipti(S, ūt)(uti − u′ti)−Rt(S, ūt) ·
∑
i∈S

pti(S, ūt)(uti − u′ti)

=
∑
i∈S

(
rti −Rt(S, ūt)

)
pti(S, ūt)(uti − u′ti)

≤ max
i∈S
|uti − u′ti|
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where the inequality is from |rti| ≤ 1, and pti(S, ūt) ≤ 1 is a multinomial probability (and hence
Rt(S, ūt) ≤ 1).

C.2 Proof of Lemma 4

Proof. We first define the function Gn(θ) which we use throughout the proof:

Gn(θ) =

n∑
t=1

∑
i∈St

[(pti(St, θ)− pti(St, θ∗))xti] + λ(θ − θ∗)

Gn(θ) is the difference in the gradients of the ridge penalized maximum likelihood in Eq.(5) evaluated
at θ and at θ∗. Notice that Gn(θ̂) =

∑n
t=1

∑
i∈St εtixti − λθ

∗ since the choice of θ̂ is given by the
ridge penalized maximum likelihood. To see that, first note that θ̂ is the minimizer of Eq.(4); hence is
given by the solution to the following equation:

n∑
t=1

∑
i∈St

(
pti(St, θ̂)− yti

)
xti + λθ̂ = 0 (7)

Therefore, it follows that

Gn(θ̂) =

n∑
t=1

∑
i∈St

(
pti(St, θ̂)− pti(St, θ∗)

)
xti + λ(θ̂ − θ∗)

=

n∑
t=1

∑
i∈St

(
pti(St, θ̂)− yti

)
xti + λθ̂ +

n∑
t=1

∑
i∈St

(yti − pti(St, θ∗))xti − λθ∗

= 0 +

n∑
t=1

∑
i∈St

εtixti − λθ∗

where the last equality is from (7) and the definition of εti = yti − pti(St, θ∗). For convenience,
we define Zn :=

∑n
t=1

∑
i∈St εtixti. Hence, Gn(θ̂) = Zn − λθ∗. Also, we will denote pti(θ) :=

pti(St, θ) when it is clear that St is the assortment chosen at round t.

For any θ1, θ2 ∈ Rd, the mean value theorem implies that there exists θ̄ = cθ1 + (1− c)θ2 with some
c ∈ (0, 1) such that

Gn(θ1)−Gn(θ2) =

n∑
t=1

∑
i∈St

[
(pti(θ1)− pti(θ2))xti

]
+ λ(θ1 − θ2)

=

 n∑
t=1

∑
i∈St

∑
j∈St

∇jpti(θ̄)xtix>tj

+ λId

 (θ1 − θ2)

=

 n∑
t=1

∑
i∈St

pti(θ̄)xtix
>
ti −

∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)xtix
>
tj

+ λId

 (θ1 − θ2)

where Id is a d× d identitiy matrix. We define the matrix Ht as

Ht :=
∑
i∈St

pti(θ̄)xtix
>
ti −

∑
i,j∈St

pti(θ̄)ptj(θ̄)xtix
>
tj

Notice Ht is a Hessian of a negative log-likelihood which is convex. Hence, Ht is positive semidefi-
nite. Also note that

(xi − xj)(xi − xj)> = xix
>
i + xjx

>
j − xix>j − xjx>i � 0
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which implies xix>i + xjx
>
j � xix>j + xjx

>
i . Therefore, it follows that

Ht =
∑
i∈St

pti(θ̄)xtix
>
ti −

∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)xtix
>
tj

=
∑
i∈St

pti(θ̄)xtix
>
ti −

1

2

∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)
(
xtix

>
tj + xtjx

>
ti

)
�
∑
i∈St

pti(θ̄)xtix
>
ti −

1

2

∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)
(
xtix

>
ti + xtjx

>
tj

)
=
∑
i∈St

pti(θ̄)xtix
>
ti −

∑
i∈St

∑
j∈St

pti(θ̄)ptj(θ̄)xtix
>
ti

=
∑
i∈St

pti(θ̄)

1−
∑
j∈St

ptj(θ̄)

xtix
>
ti

=
∑
i∈St

pti(θ̄)pt0(θ̄)xtix
>
ti

where pt0(θ̄) is the probability of choosing the outside option. Now,

Gn(θ1)−Gn(θ2) =

[
n∑
t=1

Ht + λId

]
(θ1 − θ2)

≥

[
n∑
t=1

∑
i∈St

pti(θ̄)pt0(θ̄)xtix
>
ti + λId

]
(θ1 − θ2)

:= H(θ̄)(θ1 − θ2).

Consider some θ̄ ∈ Rd. From Assumption 2, pti(θ̄)pt0(θ̄) is lower-bounded by κ. Then we have

(θ1 − θ2)>(Gn(θ1)−Gn(θ2)) ≥ (θ1 − θ2)>(κVn)(θ1 − θ2) > 0

for any θ1 6= θ2. Therefore, Gn(θ) is an injection from Rd to Rd, and so G−1 is a well-defined
function. By the definition, Gn(θ∗) = 0. Hence, for any θ ∈ Rd, we have

‖Gn(θ)‖2
V −1
n

= ‖Gn(θ)−Gn(θ∗)‖2
V −1
n

= (Gn(θ)−Gn(θ∗))
>
V −1
n (Gn(θ)−Gn(θ∗))

≥ (θ − θ∗)>H(θ̄)V −1
n H(θ̄)(θ − θ∗)

≥ κ2(θ − θ∗)>Vn(θ − θ∗)
= κ2‖θ̂ − θ∗‖2Vn

where the last inequality is from H(θ̄) � κVn. Now, recall for θ̂ which is the solution to Eq.(7),
Gn(θ̂) = Zn − λθ∗ where Zn =

∑n
t=1

∑
i∈St εtixti. Hence, we have

κ‖θ̂ − θ∗‖Vn ≤ ‖Gn(θ̂)‖V −1
n
≤ ‖Zn‖V −1

n
+ λ‖θ∗‖V −1

n

Then we can use Theorem 1 in [1], which states if the noise εti is sub-Gaussian with parameter σ
(with σ = 1

2 in our problem), then

‖Zn‖2V −1
n
≤ 2σ2 log

(
det(Vn)1/2 det(V )−1/2

δ

)
with probability at least 1− δ. Then we combine with Lemma 9. So it follows that

‖Zn‖2V −1
n
≤ 2σ2

[
d

2
log

(
trace(V ) + nK

d

)
− 1

2
log det(V ) + log

1

δ

]
.
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Since V = λId, it follows that

‖Zn‖2V −1
n
≤ 2σ2

[
d

2
log

(
dλ+ nK

d

)
− 1

2
log λd + log

1

δ

]
= 2σ2

[
d

2
log

(
λ+

nK

d

)
− d

2
log λ+ log

1

δ

]
= 2σ2

[
d

2
log

(
1 +

nK

dλ

)
+ log

1

δ

]
.

Then for ‖θ∗‖V −1
n

, we have

‖θ∗‖2
V −1
n
≤ ‖θ∗‖2

λmin(Vn)
≤ ‖θ∗‖2

λmin(V )
≤ ‖θ

∗‖2

λ
.

Hence, λ‖θ∗‖V −1
n
≤
√
λ since ‖θ∗‖ ≤ 1. Combining the results and using the fact that σ = 1

2 for
our problem, we have that

‖θ̂n − θ∗‖Vn ≤
1

2κ

√
d log

(
1 +

nK

dλ

)
+ 2 log

1

δ
+

√
λ

κ
.

with probability at least 1− δ.

C.3 Proof of Lemma 5

Proof. First, define event Êt = {‖θ∗ − θ̂t‖Vt ≤ αt}, i.e. the regularized MLE estimate concentrates
properly to θ∗ in rounds t. From Lemma 4, this concentration event holds with probability 1−O

(
1
t2

)
for each round t. On Êt, we show x>tiθ

∗ ≤ x>ti θ̂t + αt‖xti‖V −1
t

for all i.

|x>ti θ̂t − x>tiθ∗| =
∣∣∣∣[V −1/2

t (θ̂t − θ∗)
]>

(V
−1/2
t xti)

∣∣∣∣
≤
∥∥∥V −1/2

t (θ̂t − θ∗)
∥∥∥∥∥∥V −1/2

t xti

∥∥∥
= ‖θ̂t − θ∗‖Vt‖xti‖V −1

t

≤ αt‖xti‖V −1
t

where the first inequality is by Hölder’s inequality. Hence, it follows that

x>tiθ
∗ −

(
x>ti θ̂t + αt‖xti‖V −1

t

)
≤ 0

for all i. Hence, using the restricted monotonicity in Lemma 1, if event Êt holds, then we have

Rt(S
∗
t , θ
∗)− Ut(S∗t , θ̂t) ≤ 0.

Then we have

E
[
Rt(S

∗
t , θ
∗)− Ut(S∗t , θ̂t) | Ft

]
≤ E

[(
Rt(S

∗
t , θ
∗)− Ut(S∗t , θ̂t)

)
1(Êt) | Ft

]
+ E

[
1(Êct ) | Ft

]
≤ 0 +O(t−2).

Therefore, summing over all t ≤ T , we have

T∑
t=1

E
[
Rt(S

∗
t , θ
∗)− Ut(S∗t , θ̂t) | Ft

]
≤ 0 +

T∑
t=1

O(t−2) = O(1).
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C.4 Proof of Lemma 6

The proof of Lemma 6 requires the following three technical lemmas.
Lemma 7. Let xti ∈ Rd. Then we have

det

(
I +

n∑
i=1

xtix
>
ti

)
≥ 1 +

n∑
i=1

‖xti‖22 (8)

Proof. Let λ1, λ2, ..., λd be the eigenvalues of
∑n
i=1 xtix

>
ti . Since

∑n
i=1 xtix

>
ti is positive semi-

definite, λj ≥ 0 for all j. Hence,

det

(
I +

n∑
i=1

xtix
>
ti

)
=

d∏
j=1

(1 + λj)

≥ 1 +

d∑
j=1

λj

= 1− d+

d∑
j=1

(1 + λj)

= 1− d+ trace

(
I +

n∑
i=1

xtix
>
ti

)

= 1− d+ d+

n∑
i=1

‖xti‖22

Lemma 8. Suppose ‖xti‖ ≤ 1 for all t and i. Define Vt = V +
∑t
τ=1

∑
i∈Sτ xτix

>
τi with V = λId.

If λ ≥ 1, then
t∑

τ=1

max
i∈Sτ
‖xτi‖2V −1

τ
≤ 2 log

(
det(Vt)

λmin(V )d

)
.

Proof.

det(Vt) = det

(
Vt−1 +

∑
i∈St

xtix
>
ti

)

= det(Vt−1) det

(
I +

∑
i∈St

V
−1/2
t−1 xti(V

−1/2
t−1 xti)

>

)

≥ det(Vt−1)

(
1 +

∑
i∈St

‖xti‖2V −1
t−1

)

≥ det(V )

t∏
τ=1

(
1 +

∑
i∈Sτ

‖xτi‖2V −1
τ

)

≥ det(V )

t∏
τ=1

(
1 + max

i∈Sτ
‖xτi‖2V −1

τ

)
(9)

The first inequality comes from Lemma 7. The second inequality comes from applying the first
inequality repeatedly.

Let λmin(Vt) be the minimum eigenvalue of Vt. We have

max
i∈St
‖xti‖2V −1

t
≤ max

i∈St

‖xti‖2

λmin(Vt)
≤ 1

λmin(V )
=

1

λ
.
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Since λ ≥ 1, using the fact that z ≤ 2 log(1 + z) for any z ∈ [0, 1], we have
t∑

τ=1

max
i∈Sτ
‖xτi‖2V −1

τ
≤ 2

t∑
τ=1

log

(
1 + max

i∈Sτ
‖xτi‖2V −1

τ

)

= 2 log

t∏
τ=1

(
1 + max

i∈Sτ
‖xτi‖2V −1

τ

)
≤ 2 log

(
det(Vt)

det(V )

)
The last inequality is from (9)

Lemma 9. Suppose ‖xti‖ ≤ 1 for all t. Then det(Vt) is increasing with respect to t and

det(Vt) ≤
(

trace(V ) + tK

d

)d
(10)

Proof. For any symmetric positive definite matrix Ṽ ∈ Rd×d and column vector x ∈ Rd, we have

det(Ṽ + xx>) = det(V ) det
(
I + Ṽ −1/2xx>Ṽ −1/2

)
= det(Ṽ ) det(1 + ‖Ṽ −1/2x‖2)

≥ det(Ṽ ).

The second equality above is due to Sylvester’s determinant theorem, which states that det(I+BA) =
det(I +AB). Let λ1, ..., λd > 0 be the eigenvalues of Vt. Then

det(Vt) ≤
(
λ1 + ...+ λd

d

)d
=

(
trace(Vt)

d

)d
=

(
trace(V ) +

∑t
τ=1

∑
i∈Sτ trace(xτix

>
ti)

d

)d

=

(
trace(V ) +

∑t
τ=1

∑
i∈Sτ ‖xτi‖

2

d

)d

≤
(

trace(V ) + tK

d

)d
.

Proof of Lemma 6. Combining Lemma 8 and Lemma 9, we have that
t∑

τ=1

max
i∈Sτ
‖xτi‖2V −1

τ
≤ 2 log

(
det(Vt)

det(V )

)

≤ 2 log

[(
trace(V ) + tK

d

)d
1

det(V )

]

≤ 2d log

(
1 +

tK

dλ

)
.

Then applying the Cauchy-Schwarz inequality, we have
t∑

τ=1

max
i∈Sτ
‖xτi‖V −1

τ
=

√
2dt log

(
1 +

tK

dλ

)
.
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D Proof of Theorem 2: Worst-case Regret Analysis

We first decompose the cumulative regret, similar to the procedure in previous sections but this time
using R̃t(St). In the following sections, we derive the bounds forR1(t) andR2(t) separately.

R(T ) =

T∑
t=1

E[Rt(S
∗
t , θ
∗)− R̃t(St)]︸ ︷︷ ︸

R1(T )

+

T∑
t=1

E[R̃t(St)−Rt(St, θ∗)]︸ ︷︷ ︸
R2(T )

D.1 BoundingR2(T ).

We can controlR2(T ) by showing that both MLE θ̂t and TS parameters {θ̃t} concentrate appropri-
ately. To show each of these concentration results, we first further decomposeR2(T ):

R2(T ) =

T∑
t=1

E[R̃t(St)−Rt(St, θ̂t)] +

T∑
t=1

E[Rt(St, θ̂t)−Rt(St, θ∗)]. (11)

The second term deals with the estimation error and can be bounded by the concentration of θ̂t in
Lemma 4 and the Lipschitz-like property in Lemma 3, i.e., with probability 1−O(t−2), we have

Rt(St, θ̂t)−Rt(St, θ∗) ≤ max
i∈St

∣∣∣x>ti(θ̂t − θ∗)∣∣∣ ≤ αt max
i∈St
‖xti‖V −1

t
. (12)

The first term in Eq.(11) deals with the random sampling of {θ̃(j)
t }. Again, we can bound the

difference in expected revenue by the difference in utility estimates using Lemma 3: R̃t(St) −
Rt(St, θ̂t) ≤ maxi∈St(ũti − x>ti θ̂t). Then we are left to show that ũti concentrates appropriately for
all i ∈ [N ]. The following lemma ensures the concentration of ũti.

Lemma 10. Let βt = αt min
(√

4d log(Mt),
√

2 log(2M) +
√

4 log(Nt)
)

. Then for all i ∈ [N ],

ũti − x>ti θ̂t ≤ βt‖xti‖V −1
t
.

with probability 1−O
(

1
t2

)
.

Remark 1. Lemma 10 shows that the confidence radius βt is larger than αt by the factor of at most√
2d log(Mt). The additional

√
d factor comes from the oversampling of TS, which also appears in

other TS methods for linear contextual bandit problems [5, 3].
√

logM factor comes from drawing
optimistic samples where M = O(logK); hence the marginal increase of the regret bound due to
optimistic sampling is very small.

Hence for the first term in Eq.(11), we have R̃t(St) − Rt(St, θ̂t) ≤ βt maxi∈St ‖xti‖V −1
t

with
probability 1−O

(
1
t2

)
. We combine with Eq.(12) to derive the bound forR2(T ):

R2(T ) ≤
T∑
t=1

(αt + βt) max
i∈St
‖xti‖V −1

t
+

T∑
t=1

O
(
t−2
)

(13)

D.2 BoundingR1(T ).

As discussed in Section 5, a sufficient condition for ensuring the success of TS is to show the
probability of TS samples being optimistic is high enough. The following lemma lower-bounds the
probability that the expected revenue under sampled parameters is higher than the optimal expected
revenue under the true parameter. The proof utilizes the anti-concentration property of Gaussian
distribution.
Lemma 2 (restate). Suppose ‖θ̂t − θ∗‖Vt ≤ αt and we take M = d1− logK

log(1−1/(4
√
eπ))
e samples.

Then we have
P
(
R̃t(St) > Rt(S

∗
t , θ
∗
t ) | Ft

)
≥ 1

4
√
eπ
. (14)
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Using this frequent optimistic sampling, we can ensure that the regret due to the oversampling is not
too large.
Lemma 12. Let p̃ = 1

4
√
eπ

. Then, we have

T∑
t=1

E[Rt(S
∗
t , θ
∗
t )− R̃t(St)] ≤

4βT
p̃

(√
2dT log

(
1 +

TK

dλ

)
+

√
8T

λ
log 2T

)
+O(1)

D.3 Combining the results

Applying Lemma 6 to the bound forR2(T ) in Eq.(13) and combining with Lemma 12, we have the
final bound for the worst-case cumulative regret.

R(T ) ≤ (αT + βT )
√

2dT log (T/d) + 16
√
eπβT

(√
2dT log

(
1 +

TK

dλ

)
+

√
8T

λ
log 2T

)
+O(1)

E Proofs of Lemmas for Theorem 2

E.1 Proof of Lemma 10

Proof. Given Ft, each of Gaussian random variable x>ti θ̃
(j)
t has mean x>ti θ̂t and standard deviation

αt‖xti‖V −1
t

.

|ũti − x>ti θ̂t| = αt‖xti‖V −1
t

∣∣∣maxj x
>
ti θ̃

(j)
t − x>ti θ̂t

∣∣∣
αt‖xti‖V −1

t

≤ αt‖xti‖V −1
t

max
j

∣∣∣∣∣x>ti θ̃(j)
t − x>ti θ̂t

αt‖xti‖V −1
t

∣∣∣∣∣
= αt‖xti‖V −1

t
max
j
|Zj |

where each Zj is a standard normal random variable. Using the result from Lemma 13, we have
maxj |Zj | ≤

√
2 log(2M) +

√
4 log t with probability at least 1− 1

t2 . Then, for all i ∈ [N ],

|ũti − x>ti θ̂t| ≤
(√

2 log(2M) +
√

4 log(Nt)
)
αt‖xti‖V −1

t

with probability at least 1− 1
t2 . Alternatively, let m = arg maxj x

>
ti θ̃

(j)
t . Then we can write

|ũti − x>ti θ̂t| =
∣∣∣∣max

j
x>ti θ̃

(j)
t − x>ti θ̂t

∣∣∣∣
=
∣∣∣x>ti(θ̃(m)

t − θ̂t)
∣∣∣

=
∣∣∣x>tiV −1/2

t V
1/2
t (θ̃

(m)
t − θ̂t)

∣∣∣
≤ αt‖xti‖V −1

t

∥∥∥α−1
t V

1/2
t (θ̃

(m)
t − θ̂t)

∥∥∥
≤ αt‖xti‖V −1

t
max
j

∥∥∥α−1
t V

1/2
t (θ̃

(j)
t − θ̂t)

∥∥∥
= αt‖xti‖V −1

t
max
j
‖ζj‖

where each element in ζj ∈ Rd is a univariate standard normal variable N (0, 1). Hence, each
‖ζj‖ ≤

√
4d log t with probability at least 1− 1

t2 . Using the union bound for all j ∈ {1, ...,M}, we
have with probability at least 1− 1

t2

|ũti − x>ti θ̂t| ≤
√

4d log(Mt)αt‖xti‖V −1
t
.
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Lemma 13. Let Zi ∼ N (0, 1), i = 1, ..., n be a standard Gaussian random variable. Then we have

P

(
max
i
|Zi| ≤

√
2 log(2n) +

√
2 log

1

δ

)
≥ 1− δ.

Proof. Using the Chernoff bound, for each Zi, we have

P(|Zi| > ε) ≤ 2e−ε
2/2.

Applying the union bound, we have

P
(

max
i
|Zi| >

√
2 log(2n) + ε

)
≤ 2n exp

(
−(
√

2 log(2n) + ε)2/2
)

= 2n exp(− log(2n)− ε
√

2 log(2n)− ε2/2)

≤ e−ε
√

2 log(2n)e−ε
2/2

≤ e−ε
2/2.

Letting δ = e−ε
2/2, we have the result.

E.2 Proof of Lemma 2

Proof. Given Ft, each of Gaussian random variable x>ti θ̃
(j)
t has mean x>ti θ̂t and standard deviation

αt‖xti‖V −1
t

. Hence, for each i ∈ S∗t , we have

P
(

max
j
x>ti θ̃

(j)
t > x>tiθ

∗ | Ft
)

= 1− P
(
x>ti θ̃

(j)
t ≤ x>tiθ∗,∀j ∈ {1, ...,M} | Ft

)
= 1− P

(
x>ti θ̃

(j)
t − x>ti θ̂t

αt‖xti‖V −1
t

≤ x>tiθ
∗ − x>ti θ̂t

αt‖xti‖V −1
t

,∀j ∈ {1, ...,M} | Ft

)

= 1− P

(
Zj ≤

x>tiθ
∗ − x>ti θ̂t

αt‖xti‖V −1
t

,∀j ∈ {1, ...,M} | Ft

)

where Zj is a standard normal random variable. By the assumption, we have |x>tiθ∗ − x>ti θ̂t| ≤
αt‖xti‖V −1

t
for all i, Hence, we can bound the RHS term within the probability.

x>tiθ
∗ − x>ti θ̂t

αt‖xti‖V −1
t

≤
αt‖xti‖V −1

t

αt‖xti‖V −1
t

= 1

Then, it follows that

P
(

max
j
x>ti θ̃

(j)
t > x>tiθ

∗ | Ft
)
≥ 1− (P(Z ≤ 1))

M
. (15)

Now, since St = arg maxS R̃t(S), we have R̃t(St) ≥ R̃t(S
∗
t ). Then combining with Lemma 1,

we can lower-bound the probability of having an expected revenue optimistic under the sampled
parameter (the second inequality below).

P
(
R̃t(St) > Rt(S

∗
t , θ
∗
t ) | Ft

)
≥ P

(
R̃t(S

∗
t ) > Rt(S

∗
t , θ
∗
t ) | Ft

)
≥ P

(
ũti > x>tiθ

∗,∀i ∈ S∗t | Ft
)

= P
(

max
j
x>ti θ̃

(j)
t > x>tiθ

∗,∀i ∈ S∗t | Ft
)

≥ 1−K (P(Z ≤ 1))
M
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where the last inequality comes from Eq.(15) and the union bound. Using the anti-concentration
inequality in Lemma 15, we have P(Z ≤ 1) ≤ 1− 1

4
√
eπ

. Hence, it follows that

P
(
R̃t(St) > Rt(S

∗
t , θ
∗
t ) | Ft

)
≥ 1−K

(
1− 1

4
√
eπ

)M
≥ 1−

(
1− 1

4
√
eπ

)
=

1

4
√
eπ

where the second inequality comes from our choice of M = d1− logK

log(1−1/(4
√
eπ))
e which implies(

1− 1
4
√
eπ

)M
≤ 1

K

(
1− 1

4
√
eπ

)
.

E.3 Proof of Lemma 12

Proof. The proof is inspired by the techniques used for Theorem 1 in [3]. First, we define Θ̃t the
set of parameter samples for which the expected revenue concentrate appropriately to the expected
revenue based on the MLE parameter. Also, we define the set of optimistic parameter samples Θ̃opt

t

which coinciding with Θ̃t.

Θ̃t :=

{
{θ̃(j)
t }Mj=1 : R̃t(St)−Rt(St, θ̂t) ≤ βt max

i∈St
‖xti‖V −1

t

}
Θ̃opt
t :=

{
{θ̃(j)
t }Mj=1 : R̃t(St) > Rt(S

∗
t , θ
∗
t )
}
∩ Θ̃t

Define the event Et that both x>ti θ̂t and ũti are concentrated around their respective means.

Et = {x>ti θ̂t − x>tiθ∗ ≤ αt‖xti‖V −1
t
,∀i} ∩ {ũti − x>ti θ̂t ≤ βt‖xti‖V −1

t
,∀i}.

For any θ̃1:M
t := {θ̃(j)

t }Mj=1 ∈ Θ̃opt
t , we have

(
Rt(S

∗
t , θ
∗
t )− R̃t(St)

)
1(Et) ≤

(
Rt(S

∗
t , θ
∗
t )− inf

θ1:Mt ∈Θ̃t

R̃t(St, θ
1:M
t )

)
1(Et)

where R̃t(St, θ1:M
t ) is the optimistic expected revenue under the sampled parameters θ1:M

t . Then we
can bound Rt(S∗t , θ

∗
t )− R̃t(St) by the expectation over any random choice θ̃1:M

t ∈ Θ̃opt
t

Rt(S
∗
t , θ
∗
t )− R̃t(St) ≤ E

[(
R̃t(St)− inf

θ1:Mt ∈Θ̃t

R̃t(St, θ
1:M
t )

)
1(Et) | Ft, θ̃1:M

t ∈ Θ̃opt
t

]

= E

[
sup

θ1:Mt ∈Θ̃t

(
R̃t(St)− R̃t(St, θ1:M

t )
)
1(Et) | Ft, θ̃1:M

t ∈ Θ̃opt
t

]

≤ E

[
sup

θ1:Mt ∈Θ̃t

max
i∈St

∣∣∣ũti − x>tiθ(j)
t

∣∣∣1(Et) | Ft, θ̃1:M
t ∈ Θ̃opt

t

]

≤ 2βtE

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft, θ̃1:M

t ∈ Θ̃opt
t , Et

]
P(Et)

where the last inequality is from the definition of the set Θ̃t and St(θ̃1:M
t ) stands for the optimal

assortment under the sampled parameters θ̃1:M
t = {θ̃(j)

t }Mj=1.
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From Lemma 2, we have P
(
R̃t(St) > Rt(S

∗
t , θ
∗
t ) | Ft, Et

)
≥ 1

4
√
eπ

=: p̃. Therefore it follows that

P
(
θ̃1:M
t ∈ Θ̃opt

t | Ft, Et
)

= P
(
R̃t(St) > Rt(S

∗
t , θ
∗
t ) and θ̃1:M

t ∈ Θ̃t, Et
)

≥ P
(
R̃t(St) > Rt(S

∗
t , θ
∗
t ) | Ft, Et

)
− P

(
θ̃1:M
t /∈ Θ̃t, Et

)
≥ p̃−O(t−1)

≥ p̃/2.

Now, note that we can write

E

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft, Et

]
≥ E

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft, θ̃1:M

t ∈ Θ̃opt
t , Et

]
P
(
θ̃1:M
t ∈ Θ̃opt

t | Ft, Et
)

≥ E

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft, θ̃1:M

t ∈ Θ̃opt
t , Et

]
· p̃/2

Therefore, combining the results, we have

Rt(S
∗
t , θ
∗
t )− R̃t(St) ≤ 2βtE

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft, θ̃1:M

t ∈ Θ̃opt
t , Et

]
P(Et)

≤ 4βt
p̃

E

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft, Et

]
P(Et)

≤ 4βt
p̃

E

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft

]
.

Summing over all t and taking the failure event into consideration, we have
T∑
t=1

(
Rt(S

∗
t , θ
∗
t )− R̃t(St)

)
≤

T∑
t=1

4βt
p̃

E

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft

]
.

Here, the summation on the RHS contains an expectation, so we cannot directly apply Lemma 6.
Instead, we use Lemma 14 to bound the sum of the expectations

T∑
t=1

E[Rt(S
∗
t , θ
∗
t )− R̃t(St)] ≤

T∑
t=1

4βt
p̃

(√
2dT log

(
1 +

TK

dλ

)
+

√
8T

λ
log 2T

)
+O(1).

Lemma 14. If λmin(Vt) ≥ λ, then with probability 1−O(T−1) we have

T∑
t=1

E

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft

]
≤

√
2dT log

(
1 +

TK

dλ

)
+

√
8T

λ
log 2T .

Proof. We rewrite the summation as follows.
T∑
t=1

E

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft

]

=

T∑
t=1

max
i∈St
‖xti‖V −1

t
+

T∑
t=1

(
E

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft

]
−max

i∈St
‖xti‖V −1

t

)
(16)

The first summation can be bounded by using Lemma 6 and Cauchy-Schwarz inequality.

T∑
t=1

max
i∈St
‖xti‖V −1

t
≤

√√√√T

T∑
t=1

max
i∈St
‖xti‖2V −1

t

≤

√
2dT log

(
1 +

TK

dλ

)
(17)
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For the second summation in Eq.(16), we can apply Azuma-Hoeffding inequality (Lemma 16). Note
that the second summation is a martingale by construction. Also recall that maxi∈St ‖xti‖ ≤ 1 for
all t, hence we have

E

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft

]
−max

i∈St
‖xti‖V −1

t
≤ 2

λmin(Vt)
≤ 2

λmin(V )
=

2

λ
.

Therefore, 2
λ is an upper-bound for each element in the second summation. Now applying Azuma-

Hoeffding inequality, we have

T∑
t=1

(
E

[
max

i∈St(θ̃1:Mt )
‖xti‖V −1

t
| Ft

]
−max

i∈St
‖xti‖V −1

t

)
≤
√

8T

λ
log 2T (18)

with probability 1−O(T−1). Combining Eq.(17) and Eq.(18), we have the result.

E.4 Other Lemmas

The following lemma is used to derive the concentration and anti-concentration inequalities for
Gaussian random variables.

Lemma 15 (Abramowitz and Stegun 4). For a Gaussian random variable Z with mean µ and
variance σ2, for any z ≥ 1,

1

2
√
πz
e−z

2/2 ≤ P (|Z − µ| > zσ) ≤ 1√
πz
e−z

2/2. (19)

Lemma 16 (Azuma-Hoeffding inequality). If a super-martingale (Yt; t ≥ 0) corresponding to
filtration Ft, satisfies |Yt − Yt−1| ≤ ct for some constant ct, for all t = 1, ..., T , then for any a ≥ 0,

P(YT − Y0 ≥ a) ≤ 2e
− a2

2
∑T
t=1 c

2
t

F Guarantees for Random Initialization

As we discussed briefly in Section A, TS-MNL can start with the random initialization phase
where the agent randomly chooses an assortment St instead of using regularization in the parameter
estimation. However, the length of the initialization T0 needs to be specified in order to ensure a
unique solution of MLE for a theoretical guarantee.

We maintain VT0
=
∑T0

τ=1

∑
i∈Sτ xτix

>
τi while choosing assortments randomly during the random

initialization. The initialization duration T0 is chosen to ensure that λmin(VT0
) is large enough so

that VT0
is invertible. The following proposition allows us to find such T0.

Proposition 1. Let xτi be drawn i.i.d. from some distribution with ‖xτi‖ ≤ 1 and E[xτix
>
τi] ≥ σ0.

Define VT0
=
∑T0

τ=1

∑
i∈Sτ xτix

>
τi, where T0 is the length of random initialization. Suppose we run

a random initialization with assortment size K for duration T0 which satisfies

T0 ≥
1

K

(
C1

√
d+ C2

√
log T

σ0

)2

+
2B

Kσ0

for some positive, universal constants C1 and C2. Then, λmin(VT0) ≥ B with probability at least
1− T−1.

The proposition is the adaptation of Proposition 1 in [30], modified for our multinomial setting.
If we use B = K, then the proposition implies that we can have λmin(VT0) ≥ K with a high
probability if we run the initialization for O(σ−2

0 (d+ log T )) rounds. Similar to [23] and [30], the
i.i.d. assumption on the context xti may be only needed to ensure that Vτ is invertible at the end of
the initialization phase. Hence, after the initialization, xti can even be chosen adversarially as long as
‖xti‖ is bounded.
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G Numerical Study Details

G.1 Synthetic Experiments

For synthetic experiments, we first sample feature vectors xi for each i ∈ [N ] in d− 1 dimension
with each entry from the standard Gaussian distribution. We then normalize this vectors and add an
extra dimension with constant 1 for the intercept and divide by

√
2 so that the `2 norm of feature

vectors is bounded, i.e., ‖xi‖ ≤ 1. Similarly, we sample the parameter θ∗ from the d-dimensional
standard multivariate Gaussian distribution but without the normalization. For each experimental
instance, we draw new samples of {xi} and θ∗.

In Figure 1, we only showed the performance of the UCB algorithm proposed in [15] for N = 256.
The UCB algorithm proposed in [15] constructs confidence bounds for each of (N choose K)
assortments (as discussed in Section 2), the evaluation on a largerN causes a significant computational
burden; hence we had to keepN at a reasonable size for evaluating the UCB method. In fact, even with
N = 256, we could not use the original version of the UCB method in [15] due to the computational
complexity. We instead use a greedy heuristic for solving the combinatorial optimization proposed as
an alternative efficient approximation (see Algorithm 4 in [15]) although it does not have rigorous
guarantees. However, it is important to note that even with such computational compromises for
the UCB method, our TS methods still have better computational efficiency as well as superior
performances on the statistical efficiency. Note that our proposed methods do not suffer from this
issue and can be evaluated with a much larger N which is shown in the experiments in Figure 2 as
well as the MovieLens experiment (with N = 1000) in Figure 1.

The left plot in Figure 2 shows the evaluations of TS-MNL with optimistic sampling with varying
feature dimensions. The reported results are averaged over 40 independent instances. The results show
that the performance of our algorithm is still attractive even with an increase in the feature dimension,
which shows a better scalability in d than the theoretical guarantees, at most d3/2 dependence on the
worst-case regret bound.

Furthermore, the experiments in the right plot of Figure 2 show that even when the number of total
items N increases, the empirical performances of our proposed algorithms remain the same as the
performance in Figure 1 and are not hindered by such an increase in N . This observation is consistent
with our established theoretical results and supports the claim that our methods can be used and
effective for problem instances with very large N — as long as the combinatorial optimization step
can be efficiently computed.
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Figure 2: Experiments on varying feature dimensions and with an increased number of items

G.2 Experiments with MovieLens Dataset

Dataset. MovieLens datasets3 contain the ratings of users for movies from the MovieLens website.
The datasets come in different sizes and we use “MovieLens 20M” for our experiments. This dataset
contains 20 million ratings of 2.7× 104 movies by 1.38× 105 users.

Feature extraction. We follow the experimental setup of [31]. For our experiments, we use
N = 1000 movies with most ratings and 1.1 × 103 user with the most number of ratings. We

3https://grouplens.org/datasets/movielens/
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randomly split the user set into two parts A1 and A2 with |A1| = 100 and |A2| = 1000. Then
we use the matrix of the movie rating for users in A1 to extract feature vectors with d = 5. Note
that the MovieLens dataset does not come with movie or user features — it only contains ratings
of the movies by the user as a matrix, which we denote as W . Hence, we construct features for
our experiments using the collaborative filtering approach. We derive the features of movies using
low-rank matrix factorization.

Splitting the user set into two parts A1 and A2 means dividing the rows of the matrix W into two
matrices: one with 100 rows corresponding to A1 and the other with 1000 rows corresponding to A2.
We define training matrix Wtrain ∈ R|A1|×N and test matrix Wtest ∈ R|A2|×N corresponding to user
sets A1 and A2 respectively. We use Wtrain to learn the features of items and Wtest to evaluate our
learning algorithms.

Let Wtrain ≈ UΣV > be rank-d truncated SVD of Wtrain, where U ∈ R|A1|×d, Σ ∈ Rd×d,and
V ∈ RN×d. Then the features of movies are the rows of V Σ. Note that the matrix V in the section is
defined within this experimental setup only and is different from the gram matrix Vt used in the regret
analysis or in the algorithm. We overload this term for the sake of consistency with terms typically
used in matrix factorization literature.

Offline regression. We use the extracted features of movies, i.e., rows of V̄ Σ, and the mean score of
each of the movies considered. The true parameter θ∗ is computed by solving the linear system of N
with respect to the rating matrix of Wtest.

Evaluations. Once we extract the features and learn θ∗, we perform online evaluations. We set λ
to be the same as the feature dimension d. Note that the dataset does not contain separate revenue
information for different movies. Hence we assume that the revenue parameter is uniform across all
movies, i.e. each user choice/click is equally weighted. Therefore, the combinatorial optimization
step reduces to sorting items according to estimated utilities and choosing top K movies. The
evaluation results show that two variants of TS-MNL are effective. In particular, TS-MNL with
optimistic sampling shows more attractive performances in these sample results.
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