
Our gratitude to the reviewers for their constructive comments and the useful references they pointed out. We will1

revise the paper accordingly.2

Takeaway message from Theorem 1. Following Rev.1’s comments on the significance and interpretation of Theorem3

1, we will clarify the message in the final version of the paper. Theorem 1 states that noise injection ensures robustness4

(in the sense of Def 2). The degree of robustness, ε in Theorem 1, is in O(||θ||), where θ is the parameter of a given5

Exponential distribution EF . Since θ is decreasing w.r.t. std(EF ) in general, the larger the amount of the added noise6

is, closer to each other are the output distributions of the randomized classifier. The control of the added noise and its7

impact on the accuracy gap is the subject of Theorem 2 (see discussion at lines 219-228).8

About the notion of certified accuracy. Reviewers discussed our use of the term "certified accuracy". What we named9

"certified accuracy" was indeed a probabilistic guarantee (this will be precised in the paper), and thus is different from10

the notion mentioned in papers reviewers referred to. Giving this kind of "certified accuracy" bounds was not the main11

focus of our work, nevertheless, we are able to devise certificates in the spirit of these papers by leveraging our concepts.12

Notably, our work covers the certificate obtained in [LAG+18] as presented below.13

Theorem Let x ∈ X be some input vector, and M be a probabilistic mapping such that for any y ∼ M(x), y =14

(yi)i∈[K] is a probability vector of size K. If M is dλ-(α, ε) robust, and if there is some k∗, and some 0 < δ∗ < 115

for which Ey∼M(x) [yk∗ ] > e2ε
′
maxi 6=k∗ Ey∼M(x) [yi] + (1 + eε

′
)δ∗, with ε′ = ε+ log(1/δ∗)

λ−1 . Then, for the classifier16

f(.) = argmaxk Ey∼M(.) [yk] there is no perturbation τ ∈ B(α) such that f(x) 6= f(x+ τ).17

Proof Let us consider some x ∈ X . If M is dλ-(α, ε) robust, then with a proof similar to [Mir17] Proposition 3,18

one easily gets that Ey∼M(x) [y] ≤ eε+
log(1/δ)
λ−1 Ey∼M(x+τ) [y] + δ (element wise), for any δ ∈ (0, 1). Then one can19

use [LAG+18] Proposition 1 to get the expected result.20

On the probabilistic extensions of the theorems. Rev.3 pointed out that the results we show in Theorem 1 only hold21

for γ = 0. It is possible to extend the result for γ > 0. To do so, one possible workaround is to replace the robustness22

guarantee in Theorem 1 as follows: adding noise drawn from EF (θ, t, k) ensures that the randomized network is23

dR,λ-(α, ε, γ) robust with ε = ||θ||2ωB,2t (L) + ωB,1k (L) and γ = Px∼Dx(∃τ ∈ BA(α), ||φ(x + τ) − φ(x)||B > L).24

The same guarantee can be derived for the Gaussian case. Theorem 2 can also be extended: if M is dR,λ-(α, ε, γ) robust25

for some λ ≥ 1 then: |Riskα(M)−Risk(M)| ≤ 1− (1− γ)e−εEx
[
e−H(M(x))

]
. However, in practice, it is intractable26

to compute γ as the data distribution is unknown. A discussion will be added in the paper.27

On the convergence of the entropy estimator. Rev.3 raised a question about the convergence of the entropy estimator.28

We used the MLE estimator from [Pan03] which is endowed with convergences guarantees. By integrating the correcting29

bias (Miller-Madow estimator, Section 3), we can derive bounds for the entropy estimator. We will clarify this point in30

the final version of the paper.31

Accuracy guarantee for the case with no adversary. Studying the impact of corrupted noise on generalization is32

another line of research, complementary to the scope of this paper. Outside some specific cases (GLM, Gaussian noise,33

etc.), proving generalization bounds w.r.t. noise injection in general settings is still an open question to the best of our34

knowledge.35

Other remarks.36

• Misnomer of "generalization": We agree with Rev.1. In the final version we will use "risk gap" instead.37

• On Table 1: The accuracy without attack is indeed evaluated empirically. We will clarify that in the final version.38

• On Table 2: We share the same intuition with Rev.2: the noise makes the attack problem harder for both attacks.39

• PGD iterations: For the sake of comparison we used the same number of iterations as in [MMS+18] (Table 2). We40

are eager to use experiments with a large number of iterations and report the results in the final version of the paper.41
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