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A Other Related Work

Non-equilibration and chaos in game dynamics. In recent years the algorithmic game theory commu-
nity has produced several interesting non-equilibrium results. Palaiopanos et al. [2017], Chotibut
ct al. [2018] prove the existence of Li-Yorke chaos for multiplicative weights update (MWU) in 2x2
potential games. Chaos also emerges for MWU in non-atomic linear congestion games with just two
paths Chotibut et al. [2019]. For the case of zero-sum games, Bailey and Piliouras [2018] showed
that Nash equilibria are repelling for all follow-the-regularized-leader (FTRL) dynamics (even for
2x2 games such as Matching Pennies). Cheung and Piliouras [2019] proved that FTRL dynamics
are furthermore chaotic in zero-sum games. Pangallo et al. [2017] established experimentally that in
2x2 games between agents of opposing interests a large class of dynamics typically result in limit
cycles and chaos. Our result adds a new chapter in this area with new detailed understanding of the
non-equilibrium trajectories of gradient descent in two-by-two zero-sum games and their implications
to regret.

Fast regret minimization in games. It is well known that MWU can achieve (time-average) regret
of O(1/+/t) by using step size of (1/+/t) without making any assumptions about its environment.
Daskalakis et al. [2011] and Rakhlin and Sridharan [2013] developed no-regret dynamics with a
O(log t/t) regret minimization ratc when played against cach other in zero-sum games. Syrgkanis
et al. [2015] analyzed a recency biased variant of FTRL and showed regret of O(t~3/4) in general
games. The social welfare converges at a rate of O(t~1). This was extended to standard versions of
FRTL dynamics by Foster et al. [2016].

Learning in zero-sum games and Machine Learning applications. A stream of recent papers proves
positive results about convergence to equilibria in (mostly bilinear) zero-sum games for suitable
adapted variants of first-order methods and then apply these techniques to Generative Adversarial
Networks (GANs), showing improved performance (e.g. Daskalakis et al. [2018], Balduzzi et al.
[2018], Mertikopoulos et al. [2019], Daskalakis and Panageas [2019], Gidel et al. [2019], Yazic1
et al. [2019]) FTRL dynamics in continuous-time exhibit conservation laws and recurrent cycle-
like behavior in zero-sum games and have formal connections to Hamiltonian systems (Piliouras
and Shamma [2014], Mertikopoulos et al. [2018], Bailey and Piliouras [2019]). Exploiting these
connections novel discretization schemes can be developed with finite regret in general games (Bailey
et al. [2019]).

Finally, the emergence of cycles in games lies at the core of some of the most exciting problems
in creating artificial agents for complex environments such as Starcraft, where even evaluating the
strength of an individual agent is a non-trivial task (Balduzzi et al. [2018], Omidshafiei et al. [2019]).
Recent approaches are inspired by the emergence of cyclic behavior to introduce algorithms that aim
at game-theoretic niching (Balduzzi et al. [2019]).



B First Order Approximation of (Continuous FTRL)

Lemma 6. (FTRL) is the first order approximation of (Continuous FTRL).

Proof. The first order approximation of v (¢) is

d
9i(t) =yt —1) + Eyl(t - 1) (28)
= yl(t — 1) + A.%‘l(t — 1) 29)
and
Z1(t) = argmax {x ~g1(t) — M} (30)
r1EX, n

Inductively, 71 (¢) = 4% and #1(¢) = «% as defined in (FTRL) completing the proof of the lemma. [

C Proof of Lemma 2

The KKT optimality conditions (see Bertsekas [1999]) for (Gradient Descent) are given by

ab =y — A1+ ud) (Critical Point)

it >0 (Non-negativity)
g
S =1 (Primal Feasibility)
=1

ut >0 (Dual Feasibility)
ul-xt =0 (Complimentary Slackness)

where u! € R™ and \! € R.

Let S; be the set of j where uf; = 0. By (Complimentary Slackness), xf; = 0 for all j ¢ S;.
Therefore, (Critical Point) becomes

0 for j ¢ S;
to= : ‘. 31
" {n(yﬁj — ) forjesS; Gl
Substituting (31) into (Primal Feasibility) yields
i
1= "al, (32)
j=1
_ ' ¢
= Z n(Yi; — i) (33)
JES:
and A} = 375 yt;/1Si] — 1/(n|Si). Therefore
for 5 ;
xly = 0 . " o #5 (34)
U (yij — 2 kes, |s5,¢|) 15y forjesS:

The variable uf] = 0 represents that the constraint azfj is unenforced. Enforcing constraints never

improves the objective value of an optimization problem and therefore S; C [n;] is a maximal set
where (34) is feasible. Moreover, it is straightforward to show that if yf; > yf, then 2}; > af;.
Thus, greedily removing the lowest valued yﬁj from S; = [n;] until (34) is feasible yields the optimal
solution to (Gradient Descent).



D Payoff Matrix Assumptions

The payoff matrix is in the form

a b
a<fot] -
In this paper, we make three assumptions about A: ad — bc = 0, a > max{0,b,c} and d >
max{0, b, c}. In order, we show that we may make these assumption without loss of generality.

In 2x2 games, if there is a unique fully mixed Nash equilibrium, then it is straight forward to show

that player 2’s equilibrium is
d—b a—c
+NE _
= 36
2 (a+dbc’a+dbc> (36)
and therefore a +d —b—c # 0, d # b and a # ¢ when there is a unique fully mixed Nash equilibrium.

Similarly, by analyzing player 1’s Nash equilibrium, d # ¢ and a # b. Now consider the payoff
matrix

d—b d—b
B = a+ a—id bC c b+ a—id—bc—c 37
c+ ad—bc d+ ad—bc ~
a+d—b—c a+d—b—c

The determinant of payoff matrix B is zero. Moreover, (FTRL) is invariant to shifts in the payoff
matrix, so for the purpose of the dynamics {z*}$2,, A and B are equivalent matrices. Thus, without
loss of generality we may assume the payoff matrix is singular by shifting the matrix by a specific
constant.

Next, we argue that we may assume a > 0. Players 1 and 2 separately try to solve

. a b . —a —b

max min xj - 4 |T2= max min —z;- d | (38)
T1EX] x2EX, c T1EX] T2€EX, —Cc -
. —a —c

— max min - b d | T 39
To€XR x1 €AY - -

Thus, by possibly switching the maximization and minimization roles between player 1 and player 2,
we may assume a > 0.

Next we show that we may assume a > max{b,c}. If a + d — b — ¢ > 0 then (36) implies a > ¢
and, symmetrically, @ > b completing the claim. If instead, a + d — b — ¢ < 0, then through identical
reasoning, min{b, ¢} > a > 0 and we can simply rewrite the payoff matrix as

maxminx-abx—maxminx- bax 40)
r1EX1 T2EX: 1 Cc d 27 T1EX] T2EX2 1 d C 2
With the new payoff matrix, b + ¢ — a — d > 0 implying b > max{a, d} > 0 as desired. Thus, we
may assume a > max{0, b, ¢} by relabeling player 1’s strategies.

Finally, ad — bc = 0 and @ > max{0, b, ¢} implies d > max{0, b, c}. The prior analysis argues
a+d—b—c> 0. Thus, (36) implies d > max{b, c}. Now for contradiction, suppose d < 0. This
implies 0 > d > max{b, ¢} and ad — be < 0 a contradiction. Therefore d > max{0, b, c}.

E Expressing the Convex Conjugate with the Transformed Payoffs

We can express x as

R.
<
=~
i~

0 ifn(l—<d)4+1<0

oy =41 ifg(1—=g) 41> (41)
77(1—;;_%)%14-% otherwise
0 ity (1- =) %4 L<o

=141 ity (1—b=d) s 41>, 42)
n (1 — a—c) yél + 3 otherwise.




Thus, (6) simplifies to

1 .
Yio — br) ifzt; =0
Ri(yh) = yii — zl,, ifzl, =1 43)
‘ t t
T - 952)2 + % - %7 otherwise
(c—d 1 e
HYI 5y ifal; =0
, 1 -
— v~ 35 ifat, =1 44)

|_c-d

2 t
z (1 . Z:‘é) (yil)Q + ( a;]l,)yll — 4—17] otherwise

Symmetrically,
tyh — o5y if 25, =0
hy(l) = { Vb — 35 , if o) =1 (45)
_bod)
0 0 D o

Unlike (6), we can casily verify h* is strongly convex when the strategy is fully mixed. In addition to
allowing for a simpler analysis,

=l - % ifzt, =0
1 . B
hi(yi) = Yii— 2, ) » ifzf; =1 (46)
i (1 - 2:(117) ()" + —(1_“;]b)y“ — 4, otherwise
@102} — Bro irzt <o
= a2l — fn ifzt >1 47
Y1(24)? + 12t — B1 otherwise
= hi(z1) (48)
where a1g < 0,211 > 0, and y; > 0. Symmetrically,
042025 — 520 if Zé S 0
h3(23) = § a2125 — Boa ifz5 >1 (49)

Y2(24)? + cpzh — B2 otherwise

with aigg < 0,07 > 0, and 5 > 0.

F Details of Theorem 3

F.1 Partitioning the Strategies and the Dual Space

By assumption ¢ > min{0, b, c} and d > min{0, b, c} (See Appendix D). This implies that both
the strategies (x11, £21) and the transformed payoff vector z will rotate clockwise about the Nash
equilibrium in both continuous and discrete time as depicted in Figure 2. To formally show clockwise
movement, assume o}, > NP x4, > 2P (upper right of the Nash equilibrium). Then zf - Az} <
(1,0) - Axb implying 2%, < 27!, Symmetrically, 24, > 255! implying that if z¢;, > ¥ and
xh, > 2P then the strategies move clockwise or not at all. Similarly, clockwise movement can be
shown for the other three cases. A symmetric argument shows the transformed payoff vector z also
rotates clockwise.

To partition the strategies {z'}]_;. we begin by first partitioning the dual space X* into 4 regions
Zy, 21, Z9, and Z3. The visual representation of this partitioning is given in Figure 4.

Zo={z:21 <1,z > 1}.

Zy={z:2z1 > 1,20 >0}.

Zy={z:2z1 >0,z <0}.

Z3={2:21 <0,20 < 1}.



The partitioning Zy, Z1, Z2, and Z3, is not a proper partitioning. As depicted in Figure 4, it lacks all
payoff vectors that correspond to fully mixed strategies for both players. However, by Theorem 1,
there exists a B so that 2? is not fully mixed for both players for all t > B. Since B is finite, the first
B strategies will shift the total regret by at most a constant and therefore can be disregarded in our
analysis.

Z2

Zy

fully mixed
strategies

21

Z3

Figure 4: Visual Representation of Zy, Z1, Zs and Z3.

Since strategies move clockwise, in general the payoff vectors will move from region Z; to region
Z(i+1 mod 4)- I 1 is large, then it is possible to move directly from Z; 0 Z(;12 mod 4)- While we
consider such 7 impractical, our analysis handles such cases and shows that after enough iterations,
the payoff vectors never skip a region. Finally, we are able to define our partitioning over {z,}7_;.
Let B be as in the statement of Theorem 1 and let Z(t) € {Zo, Z1, Z2, Z3 } be such that z* € Z(t).

to = argmin{z’ € Z} (50)
t>B

t; =argmin{z’ ¢ Z(t — 1)} Vj =1,2,... (31
t>tj 1

Finally, let t;, = T' + 1 where k — 1 is the largest index that has a solution in (51). The value ¢,
represents the first time after #;_; that z* enters a new region. Our analysis now focuses on the

time intervals created by these break points. Specifically, we analyze x%, 2+, . at+1~1 and
Zti gt [ ptiva—l

F.2 Player Strategies Often Do Not Change

In this section, we show that for each partitioning {¢;, ..., ;41 — 1} the strategies change at most a
constant, s, of times independent of the size of the partitioning, ;4.1 — t;. This result is useful in two
areas. First, in the proof of Theorem 3 it is used to show that %7, ..., x%+1~1 contributes to the regret
by an amount proportional to . Second, it is used in the proof of Lemma 8 to show the total energy
in the system increases by a constant in each partition; we show the energy only increases when the
player strategies change and therefore, the energy increases at most « times in each partition.

Lemma 7. There exists a  such that |{t € {t;,....,tj11 — 1} : 2t # 2T} <k for all j.

Proof of Lemma 7. Without loss of generality, assume 2%, ..., z%+1=1 & Z,. This implies 2%, =
e = xtﬁ“_l = 1 and therefore

vsl' — o = [—a, =] [w1,, 1 — ] (52)

=-a (53)

forall ¢t = ¢;,...,t;41 — 1. Thus, there must exist a constant §; > 0 such that z5 — zﬁ“ =4;.



By selection of Zl, z5 > 0 for all t. Moreover, x4, = 1if z§ > 1. Since z§ decreases by d; in
each iteration, x4, # xiT iff 2571 < 1. However, since z5 — 257! = §;, there can only be at
most k1 = [1/01] such t For regions Zy, Zs, and Z3, there exist similar kg, ko, and k3. Taking
Kk = max{ko, K1, K2, k3 } completes the proof of the lemma. O

F.3 Energy Increases by ©(1) in Each Partition

Next, we show the energy in the system increases by a constant each time 2! moves into a new
partition. Again, we use this result in two places. First, we use the result in the proof of Lemma 9, to
show that z* moves from Z; directly to Z(i+2 mod 4) at most a constant number of times. Second,
we use the result in combination with Lemma 9 to show ¢; € ©(j?) allowing us to conclude that
k € ©(v/T) partitions are visited in T iterations.

Lemma$8. 7 —r; € O(1).

The proof of Lemma 8 relies on the observation that (Gradient Descent) is simply a Ist order
approximation of (Continuous Gradient Descent) as depicted in Figure 5. When neither 2{ ¢ (0,1),
the continuous time dynamics move in a straight line and therefore a 1st order approximation perfectly
preserves the energy of the system. However, if z! € (0, 1) then by the strong convexity of h;(z!), the
total energy of the system increases. By Lemma 7, there are a constant number of ¢ where 2} € (0, 1)
for each partition and therefore the total energy increases by O(1) in each partition.

22

Continuous Time Dynamics

® Discrete Time Dynamics

21

Figure 5: Discrete Time is a 1st Order Approximation of Continuous Time.

For the proof of Lemma 8 is is useful to recall the following from Section 3.2:

a@102f — Bro if z{ <0

hi(2)) = < anzl — B ifzt >1 (54)
11(24)2 + 12t — B1  otherwise
2025 — P20 if2£ <0

hi(2) = § 2125 — B if 25 > 1 (55)

Y2(28)% + cipzb — B2 otherwise
where ;9 < 0,41 > 0, and y; > 0.
Proof of Lemma 8. Without loss of generality assume 2%, ..., z%+1=1 € Z;. Once again by selection
of Z1, 25 > O and xf, = 1implying 2 > 1 forall ¢ = t], cntjpr — 1. Let Rt = 322 h*(z!) be
the total energy in the system in iteration ¢. By Mertlkopoulos et al. [2018], the contmuous time

dynamics are captured by {z: Z 1 hi(z;) = R} around the point z*. When 24 > 1, the continuous
time dynamics around z® are captured by

R' =) "hi(z) (56)

1
= h3(22) + a1121 — Bi (57)



reducing to

R! — h}
b= SO Pa() (58)
a1l
As observed earlier, (Gradient Descent) is simply a 1st order approximation of (Continuous Gradient
Descent) and therefore

Vhi (2
2t =t Vh3(z3) (2571 — 2b) (59)
Qi
Vhi (25
=2+ Vhi(z) 2)51 (60)
Q11
where §; = 25 — 257 is shown to be constant in the proof of Lemma 7. We now examine the five
t+1

possible locations for 24 and z

Case 1: 2§ > 1, zé“ > 1. We show there is no change to the energy in the system. Since 2§ > 1,
Vﬁ* t
ALt g 2(22)51 61)
Q11
=t 22y, (62)
a1y
The total energy in iteration ¢ 4 1 is given by
2
R =3 "Ri(aE (63)
i=1
= auziﬂ — B+ 0212§+1 — B (64)
o
= a1y (Zf + a—2151> — i1 + a1 (25 — 61) — B (65)
11
= an1z] — B+ a21zh — Bn (66)
2
=Y hi(zh) =R (67)
i=1

and the energy in the system remains unchanged.

Case 2: 25 € (0,1), 257 € (0,1). We show the energy increases by at least 1207, We begin with
writing z(4) as

Tx( .t
21(6) = 24 + M5 (68)
Q11
27925
=ty V223 + Q2 5 69)
a1
%(0) =25-0 (70)
Therefore, 2¢+! = 2(6;). Similarly, let R(8) be energy associated with the point z(4). Formally,
2
R(8) = hi(1(9)) (71)
i=1
= a11217H(6) = Bu1 + 12(2571(6))? + o222(8) — Be (72)
2992h + «
=an (Z{ + %0 — P11+ 72(25 — 0)* + aa(25 — 8) — 2 (73)

and R(8;) = R and R(0) = R'. Moreover (Z;TI’} = 275 > 0 and therefore R(4) is strongly convex
with parameter 2v,. Thus,

R = R(61) > R(0) + R'(0) + 7262 (74)
= R + 7502 (75)



and the energy increases by at least 7207 completing Case 2.
Case 3: 24 > 1, zé“ € (0,1). The energy increases by at least yo(1 — zéﬂ)z. This case follows
identically to Case 2 by approximating 12(81) using strong convexity and R(z4 — 1).

Case 4: z5 € (0,1), 257 < 0. The energy increases by at least v (25)2. This case follows similarly
to Cases 2 and 3.

Case 5: 2§ > 1, z§+1 < 0. The energy increases by at least . This case follows similarly to Cases
2-4.

We now can compute 7,41 — ;. In each case, the increase in energy is bounded above since z4 — Pk

is bounded. Let Cj, be the number of times that Case k occurs. Case 1 results in no change to the
energy. By Lemma 7, Case 2 occurs at most ; times. Since 24 is decreasing, Cases 3, 4, and 5 can
occur at most once each. Therefore ;11 — 1, € Z‘Zzz Cr-O0(1) < (k1 +3)-0(1)e0(1). It
remains to show ;41 —r; € Q(1).

First suppose Case 2 occurs at least once, then immediately we have r; 11 —r; > 782 € Q(1).
If Case 2 does not occur, then either Cases 3 and 4 occur, or Case 5 occurs. If Case 5 occurs
thenrj i —r; > 72 € Q(1) If Cases 3 and 4 occur but Case 2 does not, only one ¢ is such that
24 € (0,1). Thus, 7j41 —r; > min,,eo.1){72(22)? +72(1— 22)*} = & € Q(1). Inall possibilities,
rj+1 — r; € Q(1) completing the proof of the lemma. O

F.4 The Steps Per Partition are Proportional to the Energy

In this section, we show that the number of steps in a partition is proportional to the total energy in the
system. We establish this by leveraging the connection between (Continuous Gradient Descent) and
(Gradient Descent). Lemma 9 is used in conjunction with Lemma 8 to show a quadratic relationship
between the total number of iterations and the number of partitions that the strategies have passed

through. This quadratic relationship directly leads to the O(\/T) regret bound in Theorem 3.
Lemma. t;. 1 —t; € O(r;).

Proof of Lemma 9. Without loss of generality, assume 2%, ..., zt+1~! € Z;. As in the proof of
Lemma 7, there exists a constant §, > 0 such that z§ — 247" = §, forall t = ¢;,...,t;1 — 1. This
implies 0y (t;41 —t;) = 25 — 25/, Thus, to prove Lemma 9 it suffices to show 25’ — 22/ € O(r;).
By definition of #;.1, zgj“_l € Z; and therefore 0 > z;"“ = zg"“_l —§ > —4. Thus,
2y — 2yt € O(r;) if and only if 25/ € O(r;).

To show z;’ € ©(r;) and complete the proof, we break the problem into 6 cases based on the location
of zt~! as depicted in Figure 6. The analyses for Cases 1-3 are similar and we show Cases 4-6 can

never occur.
2

Case 1: Let %! be the energy at time t; — 1. Let Mo = {2 : z € Zg, 21 € [0,1], 37| hi(z) =
R'~1}. By definition, z%i =1 € M. Observe for z € My,

2

R =" "R (z) (76)
=1

=71(21)® + 121 — B1 + az122 — B )

and therefore

29 = Rtj_l — ’\/1(21)2 — Q121 + /81 + B‘Zl (78)
Qo1

which is a concave function and therefore minimized at z; = 0 or z; = 1. Thus,

R —yi(2)? — gz + BL +
L > min 71 (21) 121 + B1 + B c
z1€{0,1} o1

O(RY ). (79)
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Zy

Case 2 Case 1

fully mixed

strategies

21
Case 6 §§§§
Figure 6: Cases for Lemma 9.
Similar to the proof of Lemma 8, we compute z5' from z5 '
_ L VRGEETY
=yt YA ) uy (80)
2]
271297 — o
Y L S X @1)
a1
€z +0(1)co(RY (82)

since 207" € [0,1]. Finally, by Lemma 8, r~1 < Rt~1 < yi = yi=1 4 ©(1) and therefore
25 € ©(r7) completing Case 1.

Case 2: This case follows identically to Case 1 using Vl_f{(z? _1) = Qq9.

Case 3: Similar to the proof of Case 1, 20 ' € —O(R%~1) and 2" = 2" "' + ©(1). However,
since 2 € Zy, 2/ > 1 implying R ! € ©(1). Therefore, by Lemma 8, r/ € ©(1). Let 65 > 0
be as in the proof of Lemma 8. Since 25i~! € Z and 25 ' € [0,1], 25 = 25 ' + 65 and
25 € O(1) = O(r7) completing Case 3.

Case 4, 5, and 6: In Case 4, the sign of VA3(z5 ") implies 2 < 2" < 0. In Case 5,

zi" = zi" ~' — 6, < 1 where 8, > 0 is defined in the proof of Lemma 8. In Case 6, the sign of
Vﬁ’{(zi’_l) implies 25 < 2/ ~! < 0. All three cases contradict that 2% € Z; completing Cases 4,
5, and 6.

In all 6 cases, z;,’ € O(r;) implying tj11 — t; € ©(r;) completing the proof. a

G Convergence to the Boundary

Proof of Theorem 1. The proof of convergence to the boundary follows similarly to the details for
Theorem 3. By Bailey and Piliouras [2018], there exists a constant w > 0 and a T such that
min; e 03 {|zt; — 2N"[} > wforall ¢ > T'. Similar to Theorem 3, we can then partition the dual



space around the Nash equilibrium as follows:

Zo={z:z <ap)’ +w,z > 2 +w}.
Z1 = {z:zl Zrl:ﬁE—Hu,ZQ >1:§£E—w}.
. NE NE
ZQ:{Z.21>:E11 —w, 22 < Tyy —w}.

Zgz{z:zlSxﬁE—w,22<a:9;E+w}.

22

Zy

zg=1----

21

Zy

Figure 7: Partitioning for Theorem 1.

Once again the strategies rotate clockwise when updated with (Gradient Descent). Similar to Lemma
8, the energy increases by at least a constant in each iteration. By continuity of A} and compactness,

the energy Ele h¥(z;) is bounded above by u when z € [0, 1]2. Similar to Lemma 9, z* spends
a bounded number of steps in a partition before moving onto the next partition. Since energy is
increasing by a constant each time z* enters a new partition, there must exist an iteration B when the
energy exceeds u. Thus, for all t > B, z* ¢ [0,1]2 implying x* is on the boundary. |

H Proof of Theorem 5

In this section, we establish that the worst-case regret is exactly @(\/T) To establish this result,
it remains to provide a game, learning rate, and initial condition y° where the regret is Q(\/T)
To establish this lower bound, we first express iteration ¢ uniquely with ¢t = @ + k for some

k € {0,...,n}. Using notation, we provide the exact position of the payoff vector, y! in each iteration.
With this position, we compute the exact utility and regret through iteration ¢. Specifically, we show

that in iteration % + k, the total regret is % + O(1). To show these results, we use the game
Matching Pennies with learning rate 7 = 1 and initial payoff vectors 49 = 39 = (1,0).

< _i 7} > (Matching Pennies Payoff Matrix)

Lemma 10. Consider the game Matching Pennies with learning rate n = 1 and initial conditions
y? =9 = (1,0). In iteration t = % + k where k € {0, ...,n}, player i’s payoff vector is given

10



by

(14 k,—k) ifn=0 mod4
U%Jﬂg: (I+n—k,—n+k) ifn=1 mod4
o1 (=k,14+k) ifn=2 mod4

(—n+k,14+n—%k) ifn=3 mod4

(I+n—k-n+k) ifn=0 mod4
nedD gy ) (k14 k) ifn=1 mod4
Y2 )(-n+kl+n—k) ifn=2 mod4’

(I1+k,—k) ifn=3 mod 4

Proof. The result trivially holds for the base case t = n = k = 0. We now proceed by induction
and assume the results holds for ¢ = @ + k and show the result holds for ¢ + 1. We break the
problem into four cases based on the remainder of n /4.

Case 1: n =0 mod 4. By the inductive hypothesis, y} = (1+k, —k) andys = (1+n—k, —n+k).
Since k < n, yil > 1 and y§1 > 1. Following similarly to Section 3.2,

Lifyf >1
i =<0 ifyh <0. (83)
yly  otherwise

Thus, z} = 24 = (1,0) implying

YTt =yl + Aah (84)
=y +(1,-1) (85)
= (1 + k, fk:) + (1, 71), (86)
vy =y — ATy (87)
=5+ (—1,1) (88)
=(14n—k,—n+k)+(-1,1). (89)

Ifk < n thent+1 = 200 4 [k 4 1] and o' = (14 [k + 1], —[k + 1]) and y*' =
I+n—[k+1,—n+[k+ lﬁ as predicted by the statement of the lemma. If instead k = n, then
t+1 = w where [n + 1] = 1 mod 4. Moreover, yi™ = (1 +k+1,~k — 1) =
(n+1]+1,—-[n+1)and ys** = (14+n —k —1,—n + k + 1) = (0,1) again matching the
statement of lemma. Thus, the inductive step holds for all values of kK whenn =0 mod 4.

Case 2: n = 1 mod 4. Since k € [0,n], y¢; > 1 and y%; < 0. Following identically to Case 1,
Yt =(04+n—k—-1,-n+k+1)andyi™ = (—k — 1,1 + k + 1) matching the statement of the
lemma for all possible values of k.

Case 3: n =2 mod 4. Since k € [0,n], y{; < 0and y4; < 0. Following identically to the previous
cases, yi T = (—k — 1,1+ k+1)and ys*' = (—n+k+1,1+n — k — 1) matching the statement
of the lemma for all poss1ble values of k.

Case 4: n =3 mod 4. Since k € [0,n], ¥4, < 0and y5, > 0. Following identically to the previous
cases, i = (—n+k+1,14+n—k—1)and yi™ = (1 4+ k+1, —k — 1) matching the statement
of the lemma for all p0531ble values of k.

In all four cases, the inductive hypothesis holds completing the proof of the lemma. O

With the exact value of the payoff vector in each iteration, we can compute the cumulative utility.

Lemma 11. Consider the game Matching Pennies with learning rate n = 1 and initial conditions
y9 =99 = (1,0). In iteration t = w + k where k € {0, ...,n}, player 1’s cumulative utility is

t
1-2+%k ifn=0 mod?2

S AxS = 2 )
;xl 2 {"T_l—k ifn=1 mod 2
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Proof. We again proceed by induction. The base case t = n = k = 0 trivially holds. We assume the

result holds for ¢t = % + k and show it holds for ¢ 4+ 1. Again, we break the problem into four
cases based on the remainder of n/4.

Case 1: n =0 mod 4. First, we consider k& < n. Since k < n, t + 1 is in the form % +[k+1]
where k + 1 < n. Thus, by Lemma 10, 47! = 1 + [k + 1] > landysi' = 1 +n — [k +1] > 1
implying 2} = 25" = (1,0). therefore,

41 t
in-Ax;:x§+1-Axg+1+Zx§-Ax§=1+1—g’+k=1—%+[k+11. (90)
= s=0
This completes Case 1 when k& < n.

W

If instead £ = n, then ¢ is in the form where [n + 1] =1 mod 4. Similar to before,

YTt =1+n>1andys* = 0implying .’Et+1 (1,0) and 257" = (0, 1). Therefore,
t+1
1 1] -1
Za:i-AxZ—:c’iH t+1+2x1 Azs = 1+1—%+n:%. o1

This completes Case 1 when k& = n. Thus the inductive hypothesis holds in Case 1.

Case 2: n = 2 mod 4. This case holds similarly to Case 1. The only difference is that :ctH =
x5t = (0,1) when k < n and #5™! = (1,0) when k& = n which does not change the value of
1 t+1

a7 AxyT

Case 3: n =1 mod 4. First consider £ < n implying ¢ + 1 is in the form ”("—2_1) + [k + 1] where

k + 1 < n. Similar to Case 1, z{™" = (1,0) and 25" = (0, 1). This implies

t+1 t
-1 -1
fo-A:vgzxiH-Ax?l—}—fo~A:U§:—1+n k== —k+1. (92

completing Case 3 when k < n.

If instead £ = n, then t is in the form n+1)( ZH +1)

i =(0,1) and 25T = (0,1). Therefore,

where [n + 1] = 2 mod 4. This implies

— t+1 t+1 : s s n—1 [n+1]
le Azl =" - Axj +Zz1-Am2:1+T—n:1—T,

s=0

93)

matching the statement of the lemma. This completes Case 3.
Case 4: n =3 mod 4. Case 4 follows from Case 3 in the same way that Case 2 follows from Case
1. The hypothesis holds under all cases completing the proof of the lemma. O

We now show that Matching Pennies with learning rate 77; and initial conditions 39 = y9 = (1,0)
has regret ©(y/T') when updated with (Gradient Descent).

Proof of Theorem 5. Theorem 3 establishes that the regret is O(\/T) To show that the regret is

Q(@ ), we show that in iteration t = w + k, that player 1’s regret is § + O(1) completing the
proof.

The utility of the best fixed strategy through iteration ¢ is given by

A — t+1 0 94
nax - Z x5 = nax - (y3 Y1) 94)

< |y +0(1) 95)
since y4, — 1 = yt, for all ¢ by Lemma 10.
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Ifk<n,thent+1:@+[k+1}and

k+1]-(1-5+k) =735 ifn=0 mod 4
41 s n—lk+1— (21 —k) =251 ifn=1 mod4
| Zfl Nk - (-84 k) =241 ifn=2 modd OO
n—k+1]+1- (%2 —k) =22 ifn=3 mod4
Ifk::n,thent—klzwﬂg—“]_—l)and
m+1]-1-%+n)=3% ifn=0 mod4
1— (22t —pn) =13 ifn=1 mod 4
t+1_ A 2 2 . 7
| le Z2 = Ml +l-(1-24m) =211 ifn=2 modd O
0— (25 —n)=12H ifn=3 mod 4
In all cases, the total regret is % + O(1) € Q(v/t) completing the proof of the theorem. O

I Full Results of Experiments

An alternative proof of Theorem 3 can be described geometrically as follows: In iteration ¢ of (Gradi-
ent Descent), the payoff vectors are contained on some 2-dimensional ball in the dual space. Since
(Gradient Descent) updates strategies myopically, the payoff vectors cycle along this 2-dimensional
ball. In most iterations, the size of the ball increases. Since the change in player 1’s (player 2’s)
payoff vector is bounded by the rows (respectively columns) of the payoff matrix A, the increasing
size of the ball implies that the time to complete a cycle grows over time.

Players’ strategies are obtained by projecting the payoff vectors into the simplex. As a result, player
strategies also cycle. Moreover, the time to complete a cycle also grows over time implying that the
average step-size goes to zero. Specifically, in the proof of Theorem 3, Zt 1 ||1’75Jr1 — 24| € O(VT)
implying sublinear regret.

In higher dimensions, we can make a similar argument to suggest sublinear regret. Once again, in
any given iteration the payoff vectors are on the surface of some high dimensional ball in the dual
space. By definition, the j*" component of h*(y;) is strictly convex whenever z;; € (0,1). As a
result, the ball containing the payoff vector increases in any iteration where there is a j such that
{z};, 2 f“} € (0,1)2. In addition, the myopic nature of (Gradient Descent) suggests that the payoff
vectors w111 not be contained to any small section of the ball in the dual space, e.g., the strategies
cycle. As such, we would expect that the average step-size in the strategy space again goes to zero
implying sublinear regret. Thus, we conjecture that the regret is sublinear in higher dimensions.

To test this conjecture, we generated 30 random payoff matrices for 2x2, 5x5, 10x10, and 50x50
games and updated strategies in these games with (Gradient Descent) for 10,000 iterations. The
payoff matrix A was generated uniformly at random from [0, 10]"*" for n € {2,5,10,50}. The
initial payoff vector y9 was generated uniformly at random from [0, 1]™. Agents’ strategies were then
updated via (Gradient Descent) for 10,000 iterations with learning rate n = 1. In our experiments,
we exclude payoff matrices that have a single pure strategy Nash equilibria — Bailey and Piliouras
[2018]’s analysis can be extended to show (Gradient Descent) will converge to the Nash equilibrium
in these settings and the regret will be bounded. Experiments were conducted with the statistical
software R and the source code is available at http://www.jamespbailey.com/FastAndFuriousGD.html.

We tested how well b- T predicts regret for (Gradient Descent), via a logarithmic regression with the
model log Regret;(T) ~ a - log T + log b. A summary of the result of the regression can be found
in Table 2.

For all 120 of our instances, our logarithmic regression estimates that regret grows significantly

slower than O(T") with most instances obtaining regret close to O(v/T). Moreover, these models

explain nearly all of the variability in regret. Estimates for individual replicates are given in Tables
4-7.

In the set of 5x5 games, replicates 13 and 27 appear to have much lower regret that O (y/T') — T-3262
and T-3323 respectively. To see if there are indeed instances where regret is significantly lower than
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Table 2: Regression Summary for 10,000 Iterations of Gradient Descent in 30 Random Games

strategies | Regret1(T) =~ b-T* | p-value | % of variability explained | |support of z*|
2 a € [0.4151,0.5497] | < .000001 90.59 — 99.88 2
5 a € ]0.3262,0.5372] | < .000001 93.00 —99.81 2-5
10 a € [0.4012,0.5490] | < .000001 99.10 —99.80 2-9
50 a € 0.5195,0.5856] | < .000001 99.45 -99.89 18-29

O(V/T). we further simulated these two replicates for a total of 500,000 iterations and summarized

the results in Table 3. By increasing the number of iterates, we observe that both replicates exhibit

regret closer to /T as expected from our theoretical results.

Table 3: 500,000 Iterations of Gradient Descent for Replicates 13 and 27 in 5x5 Games

replicate | Regret,(T) = b-T* p-value % of variability explained | |support of x*|
13 a = .4481 < .000001 98.89 2
27 a = .4666 < .000001 99.23 2
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Table 4: Regression for 30 Replicates of Gradient Descent in 2x2 Games

replicate | Regret1(T) =b-T% | p-value | % of variability explained | |support of z*|
1 a = 0.5423 < .000001 98.93 2
2 a = 0.4981 < .000001 99.60 2
3 a = 0.5083 < .000001 99.77 2
4 a = 0.5073 < .000001 99.55 2
5 a = 0.4847 < .000001 98.90 2
6 a = 0.4949 < .000001 99.54 2
7 a = 0.5291 < .000001 99.74 2
8 a = 0.4958 < .000001 99.18 2
9 a =0.4739 < .000001 99.76 2
10 a = 0.4992 < .000001 99.88 2
11 a =0.5143 < .000001 98.83 2
12 a = 0.4871 < .000001 99.16 2
13 a = 0.5269 < .000001 99.15 2
14 a = 0.5363 < .000001 99.74 2
15 a = 0.5086 < .000001 99.63 2
16 a = 0.5497 < .000001 99.17 2
17 a = 0.5361 < .000001 99.52 2
18 a = 0.5058 < .000001 99.82 2
19 a =0.4911 < .000001 99.49 2
20 a = 0.5147 < .000001 99.70 2
21 a = 0.4152 < .000001 90.59 2
22 a = 0.5097 < .000001 99.73 2
23 a = 0.5276 < .000001 99.57 2
24 a = 0.4626 < .000001 99.36 2
25 a = 0.5004 < .000001 99.53 2
26 a = 0.5020 < .000001 99.81 2
27 a = 0.4933 < .000001 98.79 2
28 a = 0.4938 < .000001 99.63 2
29 a = 0.5078 < .000001 99.45 2
30 a = 0.5013 < .000001 98.99 2
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Table 5: Regression for 30 Replicates of Gradient Descent in 5x5 Games

replicate | Regret1(T) =b-T% | p-value | % of variability explained | |support of z*|
1 a = 0.4042 < .000001 97.98 2
2 a = 0.4965 < .000001 99.14 4
3 a = 0.4654 < .000001 98.95 3
4 a = 0.4899 < .000001 99.24 2
5 a = 0.4402 < .000001 99.13 2
6 a = 0.4954 < .000001 99.67 2
7 a = 0.4602 < .000001 99.64 3
8 a = 0.4941 < .000001 99.00 3
9 a = 0.4484 < .000001 99.56 3
10 a =0.5119 < .000001 99.72 5
11 a = 0.4818 < .000001 99.65 2
12 a = 0.5092 < .000001 99.56 3
13 a = 0.3262 < .000001 93.59 2
14 a = 0.4814 < .000001 99.63 2
15 a = 0.4689 < .000001 99.81 2
16 a = 0.4520 < .000001 99.73 3
17 a = 0.5372 < .000001 99.50 3
18 a=0.4134 < .000001 98.14 3
19 a = 0.4653 < .000001 99.21 3
20 a = 0.4962 < .000001 97.38 2
21 a =0.5129 < .000001 99.62 2
22 a = 0.4932 < .000001 99.39 3
23 a = 0.4534 < .000001 99.37 2
24 a = 0.4839 < .000001 99.40 3
25 a = 0.5168 < .000001 99.74 3
26 a = 0.5216 < .000001 99.33 4
27 a = 0.3323 < .000001 93.00 2
28 a = 0.4058 < .000001 99.05 3
29 a = 0.5269 < .000001 99.28 3
30 a = 0.5234 < .000001 99.57 4
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Table 6: Regression for 30 Replicates of Gradient Descent in 10x10 Games

replicate | Regret1(T) =b-T% | p-value | % of variability explained | |support of z*|
1 a = 0.5490 < .000001 99.76 7
2 a = 0.4953 < .000001 99.47 7
3 a = 0.4682 < .000001 99.12 6
4 a = 0.4707 < .000001 99.63 5
5 a = 0.5017 < .000001 99.73 5
6 a = 0.5262 < .000001 99.80 7
7 a = 0.5323 < .000001 99.67 5
8 a = 0.4863 < .000001 99.64 3
9 a = 0.4903 < .000001 99.71 4
10 a = 0.5363 < .000001 99.45 7
11 a = 0.4875 < .000001 99.65 5
12 a = 0.4921 < .000001 99.51 5
13 a = 0.4958 < .000001 99.12 4
14 a = 0.5341 < .000001 99.53 7
15 a = 0.5209 < .000001 99.20 4
16 a = 0.5044 < .000001 99.66 5
17 a = 0.5185 < .000001 99.80 5
18 a = 0.4900 < .000001 99.71 6
19 a = 0.5063 < .000001 99.39 6
20 a = 0.5356 < .000001 99.78 6
21 a = 0.5232 < .000001 99.79 9
22 a = 0.4967 < .000001 99.45 5
23 a=0.5113 < .000001 99.65 5
24 a =0.5137 < .000001 99.10 5
25 a = 0.5103 < .000001 99.67 5
26 a = 0.5348 < .000001 99.29 7
27 a = 0.4973 < .000001 99.55 7
28 a = 0.4798 < .000001 99.58 4
29 a = 0.4012 < .000001 99.19 2
30 a = 0.4956 < .000001 99.38 6
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Table 7: Regression for 30 Replicates of Gradient Descent in 50x50 Games

replicate | Regret1(T) =b-T% | p-value | % of variability explained | |support of z*|
1 a = 0.5544 < .000001 99.76 20
2 a = 0.5340 < .000001 99.78 24
3 a = 0.5318 < .000001 99.82 23
4 a = 0.5309 < .000001 99.68 20
5 a = 0.5323 < .000001 99.61 18
6 a = 0.5433 < .000001 99.70 27
7 a = 0.5781 < .000001 99.84 21
8 a = 0.5442 < .000001 99.77 20
9 a = 0.5584 < .000001 99.65 26
10 a = 0.5425 < .000001 99.85 23
11 a = 0.5233 < .000001 99.54 20
12 a = 0.5675 < .000001 99.67 23
13 a =0.5703 < .000001 99.45 23
14 a =0.5471 < .000001 99.72 29
15 a = 0.5297 < .000001 99.51 22
16 a = 0.5233 < .000001 99.75 21
17 a = 0.5792 < .000001 99.61 23
18 a = 0.5457 < .000001 99.69 21
19 a = 0.5227 < .000001 99.72 20
20 a = 0.5203 < .000001 99.64 24
21 a = 0.5459 < .000001 99.72 23
22 a = 0.5368 < .000001 99.73 24
23 a = 0.5457 < .000001 99.59 25
24 a = 0.5856 < .000001 99.48 23
25 a = 0.5624 < .000001 99.83 25
26 a = 0.5394 < .000001 99.70 20
27 a = 0.5501 < .000001 99.89 27
28 a = 0.5444 < .000001 99.73 25
29 a = 0.5195 < .000001 99.71 23
30 a = 0.5552 < .000001 99.84 27
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