A Comparison between Bounds

We first use simulation to show our proposed bound is higher than the one from PixelDP [18].

In PixelDP, the upper bound for the size of attacks is indirectly defined: if p(;) > 62517(2) + (14 €9),

where ¢ > 0 and § > 0 are two tuning parameters, and the added noise has the distribution N (0, o] ),
then the classifier is robust to attacks whose ¢ size is less than ge

\/2log(1.25/8) "
As both our and their bound are determined by the models and data only through p(;) and pg), it
is sufficient to compare them with simulation for different p(1) and p(2) as long as p(1) > p(2) > 0,

Py +Ppe) < land py) +pz) > 0.2 are satisfied, i.e., p(1) and p(q) are valid first and second largest
output probabilities.

For fixed o, € and § are tuning parameters that affect the result. For a fair comparison, we use a grid
search to find € and § that maximizes their bound.

L75
1.50
125
1.00
0.75
0.50

022 \\/
0.00 -2
o 60.40
8

0.0 01 0.
02 03 04 45 10

Figure 5: The upper bounds under different p(;) and p(2). Our bound (red) is strictly higher than the
one from PixedDP (blue).

The simulation result in Figure 5 shows our bound is strictly higher than the one from PixelDP. In
particular, when p(;y and p(2) are far apart, which is the most common case in practice, our bound is
more than twice as high as theirs.

B Proof of Lemma 1

Lemma 1 Let P = (py,...,px) and Q@ = (g1, - - -, ¢x) be two multinomial distributions over the
same index set {1,. .., k}. If the indexes of the largest probabilities do not match on P and @), that is
argmax; p; # argmax; g;, then

1
1 B _ T—a
Do (Q|[P) > —log (1 ~ P ~P@) +2 (2 (ph)a + pé)a)) ) @

where p(1) and p o) are the largest and the second largest probabilities in p;’s.

Proof Think of this problem as finding @) that minimizes D, (Q|| P) such that argmaxp; # argmaxg;
for fixed P = (pu, ..., px). Without loss of generality, assume p; > pa > -+ > py.

It is equivalent to solving the following problem:
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As the logarithm is a monotonically increasing function, we only focus on the quantity s(Q||P) =
Yy pi (%) part for fixed cv.

We first show for the () that minimizes s(Q|| P), it must have g; = g2 > q3 > - -+ > qi. Note here
we allow a tie, because we can always let ¢ = g1 — € and g2 = @2 + € for some small € to satisfy
argmaxgq; # 1 while not changing the Renyi-divergence too much by the continuity of s.

If ¢j > ¢; for some j > i, we can define Q' by mutating ¢; and g;, that is Q' =
(qlv"',qiflvqwqﬁ*l-",quhqmqurlw"7qk)vthen

s(QIIP) — s(Q'[| P)

q‘?‘ — q‘?‘ q‘?‘ — q‘?‘
=p; (laJ) +pj Ji{xl
p; p;

l—o

=(p} " =Py )N —¢§) >0

which conflicts with the assumption that () minimizes s(Q||P). Thus ¢; > g¢; for j > 4. Since ¢,
cannot be the largest, we have g1 = q2 > q3 > --- > qp.

Then we are able to assume Q) = (qo, o, g3, - - - , Gk ), and the problem can be formulated as

q0\" w0\" | a\"
min p; () + P2 () + sz‘ (1)
90,92,k P b2 i=3 i

subjectto 2qp+qs+ - +qr =1
subjectto ¢; —qo <0 ¢>1
subjectto —¢q; <0 ¢>0

which forms a set of KKT conditions. Using Lagrange multipliers, one can obtain the solution

1
. 3 - l—-a\ T—a
and g; = pilw for ¢ > 3, where ¢* = (%) .

N
_ q
d = 1—p1—p2—2¢* 1—-p1—p2—

Plug in these quantities, the minimized Renyi-divergence is

1
1 W W T—a
1og<1p1p2+2<2(p1 + p3 )> >

Thus, we obtain the lower bound of D, (Q|| P) for argmaxp; # argmaxg;. [ |

C Proof of Theorem 2

A simple result from information theory:

Lemma 4 Given two real-valued vectors X1 and Xa, the Rényi divergence of N(x1,02%I) and
N(xg,0%1) is
_ allxi — %3

Do (N(x1,0%I)||N(x2, 1)) 572

3)

Theorem 2 Suppose we have x € X, and a potential adversarial example x’ € X such that
| x —x’||l2 < L. Given a k-classifier f : X — {1,...,k},let f(x + N(0,0%I)) ~ (p1,...,pr) and
f(x'+ N(0,021)) ~ (P}, ...,D%)

If the following condition is satisfied, with p(;y and p(o) being the first and second largest probabilities
in p;’s:

@

2052 9
sup (—7 log (1 —2M; (P(l),P(z)) +2M1_q (P(1)1P(2)))> =L “)
_ /
then argmax; p; = argmax; pj
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Proof From lemma 4, we know for x and x’ such that ||x — x’|| < L, with a k-class classification
function f : X — {1,...,k}:
Do(f(x'+N(0,0%))[lf (x + N(0,07)))
<Dy (x' + N(0,0?)||x + N(0,0?))
al?
~ 202
if N(0,0?) is a standard Gaussian noise. The first inequality comes from the fact that D, (Q| P) >
Do (9(Q)]lg(P)) for any function g.

Therefore, if we have

L2
—log (1= 2M; (p1),p2) + 2Mi-a (p1) P2)) > 55 (5)

It implies
Da(f(x'+ N(0,0%))|If(x + N(0,07)))

(6)
< —log (1 —2M; (pa1y, p2)) + 2M1—a (P(1),P(2)))

Then from Lemma 1 we know that the index of the maximums of f(x + N(0,0?%)) and
f(x' + N(0,0?%)) must be the same, which means they have the same prediction, thus implies
robustness. |

D Details and Additional Results of the Experiments

In this section, we explain the details of our implementation of our models and include additional
experimental results.

D.1 Gradient-Free methods

We include results for Boundary Attack [9] which is a gradient-free attack method. Boundary attack
explores adversarial examples along the decision boundary using a rejection sampling approach.
Their construction of adversarial examples do not require information about the gradient of models,
thus is an important complement to gradient-based methods.

We test Boundary attacks on MNIST and CIFAR10 and compare them to other attacks considered.
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Figure 6: MNIST: Comparisons the adversarial robustness of STN against various types of attacks
for both /5 (left) and £, (right).

From the plots, one can see Boundary attack is not effective in attacking our models. This is consistent
with the observation from [38] that gradient-free method is not effective against randomized models.
Nevertheless, we include the results as a sanity check.
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Figure 7: CIFAR-10: Comparisons the adversarial robustness of STN against various types of attacks
for both ¢, (left) and ¢, (right).
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