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A Proofs

We provide the proofs in this section.

A.1 Proof of Theorem 1

Theorem 1. If f is differentiable at x, the loss of the RGF estimator ĝ is

lim
σ→0

L(ĝ) = ‖∇f(x)‖22 −
(
∇f(x)>C∇f(x)

)2
(1− 1

q )∇f(x)>C2∇f(x) + 1
q∇f(x)>C∇f(x)

,

where σ is the sampling variance, C = E[uiu>i ] with ui being the random vector, ‖ui‖2 = 1, and q
is the number of random vectors as in Eq. (5).

Remark 1. Rigorously speaking, we assume∇f(x)>C∇f(x) 6= 0 in the statement of the theorem
(and also in the proof), since when ∇f(x)>C∇f(x) 6= 0, both the numerator and the denominator
of the fraction above are zero. When ∇f(x)>C∇f(x) = 0, u>i ∇f(x) = 0 holds almost surely,
which implies that L(ĝ) = ‖∇f(x)‖2 regardless of the value of σ. In fact, this case will not happen
almost surely. In the setting of black-box attacks, we cannot even design a C with trace 1 such that
∇f(x)>C∇f(x) = 0 since ∇f(x) is unknown.

Proof. First, we derive L(ĝ) based on the assumption that the single estimate ĝi in Eq. (5) is equal to
u>i ∇f(x) · ui, which will hold when f is locally linear.

Lemma 1. Assume that the single estimate ĝi in Eq. (5) is equal to u>i ∇f(x) · ui. We have

L(ĝ) = ‖∇f(x)‖22 −
(∇f(x)>C∇f(x))2

(1− 1
q )∇f(x)>C2∇f(x) + 1

q∇f(x)>C∇f(x)
. (A.1)

Proof. First, we have

E‖∇f(x)− bĝ‖22 = ‖∇f(x)‖22 − 2b∇f(x)>E[ĝ] + b2E‖ĝ‖22.

We have∇f(x)>E[ĝ] = ∇f(x)>E[ĝi] = E[∇f(x)>uiu>i ∇f(x)] = E[(∇f(x)>ui)2] ≥ 0. Hence

L(ĝ) = min
b≥0

E‖∇f(x)− bĝ‖22 = min
b

E‖∇f(x)− bĝ‖22 = ‖∇f(x)‖22 −
(∇f(x)>E[ĝ])2

E‖ĝ‖22
. (A.2)
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Since ĝi = u>i ∇f(x) · ui, and u>i ui ≡ 1, we have

E[ĝi] = C∇f(x),
E‖ĝi‖22 = E[ĝ>i ĝi]

= E[∇f(x)>uiu>i uiu>i ∇f(x)]
= ∇f(x)>E[ui(u>i ui)u>i ]∇f(x)
= ∇f(x)>E[uiu>i ]∇f(x)
= ∇f(x)>C∇f(x).

Given E[ĝi] and E‖ĝi‖2, the corresponding moments of ĝ can be computed as

E[ĝ] = E[ĝi] (A.3)
= C∇f(x),

E‖ĝ‖22 = E‖ĝ − E[ĝ]‖22 + ‖E[ĝ]‖22

=
1

q
E‖ĝi − E[ĝi]‖22 + ‖E[ĝi]‖22

=
1

q
E‖ĝi‖22 + (1− 1

q
)‖E[ĝi]‖22 (A.4)

= (1− 1

q
)∇f(x)>C2∇f(x) + 1

q
∇f(x)>C∇f(x).

Plug them into Eq. (A.2) and we complete the proof.

Next, we prove that if f is not locally linear, as long as it is differentiable at x, then by picking a
sufficient small σ, the loss tends to be that of the local linear approximation.

Lemma 2. If f is differentiable at x, letting L0 denote the right-hand side of Eq. (A.1), then we have

lim
σ→0

L(ĝ) = L0.

Proof. Let ĝ′i = u>i ∇f(x) · ui, ĝ′ = 1
q

∑q
i=1 ĝ

′
i. Then L0 = L(ĝ′). By Eq. (A.2), Eq. (A.3) and

Eq. (A.4), it suffices to prove limσ→0 E[ĝi] = E[ĝ′i] and limσ→0 E‖ĝi‖22 = E‖ĝ′i‖22.

For clarity, we redefine the notation: We omit the subscript i, make the dependence of ĝi on σ explicit
(let ĝσ denote ĝi), and let ĝ0 denote ĝ′i. Then we omit the hat in ĝ. That is, let g0 , u>∇f(x) · u and
gσ , f(x+σu)−f(x)

σ · u, where u is sampled uniformly from the unit hypersphere. Then we want to
prove limσ→0 E[gσ] = E[g0] and limσ→0 E‖gσ‖22 = E‖g0‖22.

Since f is differentiable at x, we have

lim
σ→0

sup
‖u‖2=1

∣∣∣f(x+ σu)− f(x)
σ

− u>∇f(x)
∣∣∣ = 0. (A.5)

Since ‖u‖2 ≡ 1, we have

lim
σ→0

E‖gσ − g0‖2 ≤ lim
σ→0

sup
‖u‖2=1

∣∣∣f(x+ σu)− f(x)
σ

− u>∇f(x)
∣∣∣ = 0,

lim
σ→0

E‖gσ − g0‖22 ≤ lim
σ→0

sup
‖u‖2=1

∣∣f(x+ σu)− f(x)
σ

− u>∇f(x)
∣∣2 = 0.

Applying Jensen’s inequality to convex function ‖ · ‖2, we have ‖E[gσ]− E[g0]‖2 ≤ E‖gσ − g0‖2.
Since limσ→0 E‖gσ − g0‖2 = 0, we have limσ→0 E[gσ] = E[g0].

Since
∣∣‖gσ‖2 − ‖g0‖2∣∣ ≤ ‖gσ − g0‖2, limσ→0 E‖gσ − g0‖2 = 0 and limσ→0 E‖gσ − g0‖22 = 0,

we have limσ→0 E
∣∣‖gσ‖2 − ‖g0‖2∣∣ = 0 and limσ→0 E(‖gσ‖2 − ‖g0‖2)2 = 0. Also, we have
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‖g0‖2 ≤ ‖∇f(x)‖2. Hence, we have

lim
σ→0

∣∣E‖gσ‖22 − E‖g0‖22
∣∣ ≤ lim

σ→0
E
∣∣‖gσ‖22 − ‖g0‖22∣∣

= lim
σ→0

E
[∣∣‖gσ‖2 − ‖g0‖2∣∣(‖gσ‖2 + ‖g0‖2)]

≤ lim
σ→0

E
[(
‖gσ‖2 − ‖g0‖2

)2
+ 2‖g0‖2

∣∣‖gσ‖2 − ‖g0‖2∣∣]
≤ lim
σ→0

E
[(
‖gσ‖2 − ‖g0‖2

)2
+ 2‖∇f(x)‖2

∣∣‖gσ‖2 − ‖g0‖2∣∣]
= 0.

The proof is complete.

By combining the two lemmas above, our proof for Theorem 1 is complete.

A.2 Proof of Eq. (11)

Suppose v is a fixed random vector and ‖v‖2 = 1. Let the D-dimensional random vector u be

u =
√
λ · v +

√
1− λ · (I− vv>)ξ, (A.6)

where ξ is sampled uniformly from the unit hypersphere. We want to prove that

E[uu>] = λvv> +
1− λ
D − 1

(I− vv>). (A.7)

Proof. Let r , (I− vv>)ξ. We choose an orthonormal basis {v1, ..., vD} of RD such that v1 = v.
Then ξ can be written as ξ =

∑D
i=1 aivi, where a = (a1, ..., aD)

> is sampled uniformly from the

unit hypersphere. Hence (I − vv>)ξ =
∑D
i=2 aivi, and r =

∑D
i=2 aivi√∑D

i=2 a
2
i

. Let bi = ai√∑D
i=2 a

2
i

for

i = 2, 3, ..., D, then b = (b2, b3, ..., bD)
> is sampled uniformly from the (D − 1)-dimensional unit

hypersphere, and r =
∑D
i=2 bivi. Hence E[r] = 0. To compute E[rr>], we need a lemma first.

Lemma 3. Suppose d is a positive integer, u =
∑d
i=1 aivi where a = (a1, ..., ad)

> is sampled
uniformly from the d-dimensional unit hypersphere, then E[uu>] = 1

d

∑d
i=1 viv

>
i .

Proof. E[uu>] = E[(
∑d
i=1 aivi)(

∑d
j=1 ajv

>
j )] =

∑d
i=1

∑d
j=1 viv

>
j E[aiaj ]. By symmetry, we

have E[aiaj ] = 0 when i 6= j, and E[a2i ] = E[a2j ] for any i, j. Since
∑d
i=1 a

2
i = 1, we have

E[a2i ] = 1
d for any i. Hence E[uu>] = 1

d

∑d
i=1 viv

>
i .

Using the lemma, we have E[rr>] = 1
D−1

∑D
i=2 viv

>
i = 1

D−1 (I− vv
>). Since E[r] = 0, we have

E[vr>] = E[rv>] = 0. Hence, we have

E[uu>] = E[(
√
λ · v +

√
1− λ · r)(

√
λ · v +

√
1− λ · r)>]

= λvv> + (1− λ)E[rr>]

= λvv> +
1− λ
D − 1

(I− vv>).

The proof is complete.

Remark 2. The construction of the random vector u such that E[uu>] = λvv> + 1−λ
D−1 (I− vv

>) is
not unique. One can choose a different kind of distribution or simply take the negative of u while
remaining E[uu>] invariant.

3



A.3 Proof of Eq. (12)

Let α = v>∇f(x). Suppose D ≥ 2, q ≥ 1. After plugging Eq. (10) into Eq. (9), the optimal λ is
given by

λ∗ =


0 if α2 ≤ 1

D + 2q − 2
(1− α2)(α2(D + 2q − 2)− 1)

2α2Dq − α4D(D + 2q − 2)− 1
if

1

D + 2q − 2
< α2 <

2q − 1

D + 2q − 2

1 if α2 ≥ 2q − 1

D + 2q − 2

. (A.8)

Proof. After plugging Eq. (10) into Eq. (9), we have

L(λ) = ‖∇f(x)‖22
(
1−

(λα2 + 1−λ
D−1 (1− α

2))2

(1− 1
q )(λ

2α2 + ( 1−λ
D−1 )

2(1− α2)) + 1
q (λα

2 + 1−λ
D−1 (1− α2))

)
.

To minimize L(λ), we should maximize

F (λ) =
(λα2 + 1−λ

D−1 (1− α
2))2

(1− 1
q )(λ

2α2 + ( 1−λ
D−1 )

2(1− α2)) + 1
q (λα

2 + 1−λ
D−1 (1− α2))

. (A.9)

Note that F (λ) is a quadratic rational function w.r.t. λ.

Since we optimize λ in a closed interval [0, 1], checking λ = 0, λ = 1 and the stationary points (such
that F ′(λ) = 0) would suffice. By solving F ′(λ) = 0, we have at most two solutions:

λ1 =
(1− α2)(α2(D + 2q − 2)− 1)

2α2Dq − α4D(D + 2q − 2)− 1
, (A.10)

λ2 =
1− α2

1− α2D
,

where λ1 or λ2 is the solution if and only if the denominator is not 0. Given α2 ≤ 1 and D ≥ 2,
λ2 /∈ (0, 1), so we only need to consider λ1.

First, we figure out when λ1 ∈ (0, 1). We can verify that λ1 = 1 when α2 = 0 and λ1 = 0
when α2 = 1. Suppose α2 ∈ (0, 1). Let J denote the numerator in Eq. (A.10) and K denote the
denominator. We have that when α2 > 1

D+2q−2 , J > 0; else, J ≤ 0. We also have that when
α2 < 2q−1

D+2q−2 , J < K; else, J ≥ K. Note that J/K ∈ (0, 1) if and only if 0 < J < K or
0 > J > K. Hence, λ1 ∈ (0, 1) if and only if 1

D+2q−2 < α2 < 2q−1
D+2q−2 .

Case 1: λ1 /∈ (0, 1). Then it suffices to compare F (0) with F (1). We have

F (0) =
(1− α2)q

D + q − 2
, F (1) = α2.

Hence, F (0) ≥ F (1) if and only if α2 ≤ q
D+2q−2 . It means that if α2 ≥ 2q−1

D+2q−2 , then λ∗ = 1; if
α2 ≤ 1

D+2q−2 , then λ∗ = 0.

Case 2: λ1 ∈ (0, 1). After plugging Eq. (A.10) to Eq. (A.9), we have

F (λ1) =
4α2(1− α2)(q − 1)q

−1 + 2α2(D(2q − 1) + 2(q − 1)2)− α4(D + 2q − 2)2
. (A.11)

Now we prove that F (λ1) ≥ F (0) and F (λ1) ≥ F (1). Since when 0 < λ < 1, both the numerator
and the denominator in Eq. (A.9) is positive, we have F (λ) > 0, ∀λ ∈ (0, 1). Since the numerator in
Eq. (A.11) is non-negative and F (λ1) > 0, we know that the denominator in Eq. (A.11) is positive.
Hence, we have

F (λ1)− F (0) =
q(1− α2)(α2(D + 2q − 2)− 1)2

(q +D − 2)(−1 + 2α2(D(2q − 1) + 2(q − 1)2)− α4(D + 2q − 2)2)
> 0;

F (λ1)− F (1) =
α2(α2(D + 2q − 2) + 1− 2q)2

−1 + 2α2(D(2q − 1) + 2(q − 1)2)− α4(D + 2q − 2)2
> 0.

Hence in this case λ∗ = λ1.

The proof is complete.
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A.4 Monotonicity of λ∗

We will prove that λ∗ is a monotonically increasing function of α2, and a monotonically decreasing
function of q (when α2 > 1

D ).

Proof. To find the monotonicity w.r.t. α2, note that λ∗ = 0 if α2 ≤ 1
D+2q−2 and λ∗ = 1 when

α2 ≥ 2q−1
D+2q−2 . When 1

D+2q−2 < α2 < 2q−1
D+2q−2 , we have

λ∗ =
(1− α2)(α2(D + 2q − 2)− 1)

2α2Dq − α4D(D + 2q − 2)− 1

=
α4(D + 2q − 2)− α2(D + 2q − 1) + 1

α4D(D + 2q − 2)− 2α2Dq + 1

=
1

D

(
1− (α2D − 1)(D − 1)

α4D(D + 2q − 2)− 2α2Dq + 1

)
(A.12)

=
1

D
− D − 1

α2D(D + 2q − 2)− (2Dq −D − 2q + 2)− 2 (D−1)(q−1)
α2D−1

.

When α2 < 1
D , or when α2 > 1

D , a larger α2 leads to larger values of both α2D(D + 2q − 2) and
−2 (D−1)(q−1)

α2D−1 , and consequently leads to a larger λ∗. Meanwhile, by the argument in the proof
of Eq. (12), when 1

D+2q−2 < α2 < 2q−1
D+2q−2 , the denominator of Eq. (A.10) is positive, hence

α4D(D + 2q − 2) − 2α2Dq + 1 < 0. By Eq. (A.12), when α2 < 1
D , λ∗ < 1

D ; when α2 = 1
D ,

λ∗ = 1
D ; when α2 > 1

D , λ∗ > 1
D . We conclude that λ∗ is a monotonically increasing function of α2.

To find the monotonicity w.r.t q when α2 > 1
D , Eq. (A.8) tells us that when q ≤ α2(D−2)+1

2(1−α2) , λ∗ = 1;
else, 0 < λ∗ < 1. In the latter case, we rewrite Eq. (A.12) as

λ∗ =
1

D

(
1 +

(α2D − 1)(D − 1)

2α2D(1− α2)q − α4D(D − 2)− 1

)
.

We have (α2D− 1)(D− 1) > 0, and as explained before, the denominator is positive for any q such
that 0 < λ∗ < 1. Hence, when α2 > 1

D , λ∗ is a monotonically decreasing function of q.

A.5 Proof of Eq. (18)

Let α = v>∇f(x), A2 =
∑d
i=1(v

>
i ∇f(x))2. Suppose α2 ≤ 1, d ≥ 1, q ≥ 1. After plugging

Eq. (17) into Eq. (9), the optimal λ is given by

λ∗ =


0 if α2 <

A2

d+ 2q − 2
A2(A2 − α2(d+ 2q − 2))

A4 + α4d2 − 2A2α2(q + dq − 1)
if

A2

d+ 2q − 2
≤ α2 <

A2(2q − 1)

d

1 if α2 ≥ A2(2q − 1)

d

.

Proof. The proof is very similar to that in Sec. A.3. After plugging Eq. (17) into Eq. (9), we have

L(λ) = ‖∇f(x)‖22
(
1−

(λα2 + 1−λ
d A2)2

(1− 1
q )(λ

2α2 + ( 1−λd )2A2) + 1
q (λα

2 + 1−λ
d A2)

)
.

To minimize L(λ), we should maximize

F (λ) =
(λα2 + 1−λ

d A2)2

(1− 1
q )(λ

2α2 + ( 1−λd )2A2) + 1
q (λα

2 + 1−λ
d A2)

. (A.13)

Note that F (λ) is a quadratic rational function w.r.t. λ.
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Since we optimize λ in a closed interval [0, 1], checking λ = 0, λ = 1 and the stationary points (i.e.,
F ′(λ) = 0) would suffice. By solving F ′(λ) = 0, we have at most two solutions:

λ1 =
A2(α2(d+ 2q − 2)−A2)

2A2α2(dq + q − 1)− α4d2 −A4
, (A.14)

λ2 =
A2

A2 − α2d
,

where λ1 or λ2 is the solution if and only if the denominator is not 0. λ2 /∈ (0, 1), so we only need to
consider λ1.

First, we figure out when λ1 ∈ (0, 1). We can verify that λ1 = 1 when α2 = 0 and λ1 = 0 when
A2 = 0. Suppose α2 6= 0 and A2 6= 0. Let J denote the numerator in Eq. (A.14) and K denote
the denominator. We have that when α2 > A2

d+2q−2 , J > 0; else, J ≤ 0. We also have that when

α2 < A2(2q−1)
d , J < K; else, J ≥ K. Note that J/K ∈ (0, 1) if and only if 0 < J < K or

0 > J > K. Hence, λ1 ∈ (0, 1) if and only if A2

d+2q−2 < α2 < A2(2q−1)
d .

Case 1: λ1 /∈ (0, 1). Then it suffices to compare F (0) and F (1). We have

F (0) =
A2q

d+ q − 1
, F (1) = α2.

Hence, F (0) ≥ F (1) if and only if α2 ≤ A2q
d+q−1 . It means that if α2 ≥ A2(2q−1)

d , then λ∗ = 1; if

α2 ≤ A2

d+2q−2 , then λ∗ = 0.

Case 2: λ1 ∈ (0, 1). After plugging Eq. (A.14) into Eq. (A.13), we have

F (λ1) =
4A2α2(A2 + α2)(q − 1)q

2A2α2(2q(d+ q − 1)− d)− α4d2 −A4
. (A.15)

Now we prove that F (λ1) ≥ F (0) and F (λ1) ≥ F (1). Since when 0 < λ < 1, both the numerator
and the denominator in Eq. (A.13) is positive, we have F (λ) > 0, ∀λ ∈ (0, 1). Since the numerator
in Eq. (A.15) is non-negative, and F (λ1) > 0, we know that the denominator in Eq. (A.15) is positive.
Hence, we have

F (λ1)− F (0) =
qA2(α2(d+ 2q − 2)−A2)2

(q + d− 1)(2A2α2(2q(d+ q − 1)− d)− α4d2 −A4)
> 0;

F (λ1)− F (1) =
α2(α2d+A2(1− 2q))2

2A2α2(2q(d+ q − 1)− d)− α4d2 −A4
> 0.

Hence in this case λ∗ = λ1.

The proof is complete.

A.6 Explanation on Eq. (19)

We explain why the construction of ui in Eq. (19) makes E[uiu>i ] a good approximation of C.

Recall the setting: In RD, we have a normalized transfer gradient v, and a specified d-dimensional
subspace with {v1, ..., vd} as its orthonormal basis. Let C = λvv> + 1−λ

d

∑d
i=1 viv

>
i . Here we

argue that if u =
√
λ · v +

√
1− λ · (I− vv>)Vξ, then E[uu>] ≈ C.

Let r , (I− vv>)Vξ. The reason why E[uu>] 6= C is that E[rr>] 6= 1
d

∑d
i=1 viv

>
i when v is not

orthogonal to the subspace spanned by {v1, ..., vd}. However, by symmetry, we still have E[r] = 0.
To get an expression of E[rr>], we let vT denotes the projection of v onto the subspace, and let
v1 = vT so that v2, ..., vd are orthonormal to vT (hence also orthonormal to v). We temporarily
assume vT 6= v and vT 6= 0. Now let v′1 = (I− vv>)vT = vT − v>vT · v, then {v′1, v2, ..., vd}
form an orthonormal basis of the subspace in which r lies, and v is orthogonal to this modified
subspace. Now we have E[rr>] = λ1v

′
1v
′>
1 + 1−λ1

d−1
∑d
i=2 viv

>
i where λ1 is a number in [0, 1d ]. (Note
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that when v = vT , although v′1 cannot be defined, we have λ1 = 0. When vT = 0, we can just set
v′1 = v1 and λ1 = 1

d .) When d is large, λ1 is small, so for approximation we can replace v′1 with v1;
|λ − 1

d | is small, so for approximation we can set λ1 = 1
d . Then we have E[rr>] ≈ 1

d

∑d
i=1 viv

>
i .

Since E[r] = 0, we have E[uu>] = λvv> + (1− λ)E[rr>] ≈ λvv> + 1−λ
d

∑d
i=1 viv

>
i .

Remark 3. To avoid approximation, one can choose the subspace as spanned by {v′1, v2, ..., vd}
instead of {v1, v2, ..., vd} to ensure that v is orthogonal to the subspace. Then u can be sampled as

u =
√
λ · v +

√
1− λ ·V′ξ,

where V′ = [v′1, v2, ..., vd] and ξ is sampled uniformly from the d-dimensional unit hypersphere.
Note that here the optimal λ is calculated using A′2 = v′>1 ∇f(x) +

∑d
i=2(v

>
i ∇f(x))2. However, in

practice, it is not convenient to make the subspace dependent on v, and the computational complexity
is high to construct an orthonormal basis with one vector (v′1) specified.

B Gradient averaging method

In Sec. 3.2, we have presented the prior-guided random gradient-free (P-RGF) algorithm, where
we integrate the transfer gradient into the sampling distribution of ui. In this section, we propose
the gradient averaging algorithm as an alternative method to incorporate the transfer gradient. The
motivation is as follows. We observe that the RGF estimator in Eq. (5) is in the following form:
ĝ = 1

q

∑q
i=1 ĝi, where multiple rough estimates are averaged. Indeed, the transfer gradient itself can

also be considered as an estimate of the true gradient, and then it is reasonable to adopt a weighted
average of the transfer gradient and the RGF estimator. Here, we choose the RGF estimator to be the
ordinary one (using ui sampled from uniform distribution) instead of the P-RGF estimator, to prevent
its direction from being too similar to the direction of the transfer gradient.

In summary, the gradient averaging method works as follows. We first get the RGF estimator
denoted by ĝU , given by Eq. (5) with the sampling distribution P being the uniform distribution; then
normalize the estimator; and finally average the normalized transfer gradient v and the normalized
RGF estimator ĝU as

ĝ = (1− µ)v + µĝU , (B.1)

where µ ∈ [0, 1] plays a similar role as λ in the proposed prior-guided RGF method. We also assume
α = v>∇f(x) ≥ 0. Under the gradient estimation problem, we also want to minimize L(ĝ) by
optimizing µ. First, we have the following theorem.

Theorem 2. Let β = ∇f(x)
> 1
q

∑q
i=1(u

>
i ∇f(x) · ui) be the cosine similarity between∇f(x) and

the ordinary RGF estimator w.r.t. a locally linear f . If f is differentiable at x, the loss of the gradient
estimator in Eq. (B.1) is

lim
σ→0

L(ĝ) = (1− (µα+ (1− µ)E[β])2

µ2 + (1− µ)2 + 2µ(1− µ)αE[β]
)‖∇f(x)‖22. (B.2)

Proof. As in Eq. (5), ĝU = 1
q

∑q
i=1 ĝ

U
i and ĝUi = f(x+σui)−f(x)

σ · ui. First, we derive L(ĝ) based
on the assumption that ĝUi is equal to u>i ∇f(x) · ui, which will hold when f is locally linear.

Lemma 4. Assume that ĝU = 1
q

∑q
i=1(u

>
i ∇f(x) · ui) (then β = ∇f(x)

>
ĝU ). We have

L(ĝ) = (1− (µα+ (1− µ)E[β])2

µ2 + (1− µ)2 + 2µ(1− µ)αE[β]
)‖∇f(x)‖22.

Proof. It can be verified1 that ĝU = 0 happens with probability 0, hence we restrict our consideration
to the set {ĝU 6= 0}, which does not affect our conclusion. Then ĝU is always well-defined.
The distribution of ĝU is symmetric around the direction of ∇f(x), and so is the distribution of

1If ĝU = 0, ∇f(x)>ĝU = 1
q

∑q
i=1(u

>
i ∇f(x))2 = 0, hence u>i ∇f(x) = 0 for i = 1, 2, ..., q, whose

probability is 0.
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ĝU . Hence we can suppose that E[ĝU ] = k∇f(x). Since E[β] = ∇f(x)
>
E[ĝU ] = k, we have

E[ĝU ] = E[β]∇f(x).
Hence we have

∇f(x)>E[ĝU ] = ∇f(x)>E[β]∇f(x) = E[β]‖∇f(x)‖2,

and

v>E[ĝU ] = v>E[β]∇f(x) = αE[β].

Together with v>∇f(x) = α‖∇f(x)‖2 and noting that ‖v‖2 = 1, we have

E‖∇f(x)− bĝ‖22 = E‖bµv + b(1− µ)ĝU −∇f(x)‖2

= b2µ2 + b2(1− µ)2 + ‖∇f(x)‖22 + 2b2µ(1− µ)v>E[ĝU ]
− 2bµα‖∇f(x)‖2 − 2b(1− µ)∇f(x)>E[ĝU ] (B.3)

= b2µ2 + b2(1− µ)2 + ‖∇f(x)‖22 + 2b2µ(1− µ)αE[β]
− 2bµα‖∇f(x)‖2 − 2b(1− µ)E[β]‖∇f(x)‖

= ((1− µ)2 + µ2 + 2µ(1− µ)αE[β])b2

− 2(αµ+ E[β](1− µ))‖∇f(x)‖2b+ ‖∇f(x)‖22.

Since ∇f(x)>ĝU = 1
q

∑q
i=1(u

>
i ∇f(x))2 ≥ 0, then β ≥ 0, and hence E[β] ≥ 0. Then (1− µ)2 +

µ2 + 2µ(1 − µ)αE[β] > 0 and αµ + E[β](1 − µ) ≥ 0. Since L(ĝ) = minb≥0 E‖∇f(x) − bĝ‖22,
optimize the objective w.r.t. b and we complete the proof.

Next, we prove that if f is not locally linear, as long as it is differentiable at x, then by picking
a sufficient small σ, the loss tends to be that of the local linear approximation. Here, we redefine
the notation as follows. We make the dependency of ĝU on σ explicit, i.e. we use ĝUσ to denote it.
Meanwhile, we define ĝU0 , 1

q

∑q
i=1(u

>
i ∇f(x) · ui) as the RGF estimator under the local linear

approximation. We define ĝσ = (1− µ)v + µĝUσ and ĝ0 = (1− µ)v + µĝU0 . Then we have

Lemma 5. If f is differentiable at x, then

lim
σ→0

L(ĝσ) = L(ĝ0)

Proof. By Eq. (B.3), it suffices to prove limσ→0 E[ĝUσ ] = E[ĝU0 ].

For any value of u1, u2, ..., uq , we have limσ→0 ĝ
U
σ = ĝU0 , i.e. ĝUσ converges pointwise to ĝU0 . Recall

that Pr(ĝU0 = 0) = 0, so we can restrict our consideration to the set {ĝU0 6= 0} which does not affect
our conclusion. Since x = x

‖x‖2 is continuous everywhere in its domain, ĝUσ converges pointwise

to ĝU0 . Since the family {ĝUσ } is uniformly bounded, by dominated convergence theorem we have
limσ→0 E[ĝUσ ] = E[ĝU0 ].

By combining the two lemmas above, our proof for the theorem is complete.

We can calculate the closed-form solution of µ∗, the value of µ minimizing Eq. (B.2), as

µ∗ =
(1− α2)E[β]

(1− α2)E[β] + α(1− E[β]2)
≈ E[β]

E[β] + α
. (B.4)

That is, the ratio of weights of v and ĝU is approximately the ratio of their (expected) inner product
with the true gradient.

Next, we discuss how to calculate E[β] = E[∇f(x)
>
ĝU0 ], where ĝU0 = 1

q

∑q
i=1(u

>
i ∇f(x) · ui).

E[β] is independent of ‖∇f(x)‖2, and since ui is uniformly sampled from the unit hypersphere, E[β]
is also independent of the direction of∇f(x). Hence, E[β] is a constant given the dimension D and
the number of queries q, and we can estimate E[β] using numerical simulation methods.
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Algorithm 1 Gradient averaging method
Input: The black-box model f ; input x and label y; the normalized transfer gradient v; sampling variance σ;

number of queries q; input dimension D; threshold c.
Output: Estimate of the gradient∇f(x).
1: Estimate the cosine similarity α = v>∇f(x) (detailed in Sec. 3.3);
2: Approximate E[β] as

√
q

D+q−1
;

3: Calculate µ∗ according to Eq. (B.4) given α and E[β];
4: if µ∗ ≤ c then
5: return v;
6: end if
7: ĝU ← 0;
8: for i = 1 to q do
9: Sample ui from the uniform distribution on the D-dimensional unit hypersphere;

10: ĝU ← ĝU +
f(x+ σui, y)− f(x, y)

σ
· ui;

11: end for
12: return∇f(x)← (1− µ∗)v + µ∗ĝU .

However, here we give a framework for approximating E[β] in a closed-form formula. We notice that
the following approximation works well in practice, where ĝ = 1

q

∑q
i=1(u

>
i ∇f(x) · ui):

E[β] = E[
√
β2]

≈
√
E[β2]

=

√
1− E[min

b
‖∇f(x)− bĝ‖2]

=

√
1− 1

‖∇f(x)‖22
E[min

b
‖∇f(x)− bĝ‖2]

≈

√
1− 1

‖∇f(x)‖22
min
b

E‖∇f(x)− bĝ‖2

=

√
1− 1

‖∇f(x)‖22
L(ĝ)2.

Here, the first equality is because ∇f(x)>ĝ = 1
q

∑q
i=1(u

>
i ∇f(x))2 ≥ 0; the second equality

is because we have minb ‖∇f(x) − bĝ‖2 = 1 − (∇f(x)
>
ĝ)2 = 1 − β2. Intuitively, the two

approximations work well because the variances of β and ‖ĝ‖2 are relatively small.

Now we define F (ĝ) = 1 − 1
‖∇f(x)‖22

L(ĝ)2. Then we have E[β] ≈
√
F (ĝ). Note that when ui is

sampled from the uniform distribution on the unit hypersphere, F (ĝ) is in fact F ( 1
D ) in Eq. (A.9),

since ĝ is an RGF estimator w.r.t. locally linear f , and E[uiu>i ] = 1
D I which corresponds to λ = 1

D

in Eq. (10). We can calculate F ( 1
D ) = q

D+q−1 . Hence, E[β] ≈
√

q
D+q−1 .

Calculating µ∗ using α ≥ 0 and E[β] ≈
√

q
D+q−1 > 0, we have µ∗ > 0. This means we

always need to take q queries to get ĝU . However, when µ is close to 0, the improvement of using
ĝ = (1− µ∗)v + µ∗ĝU instead of directly using v as the estimate is marginal. To save queries, we
adopt a threshold c ∈ (0, 1). When µ∗ ≤ c, we let ĝ = v instead of letting ĝ = (1− µ∗)v + µ∗ĝU .

We summarize the gradient averaging method in Algorithm 1.
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B.1 Incorporating the data-dependent prior

We can also incorporate the data-dependent prior introduced in Sec. 3.4 into the proposed gradient
averaging method. In this case, we get an ordinary subspace RGF estimate ĝS first2 (instead of an
ordinary RGF estimate); and then normalize it; and finally get the averaged estimator as

ĝ = (1− µ)v + µĝS . (B.5)

We also assume α = v>∇f(x) ≥ 0. Here, we need to analyze some quantity about the subspace. We
define∇f(x)T = (

∑d
i=1 viv

>
i )∇f(x) is the projection of∇f(x) into the subspace corresponding to

the data-dependent prior, and A2 =
∑d
i=1(v

>
i ∇f(x))2 = ‖∇f(x)T ‖2. Then we have the following

loss function:

Theorem 3. Let β = ∇f(x)
> 1
q

∑q
i=1(u

>
i ∇f(x) · ui) be the cosine similarity between∇f(x) and

the ordinary subspace RGF estimator w.r.t. a locally linear f . (Note that here ui lies in the subspace.)
Further more, let α1 = v>∇f(x)T . If f is differentiable at x and A2 > 0, using ĝ defined in (B.5),
we have

L(ĝ) = (1− (µα+ (1− µ)E[β])2

µ2 + (1− µ)2 + 2µ(1− µ) α1

A2E[β]
)‖∇f(x)‖2. (B.6)

Proof. Similar to the proof of Theorem 2, we define ĝS0 = 1
q

∑q
i=1(u

>
i ∇f(x) · ui) =

1
q

∑q
i=1(u

>
i ∇f(x)T · ui), where ∇f(x)T = ‖∇f(x)‖2∇f(x)T denotes the projection of ∇f(x)

into the subspace. Then β = ∇f(x)
>
ĝS0 = ∇f(x)

>
T ĝ

S
0 . Since A2 > 0, we have ∇f(x)T 6= 0,

hence as described in Footnote 1, we can prove Pr(ĝS0 = 0) = 0 similarly. Now we restrict our
consideration to the set {ĝS0 6= 0}. The distribution of ĝS0 is symmetric around the direction of
∇f(x)T , and so is the distribution of ĝS0 . Hence we can suppose that E[ĝS0 ] = k∇f(x)T . Since

E[β] = ∇f(x)
>
T E[ĝS0 ] = k‖∇f(x)T ‖22 = kA2, we have E[ĝS0 ] =

E[β]
A2 ∇f(x)T .

Note that

v>E[ĝS0 ] = v>
E[β]
A2
∇f(x)T =

α1

A2
E[β].

The rest of the proof is the same as that of Theorem 2.

The optimal solution of µ minimizing Eq. (B.6) is

µ∗ =
(A2 − α1α)E[β]

(A2 − α1E[β])(α+ E[β])
≈ E[β]

E[β] + α
. (B.7)

Hence, the approximate solution is the same as in the case without using the data-dependent prior,
which does not depend on α1.

Similarly, we can approximate E[β] by E[β] ≈
√
F (ĝ). When ui is sampled from the uniform

distribution on the unit hypersphere in the subspace, F (ĝ) is in fact F (0) in Eq. (A.13), since ĝ is an
RGF estimator w.r.t. locally linear f , and E[uiuTi ] = 1

d

∑d
i=1 viv

>
i which corresponds to λ = 0 in

Eq. (17). We can calculate F (0) = A2q
d+q−1 . Hence, E[β] ≈

√
A2q

d+q−1 .

Our gradient averaging algorithm with the data-dependent prior is similar to Algorithm 1. We first

estimate α and A, approximate E[β] as
√

A2q
d+q−1 , and then calculate µ∗ by Eq. (B.7). If µ∗ ≤ c, we

use the transfer gradient v as the estimate. If not, we get the ordinary subspace RGF estimator ĝS ,
then use ĝ ← (1− µ∗)v + µ∗ĝS as the estimate.

2An ordinary subspace RGF estimate refers to the RGF estimate in Eq. (5) with ui = Vξi, where ξi is
sampled uniformly from the d-dimensional unit hypersphere, V = [v1, v2, ..., vd], and {v1, v2, ..., vd} is an
orthonormal basis of a d-dimensional subspace. It corresponds to λ = 0 in Eq. (17).
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C Estimation of A

Suppose that the subspace is spanned by a set of orthonormal vectors {v1, ..., vd}. Now we want to
estimate

A2 =

d∑
i=1

(v>i ∇f(x))2 =

∑d
i=1(v

>
i ∇f(x))2

‖∇f(x)‖22
=
‖h(x)‖22
‖∇f(x)‖22

,

where h(x) =
∑d
i=1 v

>
i ∇f(x) · vi is the projection of ∇f(x) to the subspace. We can estimate

‖∇f(x)‖22 using the method introduced in Sec. 3.3. Here, we introduce the method to estimate
‖h(x)‖22.

Let w = Vξ where V = [v1, v2, ..., vd] and ξ is a random vector uniformly sampled from the
d-dimensional unit hypersphere. By Lemma 3, E[ww>] = 1

d

∑d
i=1 viv

>
i . Suppose we have S i.i.d.

such samples of w denoted by w1, ..., wS , and we let W = [w1, ..., wS ].

With g(x1, ..., xS) = 1
S

∑S
s=1 x

2
s, we have

g(W>∇f(x)) = g(W>h(x)) = ‖h(x)‖22 · g(W>h(x)).

Hence g(W>∇f(x))
E[g(W>h(x))]

is an unbiased estimator of ‖h(x)‖22. Now, h(x) is in the subspace spanned

by {v1, ..., vd}, and w1 is uniformly distributed on the unit hypersphere of this subspace. Hence
E[(w>1 h(x))2] is independent of the direction of h(x) and can be computed. We have:

E[g(W>h(x))] = E[(w>1 h(x))2] = h(x)
>
E[w1w

>
1 ]h(x) = h(x)

> 1

d

d∑
i=1

viv
>
i h(x) =

1

d
.

Hence, we have the estimator ‖h(x)‖2 ≈
√

d
S

∑S
s=1(w

>
s ∇f(x))2, where ws = Vξs and ξs is

uniformly sampled from the unit hypersphere in Rd. Finally we can get an estimate of A by
A = ‖h(x)‖2

‖∇f(x)‖2 .

D Additional experiments

We add the experimental results using the gradient averaging method, including a baseline method
which uses a fixed µ set to 0.5 and the algorithm using the optimal value µ∗ given by Eq. (B.4) (or by
Eq. (B.7) in the case with the data-dependent prior). We set c = 1

1+
√
2

, and the other hyperparameters
are the same with those for the P-RGF method. Table 3 and Table 4 are the full tables of experimental
results based on the `2 norm.

We show the experimental results based on the `∞ norm in this section. We set the perturbation
budget as ε = 0.05, the step size as η = 0.005 in the PGD method. Other hyperparameters are the
same with those for `2 attacks. Table 5 and Table 6 show the results for attacking the normal models
and the defensive models, respectively. Our method also leads to better results, which are consistent
with those based on the `2 norm.
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Table 3: The full experimental results of black-box attacks against Inception-v3, VGG-16, and
ResNet-50 under the `2 norm. We report the attack success rate (ASR) and the average number of
queries (AVG. Q) needed to generate an adversarial example over successful attacks.

Methods Inception-v3 VGG-16 ResNet-50
ASR AVG. Q ASR AVG. Q ASR AVG. Q

NES [2] 95.5% 1718 98.7% 1081 98.4% 969
BanditsT [3] 92.4% 1560 94.0% 584 96.2% 1076
BanditsTD [3] 97.2% 874 94.9% 278 96.8% 512
AutoZoom [5] 85.4% 2443 96.2% 1589 94.8% 2065
RGF 97.7% 1309 99.8% 935 99.5% 809
P-RGF (λ = 0.5) 96.5% 1119 97.3% 1075 98.3% 990
P-RGF (λ∗) 98.1% 745 99.8% 521 99.6% 452
Averaging (µ = 0.5) 96.9% 1140 94.6% 2143 96.3% 2257
Averaging (µ∗) 97.9% 735 99.8% 516 99.5% 446
RGFD 99.1% 910 100.0% 464 99.8% 521
P-RGFD (λ = 0.5) 98.2% 1047 99.3% 917 99.3% 893
P-RGFD (λ∗) 99.1% 649 99.7% 370 99.6% 352
AveragingD (µ = 0.5) 99.2% 768 99.9% 900 99.2% 1177
AveragingD (µ∗) 99.2% 644 99.8% 366 99.5% 355

Table 4: The full experimental results of black-box attacks against JPEG compression [1], random-
ization [7], and guided denoiser [4] under the `2 norm. We report the attack success rate (ASR) and
the average number of queries (AVG. Q) needed to generate an adversarial example over successful
attacks.

Methods JPEG Compression [1] Randomization [7] Guided Denoiser [4]
ASR AVG. Q ASR AVG. Q ASR AVG. Q

NES [2] 47.3% 3114 23.2% 3632 48.0% 3633
SPSA [6] 40.0% 2744 9.6% 3256 46.0% 3526
RGF 41.5% 3126 19.5% 3259 50.3% 3569
P-RGF 61.4% 2419 60.4% 2153 51.4% 2858
Averaging 69.4% 2134 72.8% 1739 66.6% 2441
RGFD 70.4% 2828 54.9% 2819 83.7% 2230
P-RGFD 81.1% 2120 82.3% 1816 89.6% 1784
AveragingD 80.6% 2087 77.4% 1700 87.2% 1777

Table 5: The experimental results of black-box attacks against Inception-v3, VGG-16, and ResNet-50
under the `∞ norm. We report the attack success rate (ASR) and the average number of queries (AVG.
Q) needed to generate an adversarial example over successful attacks.

Methods Inception-v3 VGG-16 ResNet-50
ASR AVG. Q ASR AVG. Q ASR AVG. Q

NES [2] 87.5% 1850 95.6% 1477 94.5% 1405
BanditsT [3] 89.5% 1891 93.8% 585 95.2% 1199
BanditsTD [3] 94.7% 1099 95.1% 288 96.5% 651
RGF 94.4% 1565 98.8% 1064 99.4% 990
P-RGF (λ = 0.5) 85.4% 1578 90.5% 1420 92.1% 1250
P-RGF (λ∗) 93.8% 979 98.4% 731 99.2% 650
Averaging (µ = 0.5) 91.8% 1350 87.4% 2453 88.8% 2547
Averaging (µ∗) 94.8% 974 98.4% 685 99.1% 632
RGFD 97.2% 1034 100.0% 502 99.7% 595
P-RGFD (λ = 0.5) 91.2% 1403 96.2% 1075 96.4% 1156
P-RGFD (λ∗) 97.3% 812 99.6% 433 99.6% 452
AveragingD (µ = 0.5) 97.6% 948 99.2% 983 98.3% 1316
AveragingD (µ∗) 98.4% 772 99.7% 420 99.6% 439
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Table 6: The experimental results of black-box attacks against JPEG compression [1], randomiza-
tion [7], and guided denoiser [4] under the `∞ norm. We report the attack success rate (ASR) and
the average number of queries (AVG. Q) needed to generate an adversarial example over successful
attacks.

Methods JPEG Compression [1] Randomization [7] Guided Denoiser [4]
ASR AVG. Q ASR AVG. Q ASR AVG. Q

NES [2] 29.9% 2694 14.8% 3027 20.0% 3423
SPSA [6] 37.1% 2775 10.7% 2809 26.9% 3343
RGF 27.1% 2716 12.6% 3005 26.0% 3120
P-RGF 44.8% 2491 41.7% 2132 32.9% 2507
Averaging 51.8% 2138 51.9% 1813 38.7% 2251
RGFD 53.4% 2708 42.4% 2444 73.3% 2158
P-RGFD 64.0% 2189 66.9% 2108 76.0% 1799
AveragingD 64.0% 2141 58.3% 1753 77.6% 1889
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