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Abstract

We develop new models and algorithms for learning the temporal dynamics of
the topic polytopes and related geometric objects that arise in topic model based
inference. Our model is nonparametric Bayesian and the corresponding inference
algorithm is able to discover new topics as the time progresses. By exploiting
the connection between the modeling of topic polytope evolution, Beta-Bernoulli
process and the Hungarian matching algorithm, our method is shown to be several
orders of magnitude faster than existing topic modeling approaches, as demon-
strated by experiments working with several million documents in under two dozens
of minutes.1

1 Introduction

The topic or population polytope is a fundamental geometric object that underlies the presence of latent
topic variables in topic and admixture models [4, 19, 21]. The geometry of topic models provides the
theoretical basis for posterior contraction analysis of latent topics, in addition to helping to develop
fast and quite accurate inference algorithms in parametric and nonparametric settings [18, 28, 29, 32].
When data and the associated topics are indexed by time dimension, it is of interest to study the
temporal dynamics of such latent geometric structures. In this paper, we will study the modeling
and algorithms for learning temporal dynamics of topic polytope that arises in the analysis of text
corpora.

Several authors have extended the basic topic modeling framework to analyze how topics evolve
over time. The Dynamic Topic Models (DTM) [3] demonstrated the importance of accounting for
non-exchangeability between document groups, particularly when time index is provided. Another
approach is to keep topics fixed and consider only evolving topic popularity [26]. Hong et al. [13]
extended such an approach to multiple corpora. Ahmed and Xing [1] proposed a nonparametric
construction extending DTM where topics can appear or eventually die out. Although the evolution
of the latent geometric structure (i.e., the topic polytope) is implicitly present in these works, it was
not explicitly addressed nor is the geometry exploited. A related limitation shared by these modeling

1Code: https://github.com/moonfolk/SDDM
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frameworks is the lack of scalability, due to inefficient joint modeling and learning of topics at each
time point and topic evolution over time. To improve scalability, a natural solution is decoupling the
two phases of inference.

To this end, we seek to develop a series of topic meta-models, i.e. models for temporal dynamics of
topic polytopes, assuming that the topic estimates from each time point have already been obtained via
some efficient static topic inference technique. The focus on inference of topic evolution offers novel
opportunities and challenges. To start, what is the suitable ambient space in which the topic polytope
is represented? As topics evolve, so are the number of topics that may become active or dormant,
raising distinct modeling choices. Interesting issues arise in the inference, too. For instance, what is
the principled way of matching vertices of a collection of polytopes to their next reincarnations? Such
question arises because we consider modeling of topics learned independently across timestamps and
text corpora, which entails the need for preserving the topic structure’s permutation invariance of the
vertex labels.

We consider an isometric embedding of the unit sphere in the word simplex, so that the evolution
of topic polytopes may be represented by a collection of (random) trajectories of points residing on
the unit sphere. Instead of attempting to mix-match vertices in an ad hoc fashion, we appeal to a
Bayesian nonparametric modeling framework that allows the number of topic vertices to be random
and vary across time. The mix-matching between topics shall be guided by the assumption on the
smoothness of the collection of global trajectories on the sphere using von Mises-Fisher dynamics
[15]. The selection of active topics at each time point will be enabled by a nonparametric prior on the
random binary matrices via the (hierarchical) Beta-Bernoulli process [24].

Our contribution includes a sequence of Bayesian nonparametric models in increasing levels of
complexity: the simpler model describes a topic polytope evolving over time, while the full model
describes the temporal dynamics of a collection of topic polytopes as they arise from multiple corpora.
The semantics of topics can be summarized as follows: there is a collection of latent global topics of
unknown cardinality evolving over time (e.g. topics in science or social topics in Twitter). Each year
(or day) a subset of the global topics is elucidated by the community (some topics may be dormant
at a given time point). The nature of each global topic may change smoothly (via varying word
frequencies). Additionally, different subsets of global topics are associated with different groups (e.g.
journals or Twitter location stamps), some becoming active/inactive over time.

Another key contribution includes a suite of scalable approximate inference algorithms suitable
for online and distributed settings. In particular, we focus mainly on MAP updates rather than a
full Bayesian integration. This is appropriate in an online learning setting, moreover such updates
of the latent topic polytope can be viewed as solving an optimal matching problem for which
a fast Hungarian matching algorithm can be applied. Our approach is able to perform dynamic
nonparametric topic inference on 3 million documents in 20 minutes, which is significantly faster
than prior static online and/or distributed topic modeling algorithms [16, 12, 25, 6, 5].

The remainder of the paper is organized as follows. In Section 2 we define a Markov process over
the space of topic polytopes (simplices). In Section 3 we present a series of models for polytope
dynamics and describe our algorithms for online dynamic and/or distributed inference. Section 4
demonstrates experimental results. We conclude with a discussion in Section 5.

2 Temporal dynamics of a topic polytope

The fundamental object of inference in this work is the topic polytope arising in topic modeling
which we shall now define [4, 18]. Given a vocabulary of V words, a topic is defined as a probability
distribution on the vocabulary. Thus a topic is taken to be a point in the vocabulary simplex, namely,
∆V−1, and a topic polytope for a corpus of documents is defined as a convex hull of topics associated
with the documents. Geometrically, the topics correspond to the vertices (extreme points) of the
(latent) topic polytope to be inferred from data.

In order to infer about the temporal dynamics of a topic polytope, one might consider the evo-
lution of each topic variable, say θ(t), which represents a vertex of the polytope at time t. A
standard approach is due to Blei and Lafferty [3], who proposed to use a Gaussian Markov chain
θ(t)|θ(t−1) ∼ N (θ(t−1), σI) in RV for modeling temporal dynamics and a logistic normal transfor-
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Figure 1: Invertible transformation between unit sphere and a standard simplex; dynamics example

mation π(θ(t))i :=
exp(θ

(t)
i )∑

i exp(θ
(t)
i )

, which sends elements of RV into ∆V−1. In our meta-modeling

approach, we consider topics, i.e. points in ∆V−1, learned independently across time and corpora.
Logistic normal map is many-to-one, hence it is undesirably ambiguous in mapping a collection of
topic polytopes to RV .

We propose to represent each topic variable as a point in a unit sphere SV−2, which possesses a
natural isometric embedding (i.e. one-to-one) in the vocabulary simplex ∆V−1, so that the temporal
dynamics of a topic variable can be identified as a (random) trajectory on SV−2. This trajectory shall
be modeled as a Markovian process on SV−2: θ(t)|θ(t−1) ∼ vMF(θ(t−1), τ0). Von Mises-Fisher
(vMF) distribution is commonly used in the field of directional statistics [15] to model points on a
unit sphere and was previously utilized for text modeling [2, 20].

Isometric embedding of SV−2 into the vocabulary simplex We start with the directional repre-
sentation of topic polytope [29]: let B = {β1, . . . , βK} be a collection of vertices of a topic polytope.
Each vertex is represented as βk := C +Rkβ̃k, where C ∈ Conv(B) is a reference point in a convex
hull of B, β̃k ∈ RV is a topic direction and Rk ∈ R+. Moreover, Rk ∈ [0, 1] is determined so that
the tip of direction vector β̃k resides on the boundary of ∆V−1. Since the effective dimensionality of
β̃k is V − 2, we can now define an one-to-one and isometric map sending β̃k onto SV−2 as follows:
map of the vocabulary simplex ∆V−1 ∈ RV where it is first translated so that C becomes the origin
and then rotated into RV−1, where resulting topics, say θ1, . . . , θK ∈ SV−2, are normalized to the
unit length. Observe that this geometric map is an isometry and hence invertible. It preserves angles
between vectors, therefore we can evaluate vMF density without performing the map explicitly, by
simply setting θk := βk−C

‖βk−C‖ . The following lemma formalizes this idea.

Lemma 1. Γ : {β = (β1, . . . , βV ) ∈ ∆V−1 : βi = 0 for some i} → {θ ∈ SV−1 : 1TV θ = 0} is
a homeomorphism, where Γ(β) = (β − C) /‖β − C‖2, and Γ−1(θ) = − θ

maxi θi/ci
+ C, for any

C = (c1, . . . , cV ) ∈ ∆V−1.

Proofs of this Lemma and subsequent technical results are given in the Supplement. The intuition
behind the construction is provided via Figure 1 which gives a geometric illustration for V = 3,
vocabulary simplex ∆V−1 shown as red triangle. Two topics on the boundary (face) of the vocabulary
simplex are β1 = C + β̃1 and β2 = C + β̃2. Green dot C is the reference point and α = ∠(β̃1, β̃2).
In Fig. 1 (left) we move C by translation to the origin and rotate ∆V−1 from xyz to xy plane.
In Fig. 1 (center left) we show the resulting image of ∆V−1 and add a unit sphere (blue) in R2.
Corresponding to β1, β2 topics are the points θ1, θ2 on the sphere with ∠(θ1, θ2) = α. Now, apply
the inverse translation and rotation to both ∆V−1 and SV−2, the result is shown in Fig. 1 (center
right) — we are back to R3 and ∠(θ1, θ2) = ∠(β̃1, β̃2) = α, where θk = βk−C

‖βk−C‖2 . In Fig. 1 (right)
we give a geometric illustration of the temporal dynamics.

As described above, each topic evolves in a random trajectory residing in a unit sphere, so the
evolution of a collection of topics can be modeled by a collection of corresponding trajectories on the
sphere. Note that the number of "active" topics may be unknown and vary over time. Moreover, a
topic may be activated, become dormant, and then resurface after some time. New modeling elements
are introduced in the next section to account for these phenomena.
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3 Hierarchical Bayesian modeling for single or multiple topic polytopes

We shall present a sequence of models with increasing levels of complexity: we start by introducing a
hierarchical model for online learning of the temporal dynamics of a single topic polytope, allowing
for varying number of vertices over time. Next, a static model for multiple topic polytopes learned on
different corpora drawing on a common pool of global topics. Finally, we present a "full" model for
modeling evolution of global topic trajectories over time and across groups of corpora.

3.1 Dynamic model for single topic polytope

At a high level, our model maintains a collection of global trajectories taking values on a unit sphere.
Each trajectory shall be endowed with a von Mises-Fisher dynamic described in the previous section.
At each time point, a random topic polytope is constructed by selecting a (random) subset of points
on the trajectory evaluated at time t. The random selection is guided by a Beta-Bernoulli process
prior [24]. This construction is motivated by a modeling technique of Nguyen [17], who studied
a Bayesian hierarchical model for inference of smooth trajectories on an Euclidean domain using
Dirichlet process priors. Our generative model, using Beta-Bernoulli process as a building block,
is more appropriate for the purpose of topic discovery. Due to the isometric embedding of SV−2 in
∆V−1 described in the previous section, from here on we shall refer to topics as points on SV−2.

First, generate a collection of global topic trajectories using Beta Process prior (cf. Thibaux and
Jordan [24]) 2 with a base measure H on the space of trajectories on SV−2 and mass parameter γ0:

Q|γ0, H ∼ BP(γ0, H). (1)

It follows that Q =
∑
i qiδθi , where {qi}∞i=1 follows a stick-breaking construction [23]: µi ∼

Beta(γ0, 1), qi =
∏i
j=1 µj , and each θi ∼ H is a sequence of T random elements on the unit sphere

θi := {θ(t)i }Tt=1, which are generated as follows:

θ
(t)
i |θ

(t−1)
i ∼ vMF(θ

(t−1)
i , τ0) for t = 1, . . . , T,

θ
(0)
i ∼ vMF(·, 0) – uniform on SV−2.

(2)

At any given time t = 1, . . . , T , the processQ induces a marginal measureQt, whose support is given
by the atoms of Q as they are evaluated at time t. Now, select a subset of the global topics that are ac-
tive at t via the Bernoulli process T (t)|Qt ∼ BeP(Qt). Then T (t) :=

∑
i=1b

(t)
i δ

θ
(t)
i

, where b(t)i |qi ∼

Bern(qi), ∀i. T (t) are supported by atoms {θ(t)i : b
(t)
i = 1, i = 1, 2, . . .} representing topics active

at time t. Finally, assume that noisy measurements of each of these topic variables are generated via:

v
(t)
k |T

(t) ∼ vMF(T (t)
k , τ1), k = 1, . . . ,K(t), where

K(t) := card(T (t)); T (t)
k is k-th atom of T (t).

(3)

Noisy estimates for the topics at any particular time point may come from either the global topics
observed until the previous time point or a topic yet unexplored. We emphasize that topics {v(t)k }K

(t)

k=1
for t = 1, . . . , T are the quantities we aim to model, hence we refer to our approach as the meta-model.
These topics may be learned, for each time point independently, by any stationary topic modeling
algorithms, and then transformed to sphere by applying Lemma 1.

Let B(t) denote the binary matrix representing the assignment of observed topic estimates to global
topics at time point t, i.e, B(t)

ik = 1 if the vector v(t)k is a noisy estimate for θ(t)i . In words, these
random variables “link up” the noisy estimates at any time point to the global topics observed thus
far. By conditional independence, the joint posterior of the hidden θ(t) given observed noisy v(t) is:

P
(
θ(0), {θ(t), B(t)}Tt=1|{v(t)}Tt=1

)
∝ P(θ(0))

T∏
t=1

P(θ(t), B(t)|θ(t−1), {B(a)}t−1a=1)P(v(t)|θ(t), B(t)).

2Thibaux and Jordan [24] write BP(c,H), H(Ω) = γ0; we set c = 1, H = H/γ0 and write BP(γ0, H).
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At t, P(θ(t), B(t)|θ(t−1), {B(a)}t−1a=1)P(v(t)|θ(t), B(t)) ∝ P(θ(t), B(t)|θ(t−1), v(t), {B(a)}t−1a=1) ∝

Lt−1∏
i=1

((
m

(t−1)
i /(t−m(t−1)

i )
)∑K(t)

k=1 B
(t)
ik

exp(τ0〈θ(t−1)i , θ
(t)
i 〉)

)

·
exp(−γ0t )(γ0/t)

Lt−Lt−1

(Lt − Lt−1)!
exp(τ1

∑Lt

i=1

∑K(t)

k=1B
(t)
ik 〈θ

(t)
i , v

(t)
k 〉).

(4)

The equation above represents a product of four quantities: (1) probability of B(t)s, where m(t)
i

denotes the number of occurrences of topic i up to time point t (cf. popularity of a dish in the
Indian Buffet Process (IBP) metaphor [9]), (2) vMF conditional of θ(t)i given θ(t−1)i (cf. Eq. (2)),
(3) number of new global topics at time t, Lt − Lt−1 ∼ Pois(γ0/t), and (4) emission probability
P(v(t)|θ(t), B(t)) (cf. Eq. (3)). Derivation details are given in the Supplement.

Streaming Dynamic Matching (SDM) To perform MAP estimation in the streaming setting, we
highlight the connection of the maximization of the posterior (4) to the objective of an optimal
matching problem: given a cost matrix, workers should be assigned to tasks, at most one worker per
task and one task per worker. The solution of this problem is obtained by employing the well-known
Hungarian algorithm [14]. In the context of dynamic topic modeling, our goal is to match topics
learned on the new timestamp to the trajectories of topics learned over the previous timestamps,
where the cost is governed by our model. This connection is formalized by the following.

Proposition 1. Given the cost C(t)
ik =

‖τ1v(t)k + τ0θ
(t−1)
i ‖2 − τ0 + log

m
(t−1)
i

t−m(t−1)
i

, i ≤ Lt−1
τ1 + log γ0

t − log(i− Lt−1), Lt−1 < i ≤ Lt−1 +K(t)

consider the optimization problem maxB(t)

∑
i,k B

(t)
ik C

(t)
ik subject to the constraints that (a) for each

fixed i, at most one of B(t)
ik is 1 and the rest are 0, and (b) for each fixed k, exactly one of B(t)

ik is 1
and the rest are 0. Then, the MAP estimate for Eq. (4) can be obtained by the Hungarian algorithm,
which solves for ((B

(t)
ik )) to obtain θ(t)i as

τ1v
(t)
k +τ0θ

(t−1)
i

‖τ1v(t)k +τ0θ
(t−1)
i ‖2

, if ∃ k s.t. B(t)
ik = 1 and i ≤ Lt−1

v
(t)
k , if ∃ k s.t. B(t)

ik = 1 and i > Lt−1 (new topic)
θ
(t−1)
i otherwise (topic is dormant at t).

(5)

We defer proof to the Supplement. To complete description of the inference we shall discuss how
noisy estimates are obtained from the bag-of-words representation of the documents observed at
time point t. We choose to use CoSAC [29] algorithm to obtain topics {β(t)

k ∈ ∆V−1}K(t)

k=1 from
{x(t)m ∈ NV }Mt

m=1, collection of Mt documents at time point t. CoSAC is a stationary topic modeling
algorithm which can infer number of topics from the data and is computationally efficient for
moderately sized corpora. We note that other topic modeling algorithms, e.g., variational inference
[4] or Gibbs sampling [11, 22], can be used in place of CoSAC. Estimated topics are then transformed
to {v(t)k ∈ SV−2}K(t)

k=1 using Lemma 1 and reference point Ct =
∑t
a=1

∑Ma

m=1
x(a)
m

N
(a)
m

/
∑t
a=1Ma,

where N (a)
m is the number of words in the corresponding document. Our reference point is simply an

average (computed dynamically) of the normalized documents observed thus far. Finally we update
MAP estimates of global topics dynamics based on Proposition 1. Streaming Dynamic Matching
(SDM) is summarized in Algorithm 1.

Additional related literature utilizing similar technical building blocks in different contexts. Fox
et al. [8] utilized Beta-Bernoulli process in time series modeling to capture switching regimes of an
autoregressive process, where the corresponding Indian Buffet Process was used to select subsets of
the latent states of the Hidden Markov Model. Williamson et al. [27] used Indian Buffet Process in
topic models to sparsify document topic proportions. Campbell et al. [7] utilized Hungarian algorithm
for streaming mean-field variational inference of the Dirichlet Process mixture model.
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Algorithm 1 Streaming Dynamic Matching (SDM)

1: for t = 1, . . . , T do
2: Observe documents {x(t)m }Mt

m=1

3: Estimate topics {β(t)
k }K

(t)

k=1 = CoSAC({x(t)m }Mt
m=1)

4: Map topics to sphere {v(t)k }K
(t)

k=1 (Lemma 1)
5: Given {θ(t−1)}Lt−1

i=1 and {v(t)k }K
(t)

k=1 compute cost matrix as in Proposition 1
6: Using Hungarian algorithm solve the corresponding matching problem to obtain B(t)

7: Compute {θ(t)}Lt
i=1 as in eq. (5)

3.2 Beta-Bernoulli Process for multiple topic polytopes

We now consider meta-modeling in the presence of multiple corpora, each of which maintains its
own topic polytope. Large text corpora often can be partitioned based on some grouping criteria, e.g.
scientific papers by journals, news by different media agencies or tweets by location stamps. In this
subsection we model the collection of topic polytopes observed at a single time point by employing
the Beta-Bernoulli Process prior [24]. The modeling of a collection of polytopes evolving over time
will be described in the following subsection.

First, generate global topic measure Q as in Eq. (1). Here, we are interested only in a single time
point, the base measure H is simply a vMF(·, 0), the uniform distribution over SV−2. Next, for each
group j = 1, . . . , J , select a subset of the global topics:

Tj |Q ∼ BeP(Q), then Tj :=
∑
i=1bjiδθi , where bji|qi ∼ Bern(qi), ∀i. (6)

Notice that each group Tj := {θi : bji = 1, i = 1, 2, . . .} selects only a subset from the collection of
global topics, which is consistent with the idea of partitioning by journals: some topics of ICML are
not represented in SIGGRAPH and vice versa. The next step is analogous to Eq. (3):

vjk|Tj ∼ vMF(Tjk, τ1) for k = 1, . . . ,Kj , where Kj := card(Tj). (7)

We again use B to denote the binary matrix representing the assignment of global topics to the noisy
topic estimates, i.e., Bjik = 1 if the kth topic estimate for group j arises as a noisy estimate of global
topic θi. However, the matching problem is now different from before: we don’t have any information
about the global topics as there is no history, instead we should match a collection of topic polytopes
to a global topic polytope. The matrix of topic assignments is distributed a priori by an Indian Buffet
Process (IBP) with parameter γ0. The conditional probability for global topics θi and assignment
matrix B given topic estimates vjk has the following form:

P(B, θ|v) ∝ exp(τ1
∑
j,i,kBjik〈θi, vjk〉)IBP({mi}), where mi =

∑
j,kBjik (8)

and IBP is the prior (see Eq. (15) in [10]) with mi denoting the popularity of global topic i.

Distributed Matching (DM) Similar to Section 3.1, we look for point estimates for the topic
directions θ and for the topic assignment matrix B. Direct computation of the global MAP estimate
for Eq. (8) is not straight-forward. The problem of matching across groups and topics is not amenable
to a closed form Hungarian algorithm. However we show that for a fixed group the assignment
optimization reduces to a case of the Hungarian algorithm. This motivates the use of Hungarian
algorithm iteratively, which guarantees convergence to a local optimum.
Proposition 2. Given the cost

Cjik =

{
τ1‖vjk +

∑
−j,i,k B−jikv−jk‖2 − τ1‖

∑
−j,i,k B−jikv−jk‖2 + log

m−ji

J−m−ji
, if i ≤ L−j

τ1 + log γ0
J − log(i− L−j), if L−j < i ≤ L−j +Kj ,

where −j denotes groups excluding group j and L−j is the number of global topics before group j
(due to exchangeability of the IBP, group j can always be considered last). Then, a locally optimum
MAP estimate for Eq. (8) can be obtained by iteratively employing the Hungarian algorithm to solve:
for each group j, (((Bjik))) which maximizes

∑
j,i,k BjikCjik, subject to constraints: (a) for each

fixed i and j, at most one of Bjik is 1, rest are 0 and (b) for each fixed k and j, exactly one of Bjik is

1, rest are 0. After solving for (((Bjik))), θi is obtained as θi =
∑

j,k Bjikvjk
‖
∑

j,k Bjikvjk‖2 .

6



The noisy topics for each of the groups can be obtained by applying CoSAC to corresponding
documents, which is trivially parallel. Distributed Matching algorithm and proof of the Proposition 2
are given in the Supplement.

3.3 Dynamic Hierarchical Beta Process

Our “full” model, the Dynamic Hierarchical Beta Process model (dHBP), builds on the constructions
described in subsections 3.1 and 3.2 to enable the inference of temporal dynamics of collections
of topic polytopes. We start by specifying the upper level Beta Process given by Eq. (1) and base
measure H given by Eq. (2). Next, for each group j = 1, . . . , J , we introduce an additional level of
hierarchy to model group specific distributions over topics

Qj |Q ∼ BP(γj , Q), then Qj :=
∑
i

pjiδθi , (9)

where pjis vary around corresponding qi. The distributional properties of pji are described in [24].

At any given time t, each group j selects a subset from the common pool of global topics:

T (t)
j |Qjt ∼ BeP(Qjt), then T (t)

j :=
∑
i=1b

(t)
ji δθ(t)i

, where b(t)ji |pji ∼ Bern(pji), ∀i. (10)

Let T (t)
j := {θ(t)i : b

(t)
ji = 1, i = 1, 2, . . .} be the corresponding collection of atoms – topics active at

time t in group j. Noisy measurements of these topics are generated by:

v
(t)
jk |T

(t)
j ∼ vMF(T (t)

jk , τ1) for k = 1, . . . ,K
(t)
j , where K(t)

j := card(T (t)
j ). (11)

The conditional distribution of global topics at t given the state of the global topics at t− 1 is
P(θ(t), B(t)|θ(t−1), v(t), {B(a)}t−1a=1) ∝

exp
(
τ0
∑
i=1〈θ

(t)
i , θ

(t−1)
i 〉)

)
F ({m(t−1)

ji }, {m(t)
ji }) · exp

(∑
j,i,kτ1B

(t)
jik〈θ

(t)
i , v

(t)
jk 〉
)
,

(12)

where F ({m(t−1)
ji }, {m(t)

ji }) is the prior term dependent on the popularity counts history from current
and previous time points. Analogous to the Chinese Restaurant Franchise [22], one can think of an
Indian Buffet Franchise in the case of HBP. A headquarter buffet provides some dishes each day
and the local branches serve a subset of those dishes. Although this analogy seems intuitive, we
are not aware of a corresponding Gibbs sampler and it remains to be a question of future studies.
Therefore, unfortunately, we are unable to handle this prior term directly and instead propose a
heuristic replacement — stripping away popularity of topics across groups and only considering
group specific topic popularity (groups still remain dependent through the atom locations).

Streaming Dynamic Distributed Matching (SDDM) We combine our results to perform approx-
imate inference of the model in Section 3.3. Using Hungarian algorithm, iterating over groups at time
t obtain estimates for (((B

(t)
jik))) based on the following cost C(t)

jik =‖τ1v
(t)
jk + τ1

∑
−j,i,k B

(t)
−jikv

(t)
−jk + τ0θ

(t−1)
i ‖2 − ‖

∑
−j,i,k B

(t)
−jikv

(t)
−jk + τ0θ

(t−1)
i ‖2 + log

1+m
(t)
ji

t−m(t)
ji

,

τ1 + log γ0
J − log(i− L(t)

−j), if L(t)
−j < i ≤ L(t)

−j +K
(t)
j ,

where first case is if i ≤ L
(t)
−j ; m

(t)
ji denotes the popularity of topic i in group j up to time t (plus

one is used to indicate that global topic i exists even when m(t)
ji = 0). Then compute global topic

estimates θ(t)i =
τ1

∑
j,k B

(t)
jikv

(t)
jk +τ0θ

(t−1)
i

‖τ1
∑

j,k B
(t)
jikv

(t)
jk +τ0θ

(t−1)
i ‖2

. At time point t, the noisy topics for each of the groups

can be obtained by applying CoSAC to corresponding documents in parallel. SDDM algorithm and
cost derivations are presented in the Supplement.

4 Experiments

We study ability of our models to learn the latent temporal dynamics and discover new topics that
change over time. Next we show that our models scale well by utilizing temporal and group inherent
data structures. We also study hyperparameters choices. We analyze two datasets: the Early Journal
Content (http://www.jstor.org/dfr/about/sample-datasets), and a collection of
Wikipedia articles partitioned by categories and in time according to their popularity.
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Figure 2: Qualitative examples of topics learned by SDM and DM algorithms on the EJC data

4.1 Temporal Dynamics and Topic Discovery

Early Journal Content. The Early Journal Content dataset spans years from 1665 up to 1922.
Years before 1882 contain very few articles, and we aggregated them into a single timepoint. After
preprocessing, dataset has 400k scientific articles from over 400 unique journals. The vocabulary was
truncated to 4516 words. We set all articles from the last available year (1922) aside for the testing
purposes.

Case study: epidemics. The beginning of the 20th century is known to have a vast history of
disease epidemics of various kinds, such as smallpox, typhoid, yellow fever to name a few. Vaccines
or effective treatments for the majority of them were developed shortly after. One of the journals
represented in the EJC dataset is the "Public Health Report"; however, publications from it are only
available starting 1896. Primary objective of the journal was to reflect epidemic disease infections.
As one of the goals of our modeling approach is topic discovery, we verify that the model can discover
an epidemics-related topic around 1896. Figure 2a shows that SDM correctly discovered a new topic
is 1896 semantically related to epidemics. We plot the evolution of probabilities of the top 15 words
in this topic across time. We observe that word "typhoid" increases in probability towards 1910 in the
"epidemics" topic, which aligns with historical events such as Typhoid Mary in 1907 and chlorination
of public drinking water in the US in 1908 for controlling the typhoid fever. The probability of
"tuberculosis" also increases, aligning with foundation of the National Association for the Study and
Prevention of Tuberculosis in 1904.

Case study: law. Some of the EJC journals are related to the topic of law. Our DM algorithm
identified a global topic semantically similar to law by matching similar topics present in 32 out of the
417 journals. In Figure 2b we present the learned global topic and 4 examples of the matched local
topics with the corresponding journal names. Our algorithm correctly identified that these journals
have a shared law topic.

4.2 Scalability
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Figure 3: Comparison on Wiki Data (20 cores)

Wiki Corpus. We collected articles from
Wikipedia and their page view counts for the 12
months of 2017 and category information (e.g.,
Arts, History). We used categories as groups
and partitioned the data across time according
to the page view counts. Dataset construction details are given in the Supplement. The total number
of documents is about 3 million, and we reduced vocabulary to 7359 words similarly to [12]. For
testing we set aside documents from category Art from December 2017.

Modeling Grouping. In Fig. 3 we present comparisons on Wiki data: CoSAC [29] v.s DM under
the static distributed setting and SDM v.s SDDM under the dynamic streaming setting. Fig. 3 (left)
shows that for data accessible in groups, DM outperforms CoSAC by ∼ 25X , as DM runs CoSAC
on different data groups in parallel and then matches the outputs. Matching time adds only a small
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Table 1: Modeling topics of EJC || Modeling Wikipedia articles
Perplexity Time Topics Cores Perplexity Time Topics Cores

SDM 1179 22min 125 1 1254 2.4hours 182 1
DM 1361 5min 125 20 1260 15min 182 20
SDDM 1241 2.3min 103 20 1201 20min 238 20
DTM 1194 56hours 100 1 NA >72hours 100 1
SVB 1840 3hours 100 20 1219 29.5hours 100 20
CoSAC 1191 51min 132 1 1227 4.4hours 173 1

overhead compared to the runtime of CoSAC. Similarly, in Fig. 3 (right), SDDM is ∼ 6X faster than
SDM, since SDDM can process documents of different groups in parallel and interleaves CoSAC
with matching: while matching is being performed on data groups with timestamp t, CoSAC can
process the data that arrives with timestamp t+ 1 in parallel.

Modeling temporality also benefits scalability. We compare our methods with other topic models
on both Wiki and EJC datasets: Streaming Variational Bayes (SVB) [5] and Dynamic Topic Models
(DTM) [3] trained with 100 topics. Perplexity scores on the held out data, training times, computing
resources and number of topics are reported in Table 1. On the wiki dataset, SDDM took only 20min
to process approximately 3 million documents, which is much faster than the other approaches.

Regarding perplexity scores, SDDM generally outperforms DM, which suggests that modeling time
is beneficial. For the EJC dataset, SDM outperforms SDDM. Modeling groups might negatively
affect perplexity because the majority of the EJC journals (groups) have very few articles (i.e. less
than 100 – a setup challenging for many topic modeling algorithms). On the Wiki corpus each
category (group) has sufficient amount of training documents and time-group partitioning considered
by SDDM achieves the best perplexity score.

4.3 Parameter choices
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Fig. 4: SDM parameters

The rate of topic dynamics of the SDM and SDDM is effectively con-
trolled by τ0, where smaller values imply higher dynamics rate. Parameter
τ1 controls variance of local topics around corresponding global topics
in all of our models. This variance dictates how likely a local topic to
be matched to an existing global topic. When this variance is small,
the model will tend to identify local topics as new global topics more
often. Lastly, γ0 affects the probability of new topic discovery, which
scales with time and number of groups. In the preceding experiments
we set τ0 = 2, τ1 = 1, γ0 = 1 for SDM; τ1 = 2, γ0 = 1 for DM;
τ0 = 4, τ1 = 2, γ0 = 2 for SDDM. In Figure 4 we show heatpmaps for
perplexity and number of learned topics, fixing γ0 = 1 and varying τ0
and τ1. We see that for large τ1, SDM identifies more topics to fit the
smaller variability constraint imposed by the parameter.

5 Discussion and Conclusion

Our work suggests the naturalness of incorporating sophisticated Bayesian nonparametric techniques
in the inference of rich latent geometric structures of interest. We demonstrated the feasibility of
approximate nonparametric learning at scale, by utilizing suitable geometric representations and
devising fast algorithms for obtaining reasonable point estimates for such representations. Further
directions include incorporating more meaningful geometric features into the models (e.g., via more
elaborated base measure modeling for the Beta Process) and developing efficient algorithms for full
Bayesian inference. For instance, the latent geometric structure of the problem is solely encoded in
the base measure. We want to explore choices of base measures for other geometric structures such
as collections of k-means centroids, principal components, etc. Once an appropriate base measure
is constructed, our Beta process based models can be utilized to enable a new class of Bayesian
nonparametric models amenable to scalable inference and suitable for analysis of large datasets. In
our concurrent work we have utilized model construction similar to one from Section 3.2 to perform
Federated Learning of neural networks trained on heterogeneous data [31] and proposed a general
framework for model fusion [30].
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