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In this supplementary material, we provide derivations leading to the equations used in the main
paper in Sec. A. Then, we provide implementation details in Sec. B. Finally, in Sec. C, we report
further qualitative results of our method against the state of the art.

A Detailed Derivations

A.1 Approximating Motion with Local Affine Transformations

Here, we detail the derivation leading to the approximation of TS←D near the keypoint zk in Eq. (4)
of the main paper. Using first order Taylor expansion we can obtain:

TS←D(z) = TS←D(zk) +

(
d

dz
TS←D(z)

∣∣∣∣z=zk

)
(z − zk) + o(‖z − zk‖) (1)

TS←D can be written as the composition of two transformations:

TS←D = TS←R ◦ TR←D (2)

In order to compute the zeroth order term, we estimate the transformation TR←D near the point zk
in the driving frame D, e.g pk = TR←D(zk). Then we can estimate the transformation TS←R near
pk in the reference R. Since pk = TR←D(zk) and T −1R←D = TD←R, we can write zk = TD←R(pk).
Consequently, we obtain:

TS←D(zk) = TS←R ◦ TR←D(zk)

= TS←R ◦ T −1D←R(zk)

= TS←R ◦ T −1D←R ◦ TD←R(pk)

= TS←R(pk). (3)

Concerning the first order term, we apply the function composition rule in Eq. (2) and obtain:(
d

dz
TS←D(z)

∣∣∣∣z=zk

)
=

(
d

dp
TS←R(p)

∣∣∣∣p=TR←D(zk)

)(
d

dz
T −1D←R(z)

∣∣∣∣z=zk

)
(4)

Since the matrix inverse of the Jacobian is equal to the Jacobian of the inverse function, and since
pk = TR←D(zk), Eq. (4) can be rewritten:(

d

dz
TS←D(z)

∣∣∣∣z=zk

)
=

(
d

dp
TS←R(p)

∣∣∣∣p=pk

)(
d

dp
TD←R(p)

∣∣∣∣p=pk

)−1
(5)
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After injecting Eqs. (3) and (5) into (1), we finally obtain:

TS←D(z) ≈ TS←R(pk) +

(
d

dp
TS←R(p)

∣∣∣∣p=pk

)(
d

dp
TD←R(p)

∣∣∣∣p=pk

)−1
(z − TD←R(pk)) (6)

A.2 Equivariance Loss

At training time, we use equivariance constraints that enforces:

TX←R ≡ TX←Y ◦ TY←R (7)

After applying first order Taylor expansion on the left-hand side, we obtain:

TX←R(p) = TX←R(pk) +

(
d

dp
TX←R(p)

∣∣∣∣p=pk

)
(p− pk) + o(‖p− pk‖). (8)

After applying first order Taylor expansion on the right-hand side in Eq. (7), we obtain:

TX←Y◦TY←R(p) = TX←Y◦TY←R(pk)+

(
d

dp
TX←Y ◦ TY←R

∣∣∣∣p=pk

)
(p−pk)+o(‖p−pk‖), (9)

We can further simplify this expression using derivative of function composition:(
d

dp
TX←Y ◦ TY←R

∣∣∣∣p=pk

)
=

(
d

dp
TX←Y(p)

∣∣∣∣p=TY←R(pk)

)(
d

dp
TY←R(p)

∣∣∣∣p=pk

)
. (10)

Eq. (7) holds only when every coefficient in Taylor expansion of the right and left sides are equal.
Thus, it leads us to the following constaints:

TX←R(pk) ≡ TX←Y ◦ TY←R(pk), (11)
and (

d

dp
TX←R(p)

∣∣∣∣p=pk

)
≡

(
d

dp
TX←Y(p)

∣∣∣∣p=TY←R(pk)

)(
d

dp
TY←R(p)

∣∣∣∣p=pk

)
. (12)

A.3 Transferring Relative Motion

In order to transfer only relative motion patterns, we propose to estimate TSt←R(p) near the keypoint
pk by shifting the motion in the driving video to the location of keypoint pk in the source. To this
aim, we introduce VS1←D1(pk) = TS1←R(pk) − TD1←R(pk) ∈ R2 that is the 2D vector from
the landmark position pk in D1 to its position in S1. We proceed as follows. First, we shift point
coordinates according to −VS1←D1(pk) in order to obtain coordinates in D1. Second, we apply the
transformation TDt←D1 . Finally, we translate the points back in the original coordinate space using
VS1←D1(pk). Formally, it can be written:

TSt←R(p) = TDt←D1

(
TS1←R(p)− VS1←D1(pk)

)
+ VS1←D1(pk)

Now, we can compute the value and Jacobian in the pk:

TSt←R(pk) = TDt←D1 ◦ TD1←R(pk)− TD1←R(pk) + TS1←R(pk)

and:(
d

dp
TSt←R(p)

∣∣∣∣p=pk

)
=

(
d

dp
TDt←R(p)

∣∣∣∣p=pk

)(
d

dp
TD1←R(p)

∣∣∣∣p=pk

)−1 (
d

dp
TS1←R(p)

∣∣∣∣p=pk

)
.

Now using Eq. (6) and treating S1 as source and St as driving frame, we obtain:

TS1←St
(z) ≈ TS1←R(pk) + Jk(z − TS←R(pk) + TD1←R(pk)− TDt←R(pk)) (13)

with

Jk =

(
d

dp
TD1←R(p)

∣∣∣∣p=pk

)(
d

dp
TDt←R(p)

∣∣∣∣p=pk

)−1
. (14)

Note that, here,
(

d
dpTS1←R(p)

∣∣∣p=pk

)
canceled out.
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B Implementation details

B.1 Architecture details

In order to reduce memory and computational requirements of our model, the keypoint detector and
dense motion predictor both work on resolution of 64 × 64 (instead of 256 × 256). For the two
networks of the motion module, we employ an architecture based on U-Net [3] with five conv3×3
- bn - relu - avg − pool2×2 blocks in the encoders and five upsample2×2 - conv3×3 - bn - relu
blocks in the decoders. In the generator network, we use the Johnson architecture [1] with two
down-sampling blocks, six residual-blocks and two up-sampling blocks. We train our network using
Adam [2] optimizer with learning rate 2e − 4 and batch size 20. We employ learning decay by
dropping the learning rate at T

2 and 3T
4 iterations, where T is total number of iteration. We chose

T ≈ 100k for Tai-Chi-HD and VoxCeleb, and T ≈ 40k for Nemo and Bair. The model converges in
approximately 2 days using 2 TitanX gpus for Tai-Chi-HD and VoxCeleb.

B.2 Equivariance loss implementation

As explained above our equivariance losses force the keypoint detector to be equivariant to some
transformations TX←Y. In our experiments TX←Y is implemented using randomly sampled thin
plate splines. We sample spline parameters from normal distributions with zero mean and variance
equal to 0.005 for deformation component and 0.05 for the affine component. For deformation
component we use uniform 5× 5 grid.

C Additional experiments

C.1 Image Animation

In this section, we report additional qualitative results.

We compare our approach with X2face [5] and Monkey-Net [4]. In Fig. 1, we show three animation
examples from the VoxCeleb dataset. First, X2face is not capable of generating realistic video
sequences as we can see, for instance in the last frame of the last sequence. Then, Monkey-Net
generates realistic frames but fails to generate specific facial expressions as in the third frame of the
first sequence or in transferring the eye movements as in the last two frames of the second sequence.

In Fig. 2, we show three animation examples from the Nemo dataset. First, we observe that this
dataset is simpler than VoxCeleb since the persons are facing a uniformly black background. With
this simpler dataset, X2Face generates realistic videos. However, it is not capable of inpainting image
parts that are not visible in the source image. For instance, X2Face does not generate the teeth. Our
approach also perform better than Monkey-Net as we can see by comparing the generate teeth in the
first sequence or the closed eyes in the fourth frames of the second and third sequences.

In Fig. 2, we report additional examples for the Tai-Chi-HD dataset. These examples are well in line
with what is reported in the main paper. Both X2Face and Monkey-Net completely fail to generate
realistic videos. The source images are warped without respecting human body structure. Conversely,
our approach is able to deform the person in foreground without affecting the background. Even
though we can see few minor artifacts, our model is able to move each body part independently
following the body motion in the driving video.

Finally, in Fig. 4 we show three image animation examples on the Bair dataset. Again, we see that
X2Face is not able to transfer motion since it constantly returns frames almost identical with the
source images. Compared to Monkey-Net, our approach performs slightly better since it preserves
better the robot arm as we can see in the second frame of the first sequence or in the fourth frame of
the last sequence.

C.2 Keypoint detection

We now illustrate the keypoints that are learned by our self-supervised approach in Fig. 5. On the
Tai-Chi-HD dataset, the keypoints are semantically consistent since each of them corresponds to a
body part: light green for the right foot, and blue and red for the face for instance. Note that, a light
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green keypoint is constantly located in the bottom left corner in order to model background or camera
motion. On VoxCeleb, we observe that, overall, the obtained keypoints are semantically consistent
except for the yellow and green keypoints. For instance, the red and purple keypoints constantly
correspond to the nose and the chin respectively. We observe a similar consistency for the Nemo
dataset. For the Bair dataset, we note that two keypoints (dark blue and light green) correspond to the
robotic arm.

C.3 Visualizing occlusion masks

In Fig. 6, we visualize the predicted occlusion masks ÔS←D on the Tai-Chi-HD, VoxCeleb and Nemo
datasets. In the first sequence, when the person in the driving video is moving backward (second to
fourth frames), the occlusion mask becomes black (corresponding to 0) in the background regions
that are occluded in the source frame. It indicates that these parts cannot be generated by warping
the source image features and must be inpainted. A similar observation can be made on the example
sequence of VoxCeleb. Indeed, we see that when the face is rotating, the mask has low values (dark
grey) in the neck region and in the right face side (in the left-hand side of the image) that are not
visible in the source Frame. Then, since the driving video example from Nemo contains only little
motion, the predicted mask is almost completely white. Overall, these three examples show that the
occlusion masks truly indicate occluded regions even if no specific training loss is employed in order
to lead to this behaviour. Finally, the predicted occlusion masks are more difficult to interpret in the
case of the Bair dataset. Indeed, the robotic arm is masked out in every frame whereas we could
expect that the model generates it by warping. A possible explanation is that, since in this particular
dataset, the moving object is always the same, the network can generate without warping the source
image. We observe also that masks have low values for the regions corresponding to the arm shadow.
It is explained by the fact that shadows cannot be obtained by image warping and that they need to be
added by the generator.
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Figure 1: Qualitative comparison with state of the art for the task of image animation on different
sequences from the VoxCeleb dataset.
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Figure 2: Qualitative comparison with state of the art for the task of image animation on different
sequences from the Nemo dataset.

6



image
Source

Driving
video

X2face [5]

Monkey-
Net [4]

Ours

image
Source

Driving
video

X2face [5]

Monkey-
Net [4]

Ours

image
Source

Driving
video

X2face [5]

Monkey-
Net [4]

Ours

Figure 3: Qualitative comparison with state of the art for the task of image animation on different
sequences from the Tai-Chi-HD dataset.
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Figure 4: Qualitative comparison with state of the art for the task of image animation on different
sequences from the Bair dataset.
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Figure 5: Keypoint visualization for the four datasets.
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Figure 6: Visualization of occlusion masks and images obtained after deformation on Tai-Chi-HD,
VoxCeleb, Nemo and Bair datasets.
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