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Proof of Lemma 3.2

Proof. Based on the reassignment procedure described in REASSIGN, the vehicles V can be divided

into several subsets S = {S1,Sa,...,S:}, where S; consists of all vehicles that participate in
the chain swapping (line 6-10 of REASSIGN) in one iteration. We assume S is nonempty, since
otherwise we have M., = M,4. Note that (1) if a vehicle v appears in S; in some iteration, it will

be assigned to M- (v) after that iteration and will never appear again in .S; for any j > 4. Hence
we have S; NS; = 0 for any ¢ # j; (2) there might be vehicles who do not participate in any
swapping procedure. Hence | J, S; may not necessarily equal to V. We define the set of vehicles
V, = V\ U1<i<t S;. Note that Vv € V,, Wy, Mo (v) = Wy, Mg (v)-

We further define p; = |S;| and &;(M) as the partial efficiency of vehicles in S; of the assignment
M ie E(M) =3, cq, (hy + Wy ar)-

We focus on an arbitrary set S;. When p; = 1, it trivially holds that & (Mew) > &€;(Moq). When
p; > 2, in the following we quantify how much efficiency loss occurs during the swapping.

Let us first define the set of p; vehicles {v;}1<;<,, indexed based on the swapping order, such that
Muew(vj) = Mo(vj41),1 < j < p;. Thus, we have

gi(Mold) - gi(Mnew) = wful,lwom(vl) - vai,MneW('upi) + E (wvj,]tlold(vj) - wvj,l,M(,]d(Uj))
2<j<p;

< Wog, Mya(v0) ~ Wy, —1,Myew (vp;—1) T (P8 = 1)A
<f+(@p—-1A
(1)

Next, we know from REASSIGN that every vehicle v in the swapping chain is reassigned to request
My, (v) in the output assignment My, Thus, we have

gi(Mnew) = Z (hv + wv,]\lnew(v)) > Z fopt > pifopt

veS; vES;
This implies

E(Mpew)

EMnen) = D7 Ei(Myen) 2 20S| - Fopr = |S] < =25
op

1<i<s|

2

Let us now consider all available vehicles v € V. For simplicity, we define the set of vehicles
Vo = V\U, <i<t S;. Therefore, from equation (I) and (2), and the fact that for every v € V,,
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Wy Myey (v) = Wo, Moy (v)> WE have

S(Mold) - 6‘(]\mle:w) = Z (61 (Mold) - gz (Mnew))

1<i<|S|
< 3 (F+@-1)A)
1<i<|S|
<|S|-f+nA
f : g(Mnew)
<E—+nA
2F opt
Rearrange the terms in the last inequality and we obtain
2F opt
E(Myew) > ——F_(E(Myq) — nA
(Vo) 2 5B (€ (Mag) = 1)
which is exactly what stated in the lemma. O
Proof of Theorem 3.3
Proof. Forany 0 < A < 1and o > QJ%, consider the following problem instances.
A —
|

2

I this guarantees A > ¢ > 0.

Here € is set as min{3(2 + A — 2), A}. Because o >
Note that this problem instance has A = (. There are only two feasible assignments in this instance:
o the efficient assignment Mg (marked by solid lines) assigns r1 to vy and 79 to vo and gives

gopt =2+ A—¢€ )
o the fair assignment Mz, (marked by dashed lines) assigns 2 to v; and leaves r; unmatched,

and gives Fop = 1.

Note that among these two assignments, My, is the only one with fairness value at least A\, and we
have

E(Meyr) 2 - 2
Ept —MA 2+ X —¢ 24A—(2+A—2)

= Q.

Thus in this problem instance, any assignment that satisfies the fairness requirement stated in the
lemma cannot satisfy the efficiency requirement. O



