
Appendix

A Proofs in Section 3.3

Proof of Proposition 2. Let d denote element-wise multiplication with broadcasting6, and m ă
n. Then the contraction of U1, . . . ,UM along with V is written as FVpU1, . . . q “

FVzvm
pU1, . . . ,Um´1,Um`1, . . . ,Un´1,Um d Un, . . . q. Since Um d Un P R

Ś

aPvn
θpaq for any

Um and Un, FVp. . . q reduces to FVzvmp. . . q.

Proof of Proposition 3. Let ColpUm, a, bq denote the collapsing operator that reshapes tensor Um by
concatenating its indices ta, bu if ta, bu Ď vm, and creates a new index b1 where its inner dimension
is Rb1 “ RaRb. Since FVpU1,U2, . . . q “ FVnapColpU1, a, bq,ColpU2, a, bq, . . . q, Proposition 3
can be proved using the same technique as in the proof of Proposition 2.

Proof of Proposition 4. Suppose we have M size-invariant convolutions of size
pI1, J1q, . . . , pIM , JM q. By simple calculation, we see that the final convolution size pI, Jq
is determined by I “ 1 `

ř

mPrMspIm ´ 1q and J “ 1 `
ř

mPrMspJm ´ 1q. Therefore, possible

choices are to change tIm, Jm | m P rM su with varying M ą“ minp I´1

2
, J´1

2
q. The problem is

thus reduced to the partition of integers, as stated.

Proof of Theorem 1. For simplicity, consider 2D convolution with a 3 ˆ 3 filter (I “ J “ 3).
Suppose we have L P N inner indices A “ tc, r1, . . . , rL´1u. According to Proposition 4, the
vertical index i and the horizontal index j have to be used only once, and in only two possible
patterns: either (i) they are used on the same vertex, or (ii) they are separated on different vertices.
First, we consider case (i). Assume v1 contains ti, ju and the subset of A, which contains 2L patterns,
and let A1 “ v1zti, ju Ď 2A be the selected subset. Next, consider v2. To avoid the redundancy
described in Proposition 2, v2 must contains indices that are not contained in v1, which means that
the choices for v2 are in 2Az2A1 . Repeating this process for v3, v4, . . . , we see that the number of
patterns monotonically decreases. Moreover, the maximum length of the vertices is L ` 1, which
is achieved when A1 “ tHu and each of v2, . . . , vL`1 has a single inner index. Therefore the
number of nonredundant hypergraphs is finite. Case (ii) may be analyzed in the same way, except the
maximum length of the vertices is L ` 2. For the case of larger filter sizes, we can employ a similar
method using Proposition 4 that ensures that the number of combination patterns of the factoring
convolution will be finite.

B Training Recipes

B.1 Enumeration

2D The architecture is Einconv(64)–MaxPooling–Einconv(128)–MaxPooling–FC(10)-
Softmax, where Einconv(k) denotes an Einconv layer with k output channels and FC(k) denotes a
fully-connected layer with k output units. Maxpooling is performed by a factor of 2 for each spatial
dimension. We trained for 50 epochs using the Adam optimizer with a batch size 16, learning rate
2E-4, and weight decay rate 1E-6.

3D The architecture is Einconv(64)-ReLU-Einconv(128)-ReLU-MaxPooling-
Einconv(256)-ReLU-Einconv(256)-ReLU-MaxPooling-Einconv(512)-ReLU-
Einconv(512)-ReLU-GAP-FC(512)-FC(512)-FC(10)-Softmax, where GAP denotes
global average pooling. We applied dropout with rate 50% to fully-connected layers except the last
layer. Other settings were the same as the 2D case.

B.2 GA Search

LeNet-5 The architecture is Einconv(32)–MaxPooling–Einconv(32)–MaxPooling–FC(10)-
Softmax. We trained for at most 250 epochs using the Adam optimizer with batch size 128, learning
rate 2E-4, and weight decay rate 5E-4.

6https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html
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ResNet-50 We replaced all the bottleneck layers in ResNet-50 that do not rescale the spatial size
by Einconv layers. We trained for at most 300 epochs using momentum SGD with batch size 32, a
learning rate 0.05 that was halved every 25 epochs, and a weight decay rate 5E-4. Also, we used
standard data augmentation methods: random rotation, color lightning, color flip, random expansion,
and random cropping.
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