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Abstract

Tensor decomposition methods are widely used for model compression and fast in-
ference in convolutional neural networks (CNNs). Although many decompositions
are conceivable, only CP decomposition and a few others have been applied in
practice, and no extensive comparisons have been made between available methods.
Previous studies have not determined how many decompositions are available, nor
which of them is optimal. In this study, we first characterize a decomposition class
specific to CNNs by adopting a flexible graphical notation. The class includes
such well-known CNN modules as depthwise separable convolution layers and
bottleneck layers, but also previously unknown modules with nonlinear activa-
tions. We also experimentally compare the tradeoff between prediction accuracy
and time/space complexity for modules found by enumerating all possible de-
compositions, or by using a neural architecture search. We find some nonlinear
decompositions outperform existing ones.

1 Introduction

Convolutional neural networks (CNNs) typically process spatial data such as images using multiple
convolutional layers [Goodfellow et al., 2016]. The high performance of CNNs is often offset by
their heavy demands on memory and CPU/GPU, making them problematic to deploy on edge devices
such as mobile phones [Howard et al., 2017].

One straightforward approach to reducing costs is the introduction of a low-dimensional linear
structure into the convolutional layers [Smith et al., 1997, Rigamonti et al., 2013, Tai et al., 2015,
Kim et al., 2015, Denton et al., 2014, Lebedev et al., 2014, Wang et al., 2018]. This typically is done
through tensor decomposition, which represents the convolution filter in sum-product form, reducing
the number of parameters to save memory space and reduce the calculation cost for forwarding paths.

The manner in which this cost reduction is achieved depends heavily on the structure of the tensor
decomposition. For example, if the target is a two-way tensor, i.e., a matrix, the only meaningful
decomposition is X “ UV, because others such as X “ ABC are reduced to that form but have
more parameters. However, for higher-order tensors, there are many possible ways to perform tensor
decomposition, of which only a few have been actively studied (e.g., see [Kolda and Bader, 2009]).
Such multi-purpose decompositions have been applied to CNNs but are not necessarily optimal for
them, because of tradeoffs between prediction accuracy and time/space complexity. The need to
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Figure 1: Visualizing linear structures in various convolutional layers, where X is input and T is a
convolution kernel. The “legs” h1, w1, c1 respectively represent the spatial height, spatial width, and
output channels. We will further explain these diagrams in Section 3.

consider many factors, including application domains, tasks, entire CNN architectures, and hardware
limitations, makes the emergence of new optimization techniques inevitable.

In this study, we investigate a hidden realm of tensor decompositions to identify maximally resource-
efficient convolutional layers. We first characterize a decomposition class specific to CNNs by
adopting a flexible hypergraphical notation based on tensor networks [Penrose, 1971]. The class
can deal with nonlinear activations, and includes modern light-weight CNN layers such as the
bottleneck layers used in ResNet [He et al., 2015], the depthwise separable layers used in Mobilenet
V1 [Howard et al., 2017], the inverted bottleneck layers used in Mobilenet V2 [Sandler et al.,
2018], and others, as shown in Figure 1. The notation permits us to handle convolutions in three
or more dimensions straightforwardly. In our experiments, we study the accuracy/complexity
tradeoff by enumerating all possible decompositions for 2D and 3D image data sets. Furthermore,
we evaluate nonlinear extensions by combining neural architecture search with the LeNet and
ResNet architectures. The code implemented in Chainer [Tokui et al., 2019] is available at https:
//github.com/pfnet-research/einconv.

Notation We use the notation rns “ t1, . . . , nu, where n is a positive integer. Lower-case letters
denote scalars when in ordinary type, vectors when in bold (e.g., a,a). Upper-case letters denote
matrices when in bold, tensors when in bold script (e.g. A,A).

2 Preliminaries

2.1 Convolution in Neural Networks

Consider a 2D image of height H P N, width W P N, and number of channels C P N, where a
channel is a feature (e.g., R, G, or B) possessed by each pixel. The image can be represented by a
three-way tensor X P R

HˆWˆC . Typically, the convolution operation, applied to such a tensor, will
change the size and the number of channels. We assume that the size of the convolution filter is odd.
Let I, J P t1, 3, 5, . . . u be the filter’s height and width, P P N be the padding size, and S P N be the
stride. Then, the output has height H 1 “ pH `2P ´Iq{S`1 and width W 1 “ pW `2P ´Jq{S`1.
When we set the number of output channels to C 1 P N, the convolution layer yields an output

Z P R
H1ˆW 1ˆC1

in which each element is given as

zh1w1c1 “
ÿ

iPrIs

ÿ

jPrJs

ÿ

cPrCs

tijcc1xh1
i
w1

j
c, (1)
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Here T P R
IˆJˆCˆC1

is a weight, which is termed as the I ˆ J kernel, and h1
i “ ph1 ´ 1qS ` i´P

and w1
j “ pw1 ´ 1qS ` j ´ P are spatial indices used for convolution. For simplicity, we omit the

bias parameter. There are IJCC 1 parameters, and the time complexity of (1) is OpIJCH 1W 1C 1q.

Although (1) is standard, there are several important special cases used to reduce computational
complexity. The case when I “ J “ 1 is called 1 ˆ 1 convolution [Lin et al., 2013, Szegedy et al.,
2015]; it applies a linear transformation to the channels only, and does not affect the spatial directions.
Depthwise convolution [Chollet, 2016] is arguably the opposite of 1 ˆ 1 convolution: it works as
though the input and output channels (rather than the spatial dimensions) are one dimensional, i.e.,

zh1w1c1 “
ÿ

iPrIs

ÿ

jPrJs

tijc1xh1
i
w1

j
c1 . (2)

2.2 Tensor Decomposition in Convolution

To reduce computational complexity, Kim et al. [2015] applied Tucker-2 decomposition [Tucker,
1966] to the kernel T , replacing the original kernel by T T2, where each element is given by

tT2

ijcc1 “
ÿ

αPrAs

ÿ

βPrBs

gijαβucαvc1β . (3)

Here G P R
IˆJˆAˆB ,U P R

CˆA,V P R
C1ˆB are new parameters, and A,B P N are rank-

like hyperparameters. Note that convolution with the Tucker-2 kernel T T2 is equivalent to three
consecutive convolutions: 1 ˆ 1 convolution with kernel U, I ˆ J convolution with kernel G, and
1 ˆ 1 convolution with kernel V. The hyperparameters A and B may be viewed as intermediate
channels during the three convolutions. Hence, when A,B are smaller than C,C 1, a cost reduction
is expected, because the heavy I ˆ J convolution is now being taken with the A,B channel pair
instead of with C,C 1. The reduction ratios of the number of parameters and the inference cost for the
Tucker-2 decomposition compared to the original are both at least AB{CC 1.

Similarly, several authors [Denton et al., 2014, Lebedev et al., 2014] have employed CP decomposi-
tion [Hitchcock, 1927], which reparametrizes the kernel as

tCP

ijcc1 “
ÿ

γPrΓs

ũiγ ṽjγw̃cγ s̃c1γ , (4)

where Ũ, Ṽ,W̃, S̃ are new parameters and Γ P N is a hyperparameter.

3 The Einconv Layer

We have seen that both the convolution operation (1), (2) and the decompositions of the kernel
(3), (4) are given as the sum-product of tensors with many indices. Although the indices may cause
expressions to appear cluttered, they play important roles. There are two classes of indices: those
connected to the output shape (h1, w1, c1) and those used for summation (i, j, c, α, β, γ). Convolution
and its decomposition are specified by how the indices interact and are distributed into tensor variables.
For example, in Tucker-2 decomposition, the spatial, input channel, and output channel information
G,U,V are separated through their respective indices pi, jq, c1, c. Moreover, they are joined by
two-step connections: the input channel and spatial information are connected by α, and the output
channel and spatial information by β. Here, we can consider the summation indices to be paths that
deliver input information to the output.

A hypergraph captures the index interaction in a clean manner. The basic idea is that tensors are
distinguished only by the indices they own and we consider them as vertices. Vertices are connected
if the corresponding tensors share indices to be summed. (For notational simplicity, we will often
refer to a tensor by its indices alone, i.e., U “ puabcqaPrAs,bPrBs,cPrCs is equivalent to ta, b, cu.)

As an example, consider the decomposition of a kernel T . Let the outer indices O “ ti, j, c, c1u be
the indices of the shape of T , the inner indices I “ pr1, r2, . . . q be the indices used for summation,

and inner dimensions R “ pR1, R2, . . . q P R
|I| be the dimensions of I . Assume that M P N tensors

are involved in the decomposition, and let V “ tv1, . . . , vM | vm P 2OYIu denote the set of these
tensors, where 2A denotes the power set of a set A. Given V , each inner index r P I defines a
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hyperedge er “ tv | r P v for v P Vu. Let E “ ten | n P O Y Iu denote the set of hyperedges. For
example, suppose I “ tα, βu and V “ tti, j, α, βu, tc, αu, tc1, βuu; then, the undirected weighted
hypergraph pV, E ,Rq is equivalent to Tucker-2 decomposition (3).

This idea is also applicable to the convolution operation by the introduction of dummy tensors
that absorb the index patterns used in convolution. Recall that in (1) the special index h1

i indicates
which vertical elements of the kernel and the input image are coupled in the convolution. Let

P P t0, 1uHˆH1ˆI be a (dummy) binary tensor where each element is defined as phh1i “ 1 if h “ h1
i

and 0 otherwise, and let Q P t0, 1uWˆW 1ˆJ be the horizontal counterpart of P . Furthermore, let
us modify the index sets to O “ th1, w1, c1u and I “ ph,w, i, j, cq, and the dimensions to R “
pH,W, I, J, Cq. Then, vertices V “ tth,w, cu, ti, j, c, c1u, th, h1, iu, tw,w1, juu and hyperedges E
that are automatically defined by V exactly represent the convolution operation (1), where we ensure
that the tensor of th, h1, iu is fixed by P and the tensor of tw,w1, ju is fixed by Q.

The above mathematical explanation may sound too winding, but visualization will help greatly. Let
us introduce several building blocks for the visualization. Let a circle (vertex) indicate a tensor, and a
line (edge) connected to the circle indicate an index associated with that tensor. When an edge is
connected on only one side, it corresponds to an outer index of the tensor; otherwise, it corresponds
to an inner index used for summation. The summation and elimination of inner indices is called
contraction. For example,

A B
i j k

“ C
i k

ðñ
ÿ

j

aijbjk “ cik. (5)

A hyperedge that is connected to more than three vertices is depicted with a black dot:

A B C
i j k

ðñ
ÿ

j

aijbjcjk. (6)

Finally, a node with symbol “˚” indicates a dummy tensor. In our context, this implicitly indicates
that some spatial convolution is involved:

A ˚ B
h i

h1

ðñ
ÿ

h,i

phh1iahbi (7)

The use of a single hyperedge to represent the summed inner index is the graphical equivalent of
the Einstein summation convention in tensor algebra. Inspired by this equivalence and by NumPy’s
einsum function [Wiebe, 2011], we term a hypergraphically-representable convolution layer an
Einconv layer.

3.1 Examples

In Figure 1, we give several examples of hypergraphical notation. Many existing CNN modules can
obviously be described as Einconv layers (but without nonlinear activation).

Separable and Low-rank Filters Although a kernel is usually square, i.e., I “ J , we often take
the convolution separately along the vertical and horizontal directions. In this case, the convolution
operation is equivalent to the application of two filters of sizes pI, 1q and p1, Jq. This can be
considered the rank-1 approximation of the I ˆ J convolution. A separable filter [Smith et al., 1997]
is a technique to speed up convolution when the filter is exactly of rank one. Rigamonti et al. [2013]
extended this idea by approximating filters as low-rank matrices for a single input channel, and Tai
et al. [2015] further extended it for multiple input channels (Figure 1h).

Factored Convolution In the case of a large filter size, factored convolution is commonly used to
replace the large filter with multiple small-sized convolutions [Szegedy et al., 2016]. For example,
two consecutive 3 ˆ 3 convolutions are equivalent to one 5 ˆ 5 convolution in which the first 3 ˆ 3

filter has been enlarged by the second 3 ˆ 3 filter. Interestingly, the factorization of convolution is
exactly represented in Einconv by adding two additional dummy tensors.

4



X T
˚

˚

˚h

w

d

i

j

k

h1

w1

d1

c

c1

(a) Standard

X
˚

˚

˚

(b) Depthwise Separable

X
˚

˚

˚

(c) (2+1)D

Figure 2: Graphical visualizations of 3D convolutions.

Bottleneck Layers In ResNet [He et al., 2015], the bottleneck module is used as a building
block: input channels are reduced before convolution, and then expanded afterwards. Finally, a
skip connection is used, re-adding the original input. Figure 1c shows the module without the skip
connection. From the diagram, we see that the linear structure of the bottleneck is equivalent to
Tucker-2 decomposition.

Depthwise Separable Convolution Mobilenet V1 [Howard et al., 2017] is a seminal light-weight
architecture. It employs depthwise separable convolution [Sifre and Mallat, 2014, Chollet, 2016] as a
building block; this is a combination of depthwise and 1 ˆ 1 convolution (Figure 1b), and works well
with limited computational resources.

Inverted Bottleneck Layers Mobilenet V2 [Sandler et al., 2018], the second generation of Mo-
bilenet, employs a building block called the inverted bottleneck module (Figure 1d). It is similar
to the bottleneck module, but there are two differences. First, whereas in the bottleneck module,
the number of intermediate channels is smaller than the number of input or of output channels, in
the inverted bottleneck this relationship is reversed, and the intermediate channels are “ballooned”.
Second, there are two intermediate channels in the bottleneck module, while the inverted bottleneck
has only one.

3.2 Higher Order Convolution

We have, thus far, considered 2D convolution, but Einconv can naturally handle higher-order convolu-
tion. For example, consider a 3D convolution. Let d, d1 be the input/output indices for depth, and k
be the index of filter depth. Then, by adding d1 to O and d, k to I, we can construct a hypergraph
for 3D convolution. Figure 2 shows the hypergraphs for the the standard 3D convolution and for
two light-weight convolutions: the depthwise separable convolution [Köpüklü et al., 2019], and
the (2+1)D convolution [Tran et al., 2018] which factorizes a full 3D convolution into 2D and 1D
convolutions.

3.3 Reduction and Enumeration

Although the hypergraphical notation is powerful, we need to be careful about its redundancy. For
example, consider a hypergraph pV, Eq where an inner index a P I is only used by the m-th tensor,
i.e, a P vm and a R vn for n ‰ m. Then, any tensors represented by pV, Eq, whatever their inner
dimensions, are also represented by removing a from every element of V and the a-th hyperedge
from E . Similarly, self loops do not increase the representability [Ye and Lim, 2018]. In terms
of representability of the Einconv layer, there is no reason to choose redundant hypergraphs.2 We
therefore want to remove them efficiently.

For simplicity, let us consider the 2D convolution case, in which the results are straightforwardly
extensible to higher-order cases. Let z denote the set difference operator and n denote the element-
wise set difference operator, which is used to remove an index from all vertices, e.g., V n a “
tv1za, . . . , vMzau for index a P O Y I. For convenience, we define a map θ : O Y I Ñ N that

2It might be possible that some redundant Einconv layer outperforms equivalent nonredundant ones, because
parametrization influences optimization. However, we focus here on representability alone.
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returns the dimension of an index a P O Y I , e.g. θpiq “ I . To discuss representability, we introduce
the following notation for the space of Einconv layers:

Definition 1. Given vertices V “ tv1, . . . , vMu and inner dimensions R, let FV : R

Ś

aPv1
θpaq ˆ

¨ ¨ ¨ ˆ R

Ś

aPvM
θpaq Ñ R

IˆJˆCˆC1

be the contraction of M tensors along with V . In addition, let

TVpRq Ď R
IˆJˆCˆC1

be the space that FV covers, i.e., TVpRq “ tFVpU1, . . . ,UM q | Um P

R

Ś

aPvm
θpaq for m P rM su.

Next, we show several sufficient conditions for hypergraphs to be redundant.

Proposition 1 (Ye and Lim 2018, Proposition 3.5). Given inner dimensions R P R
|I|, if Ra “ 1,

TVpRq is equivalent to TVnap. . . , Ra´1, Ra`1, . . . q.

Proposition 2. If vm Ď vn for some m,n P rM s, TVpRq is equivalent to TVzvm
pRq.

Proposition 3. If ea “ eb for a, b P I, TVpRq is equivalent to TVnapR̃q where R̃ “
p. . . , Ra´1, Ra`1, . . . , Rb´1, RaRb, Rb`1, . . . q.

Proposition 4. Assume the convolution is size-invariant, i.e., H “ H 1 and W “ W 1. Then, given
filter height and width I, J P t1, 3, 5, . . . u, the number of possible combinations that eventually

achieve I ˆ J convolution is πp I´1

2
qπpJ´1

2
q, where π : N Ñ N is the partition function of integers.

(See [Sloane, 2019] for examples.)

Proposition 1 says that, if the inner dimension of an inner index is one, we can eliminate it from
the hypergraph. Proposition 2 shows that, if the indices of a vertex form a subset of the indices of
another vertex (e.g. v1 “ ta, cu and v2 “ ta, b, cu), we can remove the first vertex. Proposition 3
means that a “double” hyperedge on the dimensions A,B P N is reduced to a single hyperedge on
the dimension AB. Proposition 4 tells us the possible choices of filter size. We defer the proofs to the
Supplementary material. By combining the above propositions, we can obtain the following theorem:

Theorem 1. If the number of inner indices and the filter size is finite, the set of nonredundant
hypergraphs representing convolution (1) is finite.

To enumerate nonredundant hypergraphs, we first use the condition of Proposition 2. Because of the
vertex-subset constraint in Proposition 2, a valid vertex set must be a subset of the power set of all

the indices O Y I, and its size is at most 22
|OYI|

. After enumerating the vertex sets satisfying this
constraint, we eliminate some of them using the other propositions.3 We used this algorithm in the
experiments (Section 6).

4 Nonlinear Extension

Tensor decomposition involves multiple linear operations, and each vertex can be seen as a linear

layer. For example, consider a linear map W : RC Ñ R
C1

. If W is written as a product of three
matrices W “ ABC, we can consider the linear map to be a composition of three linear layers:
Wpxq “ pA˝B˝Cqpxq for a vector input x P R

C . This might lead one to conclude that, in addition
to reducing computational complexity, tensor decomposition with many vertices also contributes
to an increase in representability. However, because the rank of W is determined by the minimum
rank of either A,B, or C, and the representability of a matrix is solely controlled by its rank, adding
linear layers does not improve representability. This problem arises in Einconv layers.

A simple solution is to add nonlinear functions between linear layers. Although this is easy to
implement, enumeration is no longer possible, because the equivalence relation becomes non-trivial
with the introduction of nonlinearity, causing an infinite number of candidates to exist. It is not
possible to enumerate an infinite number of candidates, thus an efficient neural architecture search
algorithm ( [Zoph and Le, 2016]) is needed. Many such algorithms have been proposed, based on
genetic algorithms (GAs) [Real et al., 2018], reinforcement learning [Zoph and Le, 2016], and other
methods [Zoph et al., 2018, Pham et al., 2018]. In this study, we employ GA because hypergraphs have
a discrete structure that is highly compatible with it. As multiobjective optimization problems need
to be solved (e.g., number of parameters vs. prediction accuracy), we use the nondominated sorting

3For more details, see the real code: https://github.com/pfnet-research/einconv/blob/master/
enumerate_graph.py
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genetic algorithm II (NSGA2) [Deb et al., 2002], which is one of the most popular multiobjective
GAs. In Section 6.2 we will demonstrate that we can find better Einconv layers by GA than by
enumeration.

5 Related Work

Tensor network notation, a graphical notation for linear tensor operations, was developed by the
quantum many-body physics community (see tutorial by Bridgeman and Chubb [2017]). Our notation
is basically a subset of this, except that ours allows hyperedges. Such hyperedges are convenient for
representing certain convolutions, such as depthwise convolution (see Figure 1b; the inclusion of the
rightmost vertex indicates depthwise convolution). The reduction of redundant tensor networks was
recently studied by Ye and Lim [2018], and we extended the idea to include convolution (Section 3.3).

There are several studies that combine deep neural networks and tensor networks. Stoudenmire and
Schwab [2016] studied shallow fully-connected neural networks, where the weight is decomposed
using the tensor train decomposition [Oseledets, 2011]. Novikov et al. [2015] took a similar approach
to deep feed-forward networks, which was later extended to recurrent neural networks [He et al.,
2017, Yang et al., 2017]. Cohen and Shashua [2016] addressed a CNN architecture that can be
viewed as a huge tensor decomposition. They interpreted the entire forward process, including the
pooling operation, as a tensor decomposition; this differs from our approach of reformulating a single
convolutional layer. Another difference is their focus on a specific decomposition (hierarchical Tucker
decomposition [Hackbusch and Kühn, 2009]); we do not impose any restrictions on decomposition
forms.

6 Experiments

We examined the performance tradeoffs of Einconv layers in image classification tasks. We measured
time complexity by counting the FLOPs of the entire forwarding path, and space complexity by
counting the total number of parameters. All the experiments were conducted on NVIDIA P100 and
V100 GPUs. The details of the training recipes are described in the Supplementary material.

6.1 Enumeration

First, we investigated the basic classes of Einconv for 2D and 3D convolutions. For 2D convolution
with a filter size of 3 ˆ 3, we enumerated the 901 nonredundant hypergraphs having at most two
inner indices, where the inner dimensions were all fixed to 2. In addition to these, we compared
baseline Einconv layers that include nonlinear activations and/or more inner indices. We used the
Fashion-MNIST dataset [Xiao et al., 2017] to train the LeNet-5 network [LeCun et al., 1998]. The
result (Figure 3) shows that, in terms of FLOPs, two baselines (standard and CP) achieve Pareto
optimality, but other nameless Einconv layers fill the gap between those two.

Similarly, for a 3 ˆ 3 ˆ 3 filter, we enumerated 3D Einconv having at most one inner index, of which
there were 492 instances in total. We used the 3D MNIST dataset [de la Iglesia Castro, 2016] with
architecture inspired by C3D [Tran et al., 2014]. The results (Figure 4) show that, in contrast to the
2D case, the baselines dominated the Pareto frontier. This could be because we did not enumerate the
case with two inner indices due to its enormous size.4

6.2 GA Search with Non-linear Activation

Next, we evaluated the full potential of Einconv by combining it with a neural architecture search.
In contrast to the previous experiments, we used Einconv layers from a larger space, i.e., we
allowed nonlinear activations (ReLUs), factoring-like multiple convolutions, and changes of the
inner dimensions. We employed two architectures: LeNet-5 and ResNet-50. We trained LeNet-5
with the Fashion-MNIST dataset, and the ResNet-50 with the CIFAR-10 dataset. Note that, for
ResNet-50, a significant number of Einconv instances could not be trained because the GPU memory

4For 3D convolution, the number of tensor decompositions having two inner indices is more than ten thousand.
Training all of them would require 0.1 million CPU/GPU days, which was infeasible with our computational
resources.
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Figure 3: Enumeration of 2D Einconv for LeNet-5 trained with Fashion-MNIST. Black dots indicate
unnamed tensor decompositions found by the enumeration.
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Figure 4: Enumeration of 3D Einconv for C3D-like networks trained with 3D MNIST, where 2p1, tt,
and ht mean (2+1)D convolution [Tran et al., 2018], tensor train decomposition [Oseledets, 2011],
and hierarchical Tucker decomposition [Hackbusch and Kühn, 2009], respectively.

was insufficient. For the GA search, we followed the strategy of AmoebaNet [Real et al., 2018]:
we did not use crossover operations, and siblings were produced only by mutation. Five mutation
operations were prepared for changing the number of vertices/hyperedges and two for changing the
order of contraction.5 We set test accuracy and the number of parameters as multiobjectives to be
optimized by NSGA2.

The results of LeNet-5 (Figure 5) show the tradeoff between the multiobjectives. Within the clearly
defined and relatively smooth Pareto frontier, nameless Einconv layers outperform the baselines.
The best accuracy achieved by Einconv was „ 0.92, which was better than that of the standard
convolution („ 0.91). Although the results of ResNet-50 (Figure 6) show a relatively rugged Pareto
frontier, Einconv still achieves better tradeoffs than named baselines other than the standard and CP
convolutions.

7 Conclusion and Discussion

Herein, we studied hypergraphical structures in CNNs. We found that a variety of CNN layers may
be described hypergraphically, and that there exists an enormous number of variants never previously
encountered. We found experimentally that the Einconv layers, the proposed generalized CNN layers,
yielded excellent results.

One striking observation from the experiments is that certain existing decompositions, such as CP
decomposition, consistently achieved good accuracy/complexity tradeoffs. This empirical result is
somewhat unexpected; there is no theoretical reason that existing decompositions should outperform

5See https://github.com/pfnet-research/einconv/blob/master/mutation.py for implementa-
tion details.
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Figure 5: GA search of 2D Einconv for LeNet-5 trained with Fashion-MNIST. Black dots indicate
unnamed tensor decompositions found by the GA search.
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Figure 6: GA search of 2D Einconv for ResNet-50 trained with CIFAR-10.

the new, unnamed ones. Developing a theory capable of explaining this phenomenon, or at least
of characterizing the necessary conditions (e.g. symmetricity of decomposition) to achieve good
tradeoffs would be a promising (but challenging) direction for future work.

One major limitation at present is the computational cost of searching. For example, the GA search
for ResNet-50 in Section 6.2 took 829 CPU/GPU days. This was mainly because of the long training
periods (approximately 10 CPU/GPU hours for each training), but also because the GA may not
have been leveraging the information on hypergraphs well. Although we incorporated some prior
knowledge of hypergraphs such as the proximity regarding edge removing and vertex adding through
mutation operations, simultaneous optimization of hypergraph structures and neural networks using
sparse methods such as LASSO or Bayesian sparse models may be more promising.
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