
Supplementary Information for ’Better transfer
learning with inferred successor maps’

Tamas J. Madarasz
University of Oxford

tamas.madarasz@ndcn.ox.ac.uk

Timothy E. Behrens
University of Oxford

behrens@fmrib.ox.ac.uk

S1 Algorithm details

S1.1 Particle filtering with Bayesian Linear Gaussian Model

In this section we outline the particle filtering solution to assigning each CR value observation to a
cluster in the conjugate prior case. The DP mixture model can be written as the infinite limit of the
following hierarchical model as K →∞[1]

p ∼ Dirichlet(α/K, . . . , α/K) (1)
ϕc ∼ H (2)
ci|p ∼ Discrete(p) (3)

yi|ci, ϕ ∼ F (ϕci) (4)

where yi are the observations, and F (θi) = F ((ϕci) are the mixture components. Using the notation
of our setup more directly, at the t-th step

p ∼ Dirichlet(α/K, . . . , α/K) (5)
wcr
c ∼ H (6)

ct|p ∼ Discrete(p) (7)

V cr(st
)|ct,wcr ∼ N (φ(si) ·wcr

ct , σ
2
CR) (8)

When performing Gibbs sampling, the state of the Markov chain consists of the ct-s and wcr
c s that

are currently‘in use’. Similarly, the state of the particle filter is represented, for every particle, by an
assignment of ct-s, and the posteriors in use, wcr

c . If the base distribution H represents a conjugate
prior, such as a multivariate Gaussian

wcr ∼ N (M0,Σ0), (9)

we can perform the integration analytically, giving a Gaussian posterior for wcr
ct , and a Gaussian

posterior predictive distribution to calculate the importance weight wt. In more detail, given a particle
of partitions (c1, . . . ct) and observations vcr1:t,

wcr
ct |H, v

cr
1:t ∼ N (M ct

t ,Σ
ct
t ) (10)

Σctt =
[
(Σctt−1)−1 +

φ(st)
T
φ(st)

σ2
CR

]−1
(11)

M ct
t = Σctt

[
(Σctt−1)−1 ·M ct

t−1 +
φ(st)

T vcrt
σ2
CR

]
(12)

The particle filter itself proceeds by first sampling from the proposal distribution given by the CRP

P (cit = k | ci1:t−1) =

{
mk

t−1+α , where mk is the number of observations assigned to cluster k
α

t−1+α , if k is a new cluster
(13)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Figure S1: Comparable performance of GSR and BSR on Experiment I.

and then computing the importance weight given by the posterior predictive based on the observations
up to and including t-1.

wpt ∝ w
p
t−1 ∗ p(vcrt |ct, c1:t−1,vcr1:t−1),where (14)

vcrt |ct, c1:t−1,vcr1:t−1 ∼ N
(
φ(st)

TM ct
t−1, φ(st)

TΣctt−1φ(st) + σ2
CR

)
(15)

Since we resample at every step, in practice the importance weights were given simply by the above
the densities, normalized across all particles,

ŵpt =
wpt∑
i w

i
t

.

This procedure, used in our ‘GSR’ algorithm, requires at least one inversion of the precision matrix at
every time step to compute the posterior, which is computationally intensive in the non-tabular case,
or when the prior is not diagonal. For BSR, we forgo storing separate Gaussian posteriors of the CR
maps for each particle, updating instead one common set of CR maps. At every step, after computing
the CR value vcr and the importance weights wpt , but before resampling, the particular context (map)
to be updated is chosen through a winner-take-all majority of the summed up aggregated normalized
importance weights

arg max
k

{
∑
p:cpt=k

ŵpt }.

Because we chose the CR kernel Kγ = γ−f , γ−f+1, . . . , 1, . . . , γf to be symmetric in time, the
particle filtering process only started once the agent has taken f steps. Similarly, at the end of the
episode, the last f steps were ‘filtered together’, using a simple proposal, and importance weights
calculated together using the last f likelihoods. CR values for the last f states were calculated by
padding the vector of received rewards (and the normalizing vector for the tabular representation) by
0s at the end.

GSR and BSR performed similarly for Experiment I (Fig. S1), but GSR seemed to perform consider-
ably worse on Experiment II, though we did not conduct a full search of the hyperparameters.

We used a second version of the algorithm BSR2 for the neural data analysis, where we performed
the CR map updates only at the end of each episode, by cycling through the observed CR values once,
and updating the map for the overall most likely context as determined by the ω computed at the end
of the episode. The maps remained unchanged during the episode when they were used to compute
the importance weights. This further reduced the amount of computation required during acting in
the environment, and resulted in CR maps with more concentrated clusters of similar values, but had
only a small effect on performance.

S1.2 Tabular algorithm

Here we provide details for our agent not included in the main text. The concentration parameter for
the Dirichlet process was α = 2, the standard deviation for the Gaussian generative distribution was

2



σcr = 1.6 but these parameters were not properly optimized or otherwise systematically evaluated.
P was a 100 by 10 matrix, corresponding to 100 particles each with 10 of the most recent contexts.
In the tabular setting, the learning rate αw was 1, αws = 0.01, and αcr was annealed starting from
0.15, over 6000 episodes. The replay updates were done on 5 randomly sampled transitions from
the replay buffer after every direct update, with each successor map assigned its own replay buffer.
The replay didn’t use information about whether states were terminal or not, using the full Bellman
backup each time. For GPI the buffer for a new map was reset whenever a change in the environment
was signalled, so as not to contaminate the learning of the current policy with transitions from a
different task setting, as this proved considerably detrimental in the experiments we tried. The delay
in filtering, f , was set to 3 steps. Exploration rate was annealed during the first 250 episodes from 1
to 0, but the annealing stopped whenever it reached the exploration rate specified in the algorithm’s
parameter setting. We searched through αSR values in the range specified above, and values of ε in
[0., 0.05, 0.1, . . . , 0.35] for Experiment I, [0., 0.05, 0.1, . . . , 0.65] for the algorithms in Experiment
II with no offsets, and [0., 0.05, 0.1, . . . , 0.45] for algorithms with offsets and Experiment III with
the continuous maze. Best-performing settings are summarized in the tables below. The constant
offset cws was 1 in both tabular and continuous experiments. The replay buffer for each context could
store 300 transitions before the oldest entry was overwritten. Minibatches for the SR replay updates
contained 5 transitions (or the total number of transitions in the buffer if that was smaller).

After arriving in a state s, CR values were calculated by taking the dot product of the kernel Kγ and
the rewards received up to 3 steps before, and up to 3 steps after the state, appropriately padded with
0s if necessary, and normalized by the dot product of Kγ and a vector of 1s for rewards and 0s for
any padding used.

S1.3 GSR

We matched GSR to BSR as much as possible, with 100 particles each storing the last ten contexts.
We experimented with other setups (fewer particles, longer window of past contexts), but didn’t get
any improvements. The prior covariance matrix Σ0 was the identity matrix, and the prior mean M0

was a vector of zeros.

S1.4 Neural network algorithm

For the neural network architecture, the input layer had 100 neurons, hidden layer sizes were 150,
while the output layers by definition had the same size as the input, but with a separate output layer
for each of the four possible actions (Fig. 1d), resulting in a total of 400 neurons. We used the
tanh function as nonlinearity, and no nonlinearity was used for the output layers. Parameters were
initialised using Glorot initialisation [2]. We employed the successor equivalent of target networks
[3] for better performance (see Algorithm 2), and a designated replay buffer accompanying each
successor network. This was equivalent to a single memory with transitions labelled by sampled
context, as the limit on the memory size, determining when a memory was overwritten, was by
episode (set to 200 episodes), and thus common to all memories. Transitions were sampled randomly
from all the transitions stored in the buffer, with minibatches of size 15 (or the number of transitions
stored in the buffer if this was smaller), used to update the successor features.. In addition, we did a
second run of updates for w at the end of each episode, cycling through all the steps of the episode.

Parameters were αw = 0.005, αsr = 0.0005, and αcr was annealed from 0.005 to 0.001 over 4000
episodes. Replay updates were performed on minibatches of 15 transitions, one minibatch after every
transition, following a direct update based on the most recent transition. The rmsprop [4] optimizer
was used for updates, and a dropout rate of 0.1 was applied. Networks and target networks were
synchronized every 80 steps, starting from the beginning of each episode. The delay in filtering, f ,
was set to 4 steps, and P was a 100 by 50, matrix, storing the 50 most recent contexts.

We ran BSR and SSR using the settings under which they performed best in Experiment II, namely
BSR with both constant and wcr exploration offsets, and SSR+ with constant offset.

3



Figure S2: Episode lengths for the full length of Experiment I

Algorithm Steps(103 ) ε, αSR
BSR-4 34.1± 0.7 0., 0.005
GPI-4 40.0± 1. 0.05, 0.001
SSR 39.8± 0.9 0.1, 0.001
KQ 38.5± 0.9 0.05, 0.001

Table S1: Results and parameter settings for Experiment I.

S2 Environment and experiment details

S2.1 Grid-world maze

We implemented the tabular algorithms using the rllab framework [5] The maze for Experiment I
was, as depicted in Fig. 1e, a 8 x 8 tabular maze. Available actions were up, down, left and right. If,
on taking an action, the agent hit an internal or external wall, it stayed in place. Reward on landing on
the goal was 10, γ = 0.99, and episodes were restricted to at most 75 steps. Start and goal locations
changed every 20 episodes. Each algorithm was run 10 times, and results appropriately averaged.

S2.2 Puddle-world

For Experiment II, puddles were added in the quadrant opposite the current reward, covering the
entire quadrant except where walls were already in place. Landing in a puddle carried a penalty of
-1, and puddles stayed in place during the entire episode (i.e. couldn’t be ‘picked up’). Otherwise
things remained unchanged from the previous setting, except that the reward function now changed
every 30 episodes, for a total of 150 sessions. Each algorithm was run 10 times as above, and results
appropriately averaged.

No offset Constant offset Constant+CR offset
Algorithm Returns(103 ) ε, αSR Returns(103 ) ε, αSR Returns(103 ) ε, αSR
BSR-4 13.3± 0.5 0.55, 0.01 23.2± 0.4 0.15, 0.05 27.1± 0.5 0.05, 0.05
BSR-6 13.1± 0.4 0.55, 0.01 23.8± 0.3 0.35, 0.05 28.3± 0.4 0.1, 0.05
SSR 12.0± 0.2 0.6, 0.005 20.1± 0.4 0.25, 0.005 17.9± 0.8 0.15, 0.01
EW-4 11.9± 0.3 0.55, 0.005 20.2± 0.2 035, 0.05 21.6± 0.5 0.15, 0.05

Stored reward map, no offset
Algorithm Returns(103 ) ε, αSR
GPI-4 20.1± 0.2 0.55, 0.01
GPI-6 19.0± 0.4 0.5, 0.01

Table S2: Results and parameter settigns for Experiment II.

4



Figure S3: Continuous maze, with the agent navigating from the start state (blue) to the unsignalled
goal location (green).

Algorithm Total Rewards(103 ) ε
BSR-4 update most likely 36.1± 0.5 0.3
BSR-4 update sampled 32.4± 0.4 0.3
GPI-4 15.4± 0.3 0.35
SSR+ 31.0± 0.4 0.4
SSR 24.1± 0.3 0.45

Table S3: Results and parameter settings for Experiment III.

S2.3 Continuous maze

This was a continuous copy of the maze from Experiment I. We set the length of the maze to be 3
but the maze was partitioned into an equivalent 8 x 8 setting by identically arrange walls as before
(Fig. S3). 100 input neurons represented the agent’s location, each with respect to one of 100 equally
spaced locations as a Gaussian likelihood with diagonal covariance of 0.1. The activation of the i-th
unit, with center cx, cy was

φi(x, y) ∝ exp
(
− (cx − x)2 + (cy − y)2

2σ2

)
,

where the normalizing constant was the same as for the Gaussian distribution in question, multiplied
by 10. The actual state representation was the sum of the current activation, and the discounted sum
of past states with a discount factor of 0.9, adding an element of trajectory-dependent recurrence and
variability to the state representation.

Actions were again up, down, left, or right, but the arrival point of the step was offset by two-
dimensional Gaussian noise, with a diagonal covariance matrix with 0.02 on the diagonals. The
agent’s step-size was 0.3 (thus smaller than before, at a tenth of the maze’s length). Agents were
point-like, but were not allowed to touch, or traverse walls. Steps that would have resulted in such an
outcome instead meant that the agent stayed in place. This was also the case if the addition of the
random noise would have resulted in contact between the agent and a wall. The agent collected the
reward and ended the episode if it was at a distance of less than 0.25 from the goal’s location. The
goal location itself could be anywhere outside the walled-off areas of the maze. As in Experiment
II, the reward function changed every 30 episodes. In all other aspects the task was identical to
Experiment I.

5



Figure S4: Difference in performance between GPI and BSR in a task where the environmental
dynamics temporarily change.

S2.4 Three-reward open maze foraging task

Here the environment was the 8 by 8 maze with no internal walls. 3 reward locations were sampled
at the beginning of each of the 150 sessions that lasted 30 trials (episodes) each. The pre- and
post-probe parts of the sessions were 75 steps each (the same number as the upper limit of steps
for an episode), and for simplicity we assumed no learning during these times. Instead the agent
was randomly moving around while preserving its SR and CR representations. We used the values
of the successor maps to represent firing rates, with rt(s′) = M(st, at, s

′). For data analysis, the
pre- and post-probe averages were calculated by averaging over the successor maps according to
their weights at the beginning of the probe

∑
i ωiMi. Since rewards in this task are not Markovian,

and implementing a working memory or learning the overall structure of the task was not our focus,
we gave all agents the ability to block out and temporarily set to 0 in w all rewards they already
collected on that trial when evaluating the value function. This did not otherwise affect their beliefs
about where the rewards were, i.e. they didn’t forget learnt reward locations by the next trial. The
algorithms’ parameters were ε = 0.2, αw = 0.5, αsr = 0.1 and σcr = 1. We got the following
values for the Spearman correlation coefficients between the trial number and the z-score difference,
for trials 1 to 16, averaged across sessions:

BSR SSR EWI GPI
0.900± 0.020 0.778± 0.030 −0.033± 0.045 0.753± 0.047

The first 25 sessions were used as a warm-up for the agent to learn the environment, and sessions 25
to 140 were used in the data analysis. Plots equivalent to that in Fig. 3b for every 10th session from
session 30 onwards are shown in figures S3 to S6 for the different algorithms.

S2.5 Y-maze navigation task

We also implemented the Y-maze on a grid-world, as shown in Figure S2. On trial types 2 and 3 one
of the two barriers shown were put in place, and the goal was in the top left hand corner state. The
top right and top left hand corners were equivalent states (state 1, equivalent to the top goal state of
the Y-maze in Fig. 4a), such that if the agent entered the top right hand corner, it got teleported to the
top left and that was the only destination state recorded. Similarly, if it took the ‘right’ action from
the top left corner it ended up in the state below the top right corner. This was permissible, since we
don’t assume any type of action embedding, and there is no generalization based on action identity.
This setup thus gave us an equivalent representation to the Y-maze used in rodent experiments.

We ran the simulations on the exact session structure followed during the experiments and the agent
had to complete the same number of successful episodes in each session that the experimental animals
have done. In addition, we gave the agents a 500 episode pre-training phase, before we started
following the experimental trial structure and ‘recording’ the representations. During these first 500
episodes, the trial type was reset every 20 episodes, as in Experiment I. After the pre-training phase
there were 24 blocks of sessions where each block contained consecutive trials of all the trial types,

6



such that there were exactly 3 changes to the trial type during every block. We used the same blocks
of trial types as used for the experiments in [6]. The algorithms’ parameters were ε = 0.2, αw = 0.5,
αsr = 0.1 and σcr = 1.

S3 Statistical Analysis

We performed a one-way ANOVA and a Tukey post-hoc test for Experiment I for the total number of
steps taken to complete the 4500 episodes. The ANOVA showed an overall significant difference
F = 9.87, p < 10−5, and post-hoc Tukey’s HSD test confirmed that BSR was significantly different
from the other 3 algorithms. For Experiment III, we ran the same tests on the total rewards collected
after 250000 steps. The overall ANOVA was again significant, F = 354.3, p < 10−5, and BSR-4
with full exploration offsets was also significantly better than SSR and GPI according to Tukey’s
HSD test. Tukey’s HSD test didn’t find a significant difference when making the post-hoc comparison
between BSR-4 updating the sampled context and SSR+, but BSR-4 updating the most likely context
was significantly better than all other algorithms. Sample sizes were 10 for all algorithms, except
BSR, for which it was 14.

7



S4 Algorithms

Algorithm 1 Bayesian Successor Representation
1: Require: discount factor γ, max number of clusters k, filter-delay f , hyperparameters {ε,
σcr,α,cws,αsr,αcr,αw}

2: Initialise Successor Maps M1, ..,Mk to 0, CR maps wcr
1 , ....w

cr
k , and weights w1, ....wk to

small random values, ω ← {1/k, ..., 1/k}, random particle matrix P ∼Multinomial(ω), empty
memory buffers MB1, . . . ,MBk. Kγ ← [γ−f , γ−f+1, .., 1, .., γf ]T

3: for each episode do
4: t← 0, initial state s← s0
5: while s not terminal and steps taken in episode<limit do
6: i ∼Multinomial(ω) . sample context with probabilites ω
7: wj ← wj + αws(cws + wcr

j )∀j
8: random_action ∼ Bernoulli(ε) . ε-greedy exploration
9: if not random_action then

10: a← arg max
a

Mi(s, a, :) ·wi

11: else
12: a ∼Uniform({1,...,|A|})
13: end if
14: Execute a and obtain next state s′ and reward r = r(s′)
15: Store (s, a, s′, r) in MBi
16: wj ← wj + αw[r − φ(s′)Twj ]φ(s′) for all j
17: for each context i do
18: a′ ← arg max

a
Mi(s

′, a, :)Twi

19: Mi(s, a, :)←Mi(s, a, :) + αsr

MC ∗ [φ(s′) + γMi(s
′, a′, :)−Mi(s, a, :)]

20: Optional replay updates on mini-batch from MBi
21: end for
22: if steps taken in episode ≥ f then
23: vcrt−f ← ([rmax(t−2∗f,1) : rt] ·Kγ)/

∑
Kγ . compute normalized CR-value

24: Filter(P, st−f , vcrt−f )

25: i← argmax(ω)
26: wcr

i ← wcr
i + αcr[crt − φ(st)

Twcr
i ]φ(st)

27: end if
28: s← s′

29: end while
30: end for
31: function FILTER(P, s, vcr)
32: for every particle p (row of P) do
33: generate new context cp according to CRP prior (Eq. 20) with concentration parameter α
34: end for
35: for every context i present in the proposals do
36: Evaluate importance weights using Gaussian likelihoods wi = fG(vcr|φ(s)Twcr

i , σ
2
cr)

37: end for
38: Resample particles according to ŵp = wcp∑

p w
cp

39: Remove first (oldest) column of P
40: Recompute ω: ω[i]←

∑
p:cp=i ŵ

p ∀i
41: end function

8



Algorithm 2 Neural Bayesian Successor Representation
1: Require: discount factor γ, max number of clusters k, filter-delay f , state embedding φ, hyperpa-

rameters {ε, σcr, α, cws,αsr,αcr,αw}
2: Initialise successor network and target network parameters θ1, θ

−
1 .., θk, θ

−
k for networks

m1,m
−
1 , ...mk,m

−
k , weights w1, ....wk and CR maps wcr

1 , ....w
cr
k with small random values,

ω ← {1/k, ..., 1/k}, random particle matrix P ∼Multinomial(ω), empty memory buffers
MB1, . . . ,MBk.

3: Kγ ← [γ−f , γ−f+1, .., 1, .., γf ]
4: for each episode do
5: t← 0, initial state s← s0
6: while s not terminal and steps taken in episode<limit do
7: i ∼Multinomial(ω) . sample context with probabilities ω
8: Every n_sync steps, synchronize θi and θ−i ∀i
9: wj ← wj + αws(cws + wcr

j )∀j . reward weight offset by CR prior
10: random_action ∼ Bernoulli(ε) . ε-greedy exploration
11: if not random_action then
12: a← arg max

a
mi(s, a) ·wi

13: else
14: a ∼Uniform({1,...,|A|})
15: end if
16: Execute a and obtain next state s′ and reward r = r(s′)
17: Store (s, a, s′, r) in MemoryBufferi
18: wj ← wj + αw[r − φ(s′)Twj ]φ(s′) ∀ j
19: i← arg max

i
(ωi)

20: Sample a mini-batch of transitions from MBi
21: for each transition sm, am, s′m do
22: a′m ← arg max

a
m−i (s′m, am) ·wi

23: perform updates θi ← θi + αsr∇θi [φ(s′m) + γ ·m−i (s′m, a
′
m)−mi(sm, am)]

24: end for
25: if steps taken in episode ≥ f then
26: vcrt−f ← [rmax(t−2∗f,1) : rt] ·Kγ . compute CR-value
27: Filter(P, st−f , vcrt−f )

28: wcr
i ← wcr

i + αcr[v
cr
t − φ(st)

Twcr
i ]φ(st)

29: end if
30: s← s′

31: end while
32: end for
33: function FILTER(P, s, vcr)
34: for every particle p (row of P) do
35: generate new context cp according to CRP prior (Eq. 20) with concentration parameter α
36: end for
37: for every context i present in the proposals do
38: Evaluate importance weights using Gaussian likelihoods wi = fG(vcr|φ(s)Twcr

i , σ
2
cr)

39: end for
40: Resample particles according to ŵp = wcp∑

p w
cp

41: Remove first (oldest) column of P
42: Recompute ω: ω[i]←

∑
p:cp=i ŵ

p ∀i
43: end function

9



Figure S5: Splitter cell Y-maze

Figure S6: BSR flickering sessions

Figure S7: EW flickering sessions

10



Figure S8: SSR flickering sessions

Figure S9: GPI flickering sessions

11



References
[1] R. M. Neal, “Markov chain sampling methods for dirichlet process mixture models,” Journal of

Computational and Graphical Statistics, vol. 9, no. 2, 2000.
[2] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proc. 13th Int. Conf. Artif. Intell. Stat., 2010.
[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning.,” Nature, 2015.

[4] T. Tieleman, G. E. Hinton, N. Srivastava, and K. Swersky, “Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude,” COURSERA Neural Networks Mach.
Learn., 2012.

[5] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep reinforcement
learning for continuous control,” 2016.

[6] R. M. Grieves, E. R. Wood, and P. A. Dudchenko, “Place cells on a maze encode routes rather
than destinations,” Elife, 2016.

12


	Algorithm details
	Particle filtering with Bayesian Linear Gaussian Model
	Tabular algorithm
	GSR
	Neural network algorithm

	Environment and experiment details
	Grid-world maze
	Puddle-world
	Continuous maze
	Three-reward open maze foraging task
	Y-maze navigation task

	Statistical Analysis
	Algorithms

