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Abstract

Modeling the probability distribution of rows in tabular data and generating realistic
synthetic data is a non-trivial task. Tabular data usually contains a mix of discrete
and continuous columns. Continuous columns may have multiple modes whereas
discrete columns are sometimes imbalanced making the modeling difficult. Existing
statistical and deep neural network models fail to properly model this type of data.
We design CTGAN, which uses a conditional generator to address these challenges.
To aid in a fair and thorough comparison, we design a benchmark with 7 simulated
and 8 real datasets and several Bayesian network baselines. CTGAN outperforms
Bayesian methods on most of the real datasets whereas other deep learning methods
could not.

1 Introduction

Table 1: The number of wins of a particular method
compared with the corresponding Bayesian network
against an appropriate metric on 8 real datasets.

outperform

Method CLBN [7] PrivBN [28]

MedGAN, 2017 [6] 1 1
VeeGAN, 2017 [21] 0 2

TableGAN, 2018 [18] 3 3

CTGAN 7 8

Recent developments in deep generative mod-
els have led to a wealth of possibilities. Us-
ing images and text, these models can learn
probability distributions and draw high-quality
realistic samples. Over the past two years,
the promise of such models has encouraged
the development of generative adversarial net-
works (GANs) [10] for tabular data genera-
tion. GANs offer greater flexibility in model-
ing distributions than their statistical counter-
parts. This proliferation of new GANs neces-
sitates an evaluation mechanism. To evaluate
these GANs, we used a group of real datasets
to set-up a benchmarking system and imple-
mented three of the most recent techniques. For comparison purposes, we created two baseline
methods using Bayesian networks. After testing these models using both simulated and real datasets,
we found that modeling tabular data poses unique challenges for GANs, causing them to fall short
of the baseline methods on a number of metrics such as likelihood fitness and machine learning
efficacy of the synthetically generated data. These challenges include the need to simultaneously
model discrete and continuous columns, the multi-modal non-Gaussian values within each continuous
column, and the severe imbalance of categorical columns (described in Section 3).
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To address these challenges, in this paper, we propose conditional tabular GAN (CTGAN)1, a method
which introduces several new techniques: augmenting the training procedure with mode-specific
normalization, architectural changes, and addressing data imbalance by employing a conditional
generator and training-by-sampling (described in section 4). When applied to the same datasets
with the benchmarking suite, CTGAN performs significantly better than both the Bayesian network
baselines and the other GANs tested, as shown in Table 1.

The contributions of this paper are as follows:
(1) Conditional GANs for synthetic data generation. We propose CTGAN as a synthetic tabular
data generator to address several issues mentioned above. CTGAN outperforms all methods to date
and surpasses Bayesian networks on at least 87.5% of our datasets. To further challenge CTGAN, we
adapt a variational autoencoder (VAE) [15] for mixed-type tabular data generation. We call this TVAE.
VAEs directly use data to build the generator; even with this advantage, we show that our proposed
CTGAN achieves competitive performance across many datasets and outperforms TVAE on 3 datasets.
(2) A benchmarking system for synthetic data generation algorithms.2 We designed a compre-
hensive benchmark framework using several tabular datasets and different evaluation metrics as well
as implementations of several baselines and state-of-the-art methods. Our system is open source
and can be extended with other methods and additional datasets. At the time of this writing, the
benchmark has 5 deep learning methods, 2 Bayesian network methods, 15 datasets, and 2 evaluation
mechanisms.

2 Related Work

During the past decade, synthetic data has been generated by treating each column in a table as a
random variable, modeling a joint multivariate probability distribution, and then sampling from that
distribution. For example, a set of discrete variables may have been modeled using decision trees
[20] and Bayesian networks [2, 28]. Spatial data could be modeled with a spatial decomposition tree
[8, 27]. A set of non-linearly correlated continuous variables could be modeled using copulas [19, 23].
These models are restricted by the type of distributions and by computational issues, severely limiting
the synthetic data’s fidelity.

The development of generative models using VAEs and, subsequently, GANs and their numerous
extensions [1, 11, 29, 26], has been very appealing due to the performance and flexibility offered
in representing data. GANs are also used in generating tabular data, especially healthcare records;
for example, [25] uses GANs to generate continuous time-series medical records and [4] proposes
the generation of discrete tabular data using GANs. medGAN [6] combines an auto-encoder and a
GAN to generate heterogeneous non-time-series continuous and/or binary data. ehrGAN [5] generates
augmented medical records. tableGAN [18] tries to solve the problem of generating synthetic data
using a convolutional neural network which optimizes the label column’s quality; thus, generated
data can be used to train classifiers. PATE-GAN [14] generates differentially private synthetic data.

3 Challenges with GANs in Tabular Data Generation Task

The task of synthetic data generation task requires training a data synthesizer G learnt from a table
T and then using G to generate a synthetic table Tsyn. A table T contains Nc continuous columns
{C1, . . . ,CNc

} and Nd discrete columns {D1, . . . ,DNd
}, where each column is considered to be

a random variable. These random variables follow an unknown joint distribution P(C1:Nc
,D1:Nd

).
One row rj = {c1,j , . . . , cNc,j , d1,j , . . . , dNd,j}, j ∈ {1, . . . ,n}, is one observation from the joint
distribution. T is partitioned into training set Ttrain and test set Ttest. After training G on Ttrain,
Tsyn is constructed by independently sampling rows using G. We evaluate the efficacy of a generator
along 2 axes. (1) Likelihood fitness: Do columns in Tsyn follow the same joint distribution as
Ttrain? (2) Machine learning efficacy: When training a classifier or a regressor to predict one column
using other columns as features, can such classifier or regressor learned from Tsyn achieve a similar
performance on Ttest, as a model learned on Ttrain?

Several unique properties of tabular data challenge the design of a GAN model.

1Our CTGAN model is open-sourced at https://github.com/DAI-Lab/CTGAN
2Our benchmark can be found at https://github.com/DAI-Lab/SDGym.
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Mixed data types. Real-world tabular data consists of mixed types. To simultaneously generate a
mix of discrete and continuous columns, GANs must apply both softmax and tanh on the output.

Non-Gaussian distributions: In images, pixels’ values follow a Gaussian-like distribution, which
can be normalized to [−1, 1] using a min-max transformation. A tanh function is usually employed
in the last layer of a network to output a value in this range. Continuous values in tabular data are
usually non-Gaussian where min-max transformation will lead to vanishing gradient problem.

Multimodal distributions. We use kernel density estimation to estimate the number of modes in
a column. We observe that 57/123 continuous columns in our 8 real-world datasets have multiple
modes. Srivastava et al. [21] showed that vanilla GAN couldn’t model all modes on a simple 2D
dataset; thus it would also struggle in modeling the multimodal distribution of continuous columns.

Learning from sparse one-hot-encoded vectors. When generating synthetic samples, a generative
model is trained to generate a probability distribution over all categories using softmax, while the
real data is represented in one-hot vector. This is problematic because a trivial discriminator can
simply distinguish real and fake data by checking the distribution’s sparseness instead of considering
the overall realness of a row.

Highly imbalanced categorical columns. In our datasets we noticed that 636/1048 of the categori-
cal columns are highly imbalanced, in which the major category appears in more than 90% of the
rows. This creates severe mode collapse. Missing a minor category only causes tiny changes to
the data distribution that is hard to be detected by the discriminator. Imbalanced data also leads to
insufficient training opportunities for minor classes.

4 CTGAN Model

CTGAN is a GAN-based method to model tabular data distribution and sample rows from the distri-
bution. In CTGAN, we invent the mode-specific normalization to overcome the non-Gaussian and
multimodal distribution (Section 4.2). We design a conditional generator and training-by-sampling
to deal with the imbalanced discrete columns (Section 4.3). And we use fully-connected networks
and several recent techniques to train a high-quality model.

4.1 Notations

We define the following notations.

– x1 ⊕ x2 ⊕ . . .: concatenate vectors x1,x2, . . .
– gumbelτ (x): apply Gumbel softmax[13] with parameter τ on a vector x
– leakyγ(x): apply a leaky ReLU activation on x with leaky ratio γ
– FCu→v(x): apply a linear transformation on a u-dim input to get a v-dim output.

We also use tanh, ReLU, softmax, BN for batch normalization [12], and drop for dropout [22].

4.2 Mode-specific Normalization

Properly representing the data is critical in training neural networks. Discrete values can naturally be
represented as one-hot vectors, while representing continuous values with arbitrary distribution is
non-trivial. Previous models [6, 18] use min-max normalization to normalize continuous values to
[−1, 1]. In CTGAN, we design a mode-specific normalization to deal with columns with complicated
distributions.

Figure 1 shows our mode-specific normalization for a continuous column. In our method, each
column is processed independently. Each value is represented as a one-hot vector indicating the
mode, and a scalar indicating the value within the mode. Our method contains three steps.

1. For each continuous column Ci, use variational Gaussian mixture model (VGM) [3] to
estimate the number of modes mi and fit a Gaussian mixture. For instance, in Figure 1, the
VGM finds three modes (mi = 3), namely η1, η2 and η3. The learned Gaussian mixture
is PCi

(ci,j) =
∑3
k=1 µkN (ci,j ; ηk,φk) where µk and φk are the weight and standard

deviation of a mode respectively.
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Model the distribution of a  
continuous column with VGM.

For each value, compute the  
probability of each mode.

Sample a mode and  
normalize the value.

Figure 1: An example of mode-specific normalization.

2. For each value ci,j in Ci, compute the probability of ci,j coming from each mode. For
instance, in Figure 1, the probability densities are ρ1, ρ2, ρ3. The probability densities are
computed as ρk = µkN (ci,j ; ηk,φk).

3. Sample one mode from given the probability density, and use the sampled mode to normalize
the value. For example, in Figure 1, we pick the third mode given ρ1, ρ2 and ρ3. Then
we represent ci,j as a one-hot vector βi,j = [0, 0, 1] indicating the third mode, and a scalar
αi,j =

ci,j−η3
4φ3

to represent the value within the mode.

The representation of a row become the concatenation of continuous and discrete columns

rj = α1,j ⊕ β1,j ⊕ . . .⊕ αNc,j ⊕ βNc,j ⊕ d1,j ⊕ . . .⊕ dNd,j ,

where di,j is one-hot representation of a discrete value.

4.3 Conditional Generator and Training-by-Sampling

Traditionally, the generator in a GAN is fed with a vector sampled from a standard multivariate
normal distribution (MVN). By training together with a Discriminator or Critic neural networks, one
eventually obtains a deterministic transformation that maps the standard MVN into the distribution of
the data. This method of training a generator does not account for the imbalance in the categorical
columns. If the training data are randomly sampled during training, the rows that fall into the minor
category will not be sufficiently represented, thus the generator may not be trained correctly. If the
training data are resampled, the generator learns the resampled distribution which is different from the
real data distribution. This problem is reminiscent of the “class imbalance” problem in discriminatory
modeling - the challenge however is exacerbated since there is not a single column to balance and the
real data distribution should be kept intact.

Specifically, the goal is to resample efficiently in a way that all the categories from discrete attributes
are sampled evenly (but not necessary uniformly) during the training process, and to recover the
(not-resampled) real data distribution during test. Let k∗ be the value from the i∗th discrete column
Di∗ that has to be matched by the generated samples r̂, then the generator can be interpreted
as the conditional distribution of rows given that particular value at that particular column, i.e.
r̂ ∼ PG(row|Di∗ = k∗). For this reason, in this paper we name it Conditional generator, and a GAN
built upon it is referred to as Conditional GAN.

Integrating a conditional generator into the architecture of a GAN requires to deal with the following
issues: 1) it is necessary to devise a representation for the condition as well as to prepare an
input for it, 2) it is necessary for the generated rows to preserve the condition as it is given, and
3) it is necessary for the conditional generator to learn the real data conditional distribution, i.e.
PG(row|Di∗ = k∗) = P(row|Di∗ = k∗), so that we can reconstruct the original distribution as

P(row) =
∑
k∈Di∗

PG(row|Di∗ = k∗)P(Di∗ = k).

We present a solution that consists of three key elements, namely: the conditional vector, the generator
loss, and the training-by-sampling method.
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Generator G(.)

Critic C(.)

Score

 z ~  N(0, 1)
Select from
D1 and D2

α

Say D2 is selected

Pick a row from T     with D2 = 1

1, j 	β1, j α2, j 	β2, j d d1, j 2, j α1, j 	β1, j α2, j 	β2, j d d1, j 2, j

train

Select a category
from D2 

D2 D1 

0 0 0 1 0

Say category 1 is selected

Figure 2: CTGAN model. The conditional generator can generate synthetic rows conditioned on one of
the discrete columns. With training-by-sampling, the cond and training data are sampled according
to the log-frequency of each category, thus CTGAN can evenly explore all possible discrete values.

Conditional vector. We introduce the vector cond as the way for indicating the condition (Di∗ = k∗).
Recall that all the discrete columns D1, . . . ,DNd

end up as one-hot vectors d1, . . . ,dNd
such that

the ith one-hot vector is di = [d
(k)
i ], for k = 1, . . . , |Di|. Let mi = [m

(k)
i ], for k = 1, . . . , |Di| be

the ith mask vector associated to the ith one-hot vector di. Hence, the condition can be expressed in
terms of these mask vectors as

m
(k)
i =

{
1 if i = i∗ and k = k∗,
0 otherwise.

Then, define the vector cond as cond = m1 ⊕ . . .⊕mNd
. For instance, for two discrete columns,

D1 = {1, 2, 3} and D2 = {1, 2},the condition (D2 = 1) is expressed by the mask vectors m1 =
[0, 0, 0] and m2 = [1, 0]; so cond = [0, 0, 0, 1, 0].

Generator loss. During training, the conditional generator is free to produce any set of one-hot
discrete vectors {d̂1, . . . , d̂Nd

}. In particular, given the condition (Di∗ = k∗) in the form of cond
vector, nothing in the feed-forward pass prevents from producing either d̂(k∗)

i∗ = 0 or d̂
(k)
i∗ = 1 for

k 6= k∗. The mechanism proposed to enforce the conditional generator to produce d̂i∗ = mi∗ is to
penalize its loss by adding the cross-entropy between mi∗ and d̂i∗ , averaged over all the instances of
the batch. Thus, as the training advances, the generator learns to make an exact copy of the given
mi∗ into d̂i∗ .

Training-by-sampling. The output produced by the conditional generator must be assessed by the
critic, which estimates the distance between the learned conditional distribution PG(row|cond) and
the conditional distribution on real data P(row|cond). The sampling of real training data and the
construction of cond vector should comply to help critic estimate the distance. Properly sample
the cond vector and training data can help the model evenly explore all possible values in discrete
columns. For our purposes, we propose the following steps:

1. Create Nd zero-filled mask vectors mi = [m
(k)
i ]k=1...|Di|, for i = 1, . . . ,Nd, so the ith

mask vector corresponds to the ith column, and each component is associated to the category
of that column.

2. Randomly select a discrete column Di out of all the Nd discrete columns, with equal
probability. Let i∗ be the index of the column selected. For instance, in Figure 2, the selected
column was D2, so i∗ = 2.

3. Construct a PMF across the range of values of the column selected in 2, Di∗ , such that the
probability mass of each value is the logarithm of its frequency in that column.

4. Let k∗ be a randomly selected value according to the PMF above. For instance, in Figure 2,
the range D2 has two values and the first one was selected, so k∗ = 1.

5. Set the k∗th component of the i∗th mask to one, i.e. m(k∗)
i∗ = 1.

6. Calculate the vector cond = m1 ⊕ · · ·mi∗ ⊕mNd
. For instance, in Figure 2, we have the

masks m1 = [0, 0, 0] and m2∗ = [1, 0], so cond = [0, 0, 0, 1, 0].
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4.4 Network Structure

Since columns in a row do not have local structure, we use fully-connected networks in generator and
critic to capture all possible correlations between columns. Specifically, we use two fully-connected
hidden layers in both generator and critic. In generator, we use batch-normalization and Relu
activation function. After two hidden layers, the synthetic row representation is generated using a
mix activation functions. The scalar values αi is generated by tanh, while the mode indicator βi and
discrete values di is generated by gumbel softmax. In critic, we use leaky relu function and dropout
on each hidden layer.

Finally, the conditional generator G(z, cond) can be formally described as

h0 = z ⊕ cond
h1 = h0 ⊕ ReLU(BN(FC|cond|+|z|→256(h0)))

h2 = h1 ⊕ ReLU(BN(FC|cond|+|z|+256→256(h1)))

α̂i = tanh(FC|cond|+|z|+512→1(h2)) 1 ≤ i ≤ Nc
β̂i = gumbel0.2(FC|cond|+|z|+512→mi

(h2)) 1 ≤ i ≤ Nc
d̂i = gumbel0.2(FC|cond|+|z|+512→|Di|(h2)) 1 ≤ i ≤ Nd

We use the PacGAN [17] framework with 10 samples in each pac to prevent mode collapse. The archi-
tecture of the critic (with pac size 10) C(r1, . . . , r10, cond1, . . . , cond10) can be formally described
as 

h0 = r1 ⊕ . . .⊕ r10 ⊕ cond1 ⊕ . . .⊕ cond10
h1 = drop(leaky0.2(FC10|r|+10|cond|→256(h0)))

h2 = drop(leaky0.2(FC256→256(h1)))

C(·) = FC256→1(h2)

We train the model using WGAN loss with gradient penalty [11]. We use Adam optimizer with
learning rate 2 · 10−4.

4.5 TVAE Model

Variational autoencoder is another neural network generative model. We adapt VAE to tabular data
by using the same preprocessing and modifying the loss function. We call this model TVAE. In
TVAE, we use two neural networks to model pθ(rj |zj) and qφ(zj |rj), and train them using evidence
lower-bound (ELBO) loss [15].

The design of the network pθ(rj |zj) that needs to be done differently so that the probability can
be modeled accurately. In our design, the neural network outputs a joint distribution of 2Nc +Nd
variables, corresponding to 2Nc +Nd variables rj . We assume αi,j follows a Gaussian distribution
with different means and variance. All βi,j and di,j follow a categorical PMF. Here is our design.

h1 = ReLU(FC128→128(zj))

h2 = ReLU(FC128→128(h1))

ᾱi,j = tanh(FC128→1(h2)) 1 ≤ i ≤ Nc
α̂i,j ∼ N (ᾱi,j , δi) 1 ≤ i ≤ Nc
β̂i,j ∼ softmax(FC128→mi(h2)) 1 ≤ i ≤ Nc
d̂i,j ∼ softmax(FC128→|Di|(h2)) 1 ≤ i ≤ Nd
pθ(rj |zj) =

∏Nc

i=1 P(α̂i,j = αi,j)
∏Nc

i=1 P(β̂i,j = βi,j)
∏Nd

i=1 P(α̂i,j = αi,j)

Here α̂i,j , β̂i,j , d̂i,j are random variables. And pθ(rj |zj) is the joint distribution of these variables.
In pθ(rj |zj), weight matrices and δi are parameters in the network. These parameters are trained
using gradient descent.

The modeling for qφ(zj |rj) is similar to conventional VAE.

h1 = ReLU(FC|rj |→128(rj))

h2 = ReLU(FC128→128(h1))

µ = FC128→128(h2)

σ = exp( 1
2FC128→128(h2))

qφ(zj |rj) ∼ N (µ,σI)
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TVAE is trained using Adam with learning rate 1e-3.

5 Benchmarking Synthetic Data Generation Algorithms

There are multiple deep learning methods for modeling tabular data. We noticed that all methods
and their corresponding papers neither employed the same datasets nor were evaluated under similar
metrics. This fact made comparison challenging and did not allow for identifying each method’s
weaknesses and strengths vis-a-vis the intrinsic challenges presented when modeling tabular data. To
address this, we developed a comprehensive benchmarking suite.

5.1 Baselines and Datasets

In our benchmarking suite, we have baselines that consist of Bayesian networks (CLBN [7], PrivBN
[28]), and implementations of current deep learning approaches for synthetic data generation (MedGAN
[6], VeeGAN [21], TableGAN [18]). We compare TVAE and CTGAN with these baselines.

Our benchmark contains 7 simulated datasets and 8 real datasets.

Simulated data: We handcrafted a data oracle S to represent a known joint distribution, then sample
Ttrain and Ttest from S. This oracle is either a Gaussian mixture model or a Bayesian network.
We followed procedures found in [21] to generate Grid and Ring Gaussian mixture oracles. We
added random offset to each mode in Grid and called it GridR. We picked 4 well known Bayesian
networks - alarm, child, asia, insurance,3 - and constructed Bayesian network oracles.

Real datasets: We picked 6 commonly used machine learning datasets from UCI machine learning
repository [9], with features and label columns in a tabular form - adult, census, covertype,
intrusion and news. We picked credit from Kaggle. We also binarized 28× 28 the MNIST [16]
dataset and converted each sample to 784 dimensional feature vector plus one label column to mimic
high dimensional binary data, called MNIST28. We resized the images to 12× 12 and used the same
process to generate a dataset we call MNIST12. All in all there are 8 real datasets in our benchmarking
suite.

5.2 Evaluation Metrics and Framework

Given that evaluation of generative models is not a straightforward process, where different metrics
yield substantially diverse results [24], our benchmarking suite evaluates multiple metrics on multiple
datasets. Simulated data come from a known probability distribution and for them we can evaluate
the generated synthetic data via likelihood fitness metric. For real datasets, there is a machine learning
task and we evaluate synthetic data generation method via machine learning efficacy. Figure 3
illustrates the evaluation framework.

Likelihood fitness metric: On simulated data, we take advantage of simulated data oracle S to
compute the likelihood fitness metric. We compute the likelihood of Tsyn on S as Lsyn. Lsyn prefers
overfited models. To overcome this issue, we use another metric, Ltest. We retrain the simulated
data oracle S ′ using Tsyn. S ′ has the same structure but different parameters than S. If S is a
Gaussian mixture model, we use the same number of Gaussian components and retrain the mean and
covariance of each component. If S is a Bayesian network, we keep the same graphical structure and
learn a new conditional distribution on each edge. Then Ltest is the likelihood of Ttest on S ′. This
metric overcomes the issue in Lsyn. It can detect mode collapse. But this metric introduces the prior
knowledge of the structure of S ′ which is not necessarily encoded in Tsyn.

Machine learning efficacy: For a real dataset, we cannot compute the likelihood fitness, instead
we evaluate the performance of using synthetic data as training data for machine learning. We train
prediction models on Tsyn and test prediction models using Ttest. We evaluate the performance
of classification tasks using accuracy and F1, and evaluate the regression tasks using R2. For each
dataset, we select classifiers or regressors that achieve reasonable performance on each data. (Models
and hyperparameters can be found in supplementary material as well as our benchmark framework.)
Since we are not trying to pick the best classification or regression model, we take the the average
performance of multiple prediction models to evaluate our metric for G.

3The structure of Bayesian networks can be found at http://www.bnlearn.com/bnrepository/.
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Figure 3: Evaluation framework on simulated data (left) and real data (right).

Table 2: Benchmark results over three sets of experiments, namely Gaussian mixture simulated data
(GM Sim.), Bayesian network simulated data (BN Sim.), and real data. For GM Sim. and BN Sim.,
we report the average of each metric. For real datasets, we report average F1 for classification tasks
and R2 for regression tasks respectively.

GM Sim. BN Sim. Real

Method Lsyn Ltest Lsyn Ltest clf reg

Identity -2.61 -2.61 -9.33 -9.36 0.743 0.14

CLBN -3.06 -7.31 -10.66 -9.92 0.382 -6.28
PrivBN -3.38 -12.42 -12.97 -10.90 0.225 -4.49
MedGAN -7.27 -60.03 -11.14 -12.15 0.137 -8.80
VEEGAN -10.06 -4.22 -15.40 -13.86 0.143 -6.5e6

TableGAN -8.24 -4.12 -11.84 -10.47 0.162 -3.09

TVAE -2.65 -5.42 -6.76 -9.59 0.519 -0.20
CTGAN -5.72 -3.40 -11.67 -10.60 0.469 -0.43

5.3 Benchmarking Results

We evaluated CLBN, PrivBN, MedGAN, VeeGAN, TableGAN, CTGAN, and TVAE using our benchmark
framework. We trained each model with a batch size of 500. Each model is trained for 300 epochs.
Each epoch contains N/batch_size steps where N is the number of rows in the training set. We
posit that for any dataset, across any metrics except Lsyn, the best performance is achieved by Ttrain.
Thus we present the Identity method which outputs Ttrain.

We summarize the benchmark results in Table 2. Full results table can be found in Supplementary
Material. For simulated data from Gaussian mixture, CLBN and PrivBN suffer because continuous
numeric data has to be discretized before modeling using Bayesian networks. MedGAN, VeeGAN, and
TableGAN all suffer from mode collapse. With mode-specific normalization, our model performs
well on these 2-dimensional continuous datasets.

On simulated data from Bayesian networks, CLBN and PrivBN have a natural advantage. Our CTGAN
achieves slightly better performance than MedGAN and TableGAN. Surprisingly, TableGAN works
well on these datasets, despite considering discrete columns as continuous values. One possible
reasoning for this is that in our simulated data, most variables have fewer than 4 categories, so
conversion does not cause serious problems.

On real datasets, TVAE and CTGAN outperform CLBN and PrivBN, whereas other GAN models cannot
get as good a result as Bayesian networks. With respect to large scale real datasets, learning a
high-quality Bayesian network is difficult. So models trained on CLBN and PrivBN synthetic data are
36.1% and 51.8% worse than models trained on real data.

TVAE outperforms CTGAN in several cases, but GANs do have several favorable attributes, and this
does not indicate that we should always use VAEs rather than GANs to model tables. The generator
in GANs does not have access to real data during the entire training process; thus, we can make
CTGAN achieve differential privacy [14] easier than TVAE.
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5.4 Ablation Study

We did an ablation study to understand the usefulness of each of the components in our model.
Table 3 shows the results from the ablation study.

Mode-specific normalization. In CTGAN, we use variational Gaussian mixture model (VGM) to
normalize continuous columns. We compare it with (1) GMM5: Gaussian mixture model with 5 modes,
(2) GMM10: Gaussian mixture model with 10 modes, and (3) MinMax: min-max normalization to
[−1, 1]. Using GMM slightly decreases the performance while min-max normalization gives the
worst performance.

Conditional generator and training-by-sampling: We successively remove these two components.
(1) w/o S.: we first disable training-by-sampling in training, but the generator still gets a condition
vector and its loss function still has the cross-entropy term. The condition vector is sampled from
training data frequency instead of log frequency. (2) w/o C.: We further remove the condition
vector in the generator. These ablation results show that both training-by-sampling and conditional
generator are critical for imbalanced datasets. Especially on highly imbalanced dataset such as
credit, removing training-by-sampling results in 0% on F1 metric.

Network architecture: In the paper, we use WGANGP+PacGAN. Here we compare it with three
alternatives, WGANGP only, vanilla GAN loss only, and vanilla GAN + PacGAN. We observe that
WGANGP is more suitable for synthetic data task than vanilla GAN, while PacGAN is helpful for
vanilla GAN loss but not as important for WGANGP.

Table 3: Ablation study results on mode-specific normalization, conditional generator and training-
by-sampling module, as well as the network architecture. The absolute performance change on real
classification datasets (excluding MNIST) is reported.

Mode-specific Normalization Generater Network Architechture

Model GMM5 GMM10 MinMax w/o S. w/o C. GAN WGANGP GAN+PacGAN
Performance -4.1% -8.6% -25.7% -17.8% -36.5% -6.5% +1.75% -5.2%

6 Conclusion

In this paper we attempt to find a flexible and robust model to learn the distribution of columns
with complicated distributions. We observe that none of the existing deep generative models can
outperform Bayesian networks which discretize continuous values and learn greedily. We show
several properties that make this task unique and propose our CTGAN model. Empirically, we show
that our model can learn a better distributions than Bayesian networks. Mode-specific normalization
can convert continuous values of arbitrary range and distribution into a bounded vector representation
suitable for neural networks. And our conditional generator and training-by-sampling can over come
the imbalance training data issue. Furthermore, we argue that the conditional generator can help
generate data with a specific discrete value, which can be used for data augmentation. As future
work, we would derive a theoretical justification on why GANs can work on a distribution with both
discrete and continuous data.
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