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Appendix

Organization of the Appendix

In Appendix [A] we review classical results on the Taylor expansions for functions on Riemannian
manifold. In Appendix [B]we provide the proof of Lemma 2] which requires to expand the iterates on
the tangent space in the the saddle point. Finally, in Appendix [C| we provide the proofs of Lemmal[7]
and Lemma [§] which enable to prove the main theorem of the paper.

Throughout the paper we assume that the objective function and the manifold are smooth. Here we
list the assumptions that are used in the following lemmas.

Assumption 1 (Lipschitz gradient). There is a finite constant B such that
lgradf (y) — Mgradf(2)|| < Bd(a,y) forall z,y € M.
Assumption 2 (Lipschitz Hessian). There is a finite constant p such that
IH(y) — TEH (2)Tyll2 < pd(z,y) forallz,y € M.
Assumption 3 (Bounded sectional curvature). There is a finite constant K such that

|K (z)[u,v]] < K forallz € M and u,v € TuM

A Taylor expansions on Riemannian manifold

We provide here the Taylor expansion for functions and gradients of functions defined on a Riemannian
manifold.

A.1 Taylor expansion for the gradient

For any point € M and z € M be a point in the neighborhood of & where the geodesic v, is
defined.

I (gradf(z)) = gradf(z) + V., _(oygradf + fo e Vo (mgradf — V. ogradf)dz,
= gradf(z) + V,_ (ogradf + A(z), (1)

where A(z fo %_)Z(T) _.(meradf — V., gradf)dr. The Taylor approximation in
Eq. (1) is proven by |Absil et al. (2009, Lemma 7.4.7).

A.2 Taylor expansion for the function

Taylor expansion of the gradient enables us to approximate the iterations of the main algorithm, but
obtaining the convergence rate of the algorithm requires proving that the function value decreases
following the iterations. We need to give the Taylor expansion of f with the parallel translated
gradient on LHS of Eq. (I). To simplify the notation, let -y denote the ;..

r-1@= [ s (a)
= /0 1 (/(7), grad f (v(7)))dr (2b)
-/ (0% /0, 7% o f(r)r o)
= /0 1 (Y(0),T9 ,ygrad f (y(r)))dr (2d)
-/ 3 (0), 190 (2) + Vo ygrad + AG(r)r 2e)
= (7/(0), gradf(z) + 5V (oygradf + A(z)). (2f)
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Figure 1: Lemma|l} First map w and w to 7,M and T,,, M, and transport the two vectors to T, M,
and get their relation.

A(z) is defined in Eq. H A(z) = fol A(~(7))dr. The second line is just rewriting by definition.
Eq. means the parallel translation preserves the inner product (Tul 2017} Prop. 14.16). Eq. (2d)
uses ' t)*y’ (t) = 7/(0), meaning that the velocity stays constant along a geodesic (Absil et al., |2009|

(5.23)). Eq. uses Eq. (I). In Euclidean space, the Taylor expansion is

f(2) = f(a) = (2, Vf(2) + V2 f(2)z + /O (V2f(r2) = V*f(x))zdr). 3)

Compare Eq. (2) and Eq. (3), = is replaced by 7/(0) := +/_,.(0) and 7z is replaced by 77/,_, . (0) or

Vz—z (T)
Now we have

flug) = f(x) + (+/(0), grad f(z)) + %H(x)h’(o)w’(o)] + (7/(0), A(uy)).

B Linearization of the iterates in a fixed tangent space

In this section we linearize the progress of the iterates of our algorithm in a fixed tangent space 7, M.
We always assume here that all points are within a region of diameter R := 12.% < J. In the course
of the proof we need several auxilliary lemmas which are stated in the last two subsections of this
section.

B.1 Evolution of Exp;, ! (w)
We first consider the evolution of Exp,, ' (w) in a fixed tangent space 7, M. We show in the following
lemma that it approximately follows a linear reccursion.

Lemma 1. Define v = \/pe, k = g and S = \/nﬁ% log_l(%”). Let us consider x be a (e, —/pe)
saddle point, and define u* = Exp,(—ngradf(u)) and wt = Exp,(—ngradf(w)). Under
Assumptions if all pairwise distances between u, w,u™,w™, z are less than 12.%, then for
some explicit constant Cy (K, p, 8) depending only on K, p, 3, there is

75+ Expy i (wh) — (I — nH())yExp, ' (w)]
< Cu(K, p, B)d(u, w) (d(u, w) + d(u, z) + d(w, z)) .

Sfor some explicit function C.

This lemma is illustrated in Fig.[I]

Proof. Denote —ngradf(u) = v,, —ngradf(w) = vy. v is a smooth map. We first prove the
following claim.
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Claim 1.
d(uy, wy) < co(K)d(u, w),
where cg(K) = c4(K) + 1 + co(K) R
To show this, note that
d(ug, wy) < d(ug, wy) + d(dy, we),
and using Lemmal[5| with @, = Exp,,(I'%v,,),
d(wy, wy) = d(Expy, (vw ), Exp,, (I 04))
< (1Lt e2(K)R?)[Jvw — Tva||
< B(1 + co(K)R*)d(u, w).
Using Lemma3}
d(W4,us) < ca(K)d(u, w). 4)
Adding the two inequalities proves the claim.
We use now Lemma [3| between (u, w,u,wy) in two different ways. First let us use it for ¢ =
Exp, ! (w) and y = T'* v,,. We obtain:
d(w, Exp, (Exp, " () + Thvy)) < e1(K)d(u, w)(d(u, w)* + oo |*). (5)
Then we use it for a = Exp,, *(v,,) and y = I Exp;j (w4) which yields
d(wy, Exp,, (v, + T, Exp, | (wy)))
< et (K)d(ug, wy ) (d(ug, wy)® + [|va]?)
< e (K)es (K, [vull,s [[ow))d(u, w) - [%(K, lvall, llowl)?d(u, w)? + [loal?|-
Using the triangular inequality we have
d(Exp,, (Exp, " (w) + T,vw), Exp,, (ve + Ty Expy | (wy)))
< d(w,, Bxp, (Exp, ! (w) + Tvw) + d(w,, Bxp, (v, + T, Expy H(w,)))
< crd(u, w)
with c¢7 defined as
cr = e1(K)eg(K) - [es (K [vall, [lvw|)*d(u, w)* + floa|* + val\z]
We use again Lemmad]
T, Expy, (wy)) = Expy ' (w) = [va = Tivw] | < (14 es(K)R?) - crd(u, w).

Therefore we have linearized the iterate in 73, M. We should see how to transport it back to 7, M.

With Lemmal[6] we have
I[Cely — T3 1Exp, (w)l| = e5(K)d(u, z)d(ur, wy)|[vy]].

uU- U4

Note v,, and v,, are —ngrad f(u) and —ngrad f(w), we define Vuv(z) the gradient of v, i.e., —nH.
Using Hessian Lipschitz,

low = Tyve + 1H (u)Expy (w)|
= [lvu = v — Vo(u)Expy " (w)]
< pd(u, w)?,
and
IVo(u)Expy, (w) — Ty Vo ()i Exp, ' (w)]| < pd(u,w)d(u, z).
So we have
I, Bxpy ) (wy) — (I + Vo)) TiExp, ' (w))
< crd(u, w) + pd(u, w)(d(u, w) + d(u, x)) + c5(K)d(u, x)d(ug, wy)||ve]] := D1 (6)
O



s B.2 Evolution of Exp, ' (w) — Exp, * ()

67 We consider now the evolution of Exp ! (w) — Exp, ! (u) in the fixed tangent space T, M. We show
68 in the following lemma that it also approximately follows a linear iteration.

6o Lemma 2. Define v = \/pe, k = 2, and . = / nB% logfl(dff) Let us consider x be a (e, —/pe)

70 saddle point, and define ut = Expu( nerad f (u )) and wt = Exp, (—ngradf(w)). Under
71 Assumptions|]| l I I 3| if all pairwise distances between u,w,u", w™, x are less than 12.7, then for
72 some explicit constant C'(K, p, ) depending only on K, p, ﬁ there is

[Expy* (w™) = Expy ' (u™) — (I — nH (2)) (Exp, " (w) — Exp ™ (u))]| o
< C(K,p,B)d(u,w) (d(u, w) + d(u,x) + d(w,x)) .

73 This lemma controls the error of the linear approximation of the iterates hen mapped in 7, M and
74 largely follows from Lemmal[]

75 Proof. We have that
w = Exp, (BExp, ' (w)) (8)
= Exp,, (Exp, ' (w)). 9
76 Use Eq. @) let a = Exp, *(u) and v = I'*Exp,, " (w), Lemmasuggests that
d(Exp, (Bxp, ' (), Exp, (Exp; ' (u) + TiExpy ' (w)))
< 1 (K)|[Expy (w) | ([ Expy (w)]| + [Expg " (w)]])?.
77 Compare with Eq. (§), we have
d(Exp, (Exp; ' (w)), Exp, (Exp; ' (u) + T{Exp; ' (w)))

< e1(K)[Expy (w) | ([ Bxpy, ' (w)]] + [[Exp ™ (u))?
= D. (10)

78 Denote the quantity above by D. Now use Lemma 4]
[Exp; ! (w) — (Exp; ' (u) + TiExp, " (w))|| < (1+ c3(K)R*)D
79 Analogously
[Bxp ! (ws) — (Bxpy " (us) + Ty, Bxpy [ (ws))]| < (1+ e3(K)R?) D
so where
Dy = e1(K)||Expy ! (wi)[[(1Expy | (w )| + [1Bxp;  (us)]) (1)

g1 And we can compare I'?Exp,, ! (w) and Iy, Exp;i (wy ) using Eq. @ In the end we have

[Exp; " (w™) — Exp, ' (uh) — (I — nH(2))(Exp; " (w) — Exp; ' (u))]
< [|Bxp ' (w4) — (Bxpy " (us) + I, Bxpy, ) (w)]

+ [|Exp; " (w) — (Exp ' (u) + TyExp,, ' (w))]|

+ |05, Bxpy [ (wy) — TiExp, (w) — Vo()TiExp, ™ (w)]

+ [ Vo(e) (TyExp, ' (w) — (Expy ' (w) — Exp; ' (u)))]|
< (1+¢c3(K)R*)(D+ + D) + Dy + || H (2) || D

g2 D, Dy and D, are defined in Eq. , Eq. and Eq. @ they are all order d(u, w)(d(u, w) +
83 d(u,x) 4+ d(w,z)) so we get the correct order in Eq. . O
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Figure 2: Lemmalbounds the difference of two steps starting from z: (1) take y + a step in T, M
and map it to manifold, and (2) take a step in 7, M, map to manifold, call it z, and take I'Zy step in
T>M, and map to manifold. Exp, (I'Zy) is close to Exp,(y + a).

B.3 Control of two-steps iteration

In the following lemma we control the distance between the point obtained after moving along the
sum of two vectors in the tangent space, and the point obtained after moving a first time along the first
vector and then a second time along the transport of the second vector. This is illustrated in Fig. 2]

Lemma 3. Let x € M and y,a € T, M. Let us denote by z = Exp,(a) then under Assumption

d(Exp, (y + a), Exp.(I3y)) < e (K) min{|lall, [[y[1}([lall + [ly[])*. (12)

This lemma which is crucial in the proofs of Lemma2]and Lemmag]nghtens the result of |Karcher
(1977, C2.3), which only shows an upper-bound O(]|a]|(||a| + ||l¥||)

Proof. We adapt the proof of |[Karcher| (1977, Eq. (C2.3) in App C2.2), the only difference being
that we bound more carefully the initial normal component. We restate here the whole proof for
completeness.

Let x € M and y,a € T, M. We denote by v(t) = Exp,(ta). We want to compare the point
Exp, (r(y + a)) and Expw(l)(l"l(l)y). These two points , for a fixed r are joined by the curve

t—c(rt) = Expv(t)(rljg(t) (y+ (1 —t)a)).

We note that % ¢(r, t) is a Jacobi field along the geodesic 7 — ¢(r,t), which we denote by J;(r).

We importantly remark that the length of the geodesic 7 + c(r,t) is bounded as ||-Lc(r, t)|| <
[y + (1 —t)al|. We denote this quantity by p; = |ly + (1 — t)al|. The initial condition of the Jacobi
field J; are given by:

71(0) = Loty =104

dt
D D
- i(0) = %I‘;(t)(y + (1 —t)a) = -T7Wa.
These two vectors are linearly dependent and it is therefore possible to apply |Karcher] (1977, Proposi-
tion A6) to bound J{°"™. Moreover, following Karcher| (1977, App A0.3 ), the tangential component
of the Jacobi field is known explicitly, independent of the metric, by

an an D an d
gen(r) = () + P T 0) ) et

where the initial conditions of the tangential component of the Jacobi fields are given by Jf2*(0) =
d
(J4(0), 7220 and D jtan(0) = (£.7,(0), #) = —Jf1(0). Therefore

Il g5 c(r.n)ll e(rb)ll

an an d
TE(r) = (1= 1)J(0) el ),
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and Jf*"(1) = 0.

We estimate now the distance d(Exp, (v + a), Exp,(T'Zy)) by the length of the curve ¢ — ¢(r, t) as
follows:

1 1
d
d(Esz(y+a),Expz(Fiy))§/ H%C(lat)Hdt:/ [ (1) dt,
0 0

where we use crucially that J{*"(1) = 0.

We utilize (Karcher, 1977, Proposition A.6) to bound ||.J}°™(1)]| as

sinh(vK p;)

\/Ept

using (Karcher, [1977, Equation (A6.3)) with xk = 0, f.(1) = 0 and recalling that the geodesics
r +— ¢(r,t) have length p;.

177 )] < 19707 (0) | (cosh(VE pe) — )

Jg°rm ()

1@

a
\ o

y aty

Figure 3: Figure for Lemma

In particular for small value ||a|| 4 ||y|| we have for some constant c; (K),

lT7em ()] < (|7 (0) e (K) 7

We bound ||.J};°"™(0)|| now. This is the main difference with the original proof of Karcher| (1977)
who directly bounded || J;°"™(0)|| < ||J¢(0)|| = ||a|| and p; < ||a|| + ||y||- Therefore his proof does
not lead to the correct dependence in ||y||.
We have Jp = 17" q, and the tangential component (velocity of r — ¢(r, t)) is in the ry® (y+ (11—
t)a) direction. Let Z = ry® (y+ (1 —t)a) and Ps. and P, denote the projection onto orthogonal
complement of Z and a.
177 ) = ([P (a)]?

(QTZ)Q

121>

all?> /. a’z)?
— ||~||2 (||Z||2 _ ( _ 2) )
12 1]
2
SHE [Par (T3 (y + (1 = t)a))||?

_ lla]?
EE

= llall* -

1Pas LY (1 = t)a)) + Par (D7 Vy)1?

2
1Pas (T3 y)]?

2 2
< IIaIINHZQJII .
I1Z1l



119

120

121

122

123

124
125

126
127

128
129
130

131
132

133

134

135
136

137

138
139

140

141

142
143

144

So
|7 ()]

A

1777 (0) llex () pf

el - llyll 22
o a2
[1Z1l

< cr(K)lall - [lyll(lall + lyll),

IA

and
d(Exp, (y + a), Exp,(T7y)) < cr(K)|all - [yl ([lall + llyl).

B.4 Auxilliary lemmas

In the proofs of Lemma|[l]and Lemma 2] we needed numerous auxiliary lemmas we are stating here.

We needed the following lemma which shows that both the exponential map and its inverse are
Lipschitz.

Lemma 4. Let x,y, 2z € M, and the distance of each two points is no bigger than R. Then under
Assumption

(1+ c2(K)R?)~d(y, 2) < |[Exp; ' (y) — Expy ' (2)|] < (1+ e3(K)R%)d(y, ).
Intuitively this lemma relates the norm of the difference of two vectors of 7, M to the distance

between the corresponding points on the manifold M and follows from bounds on the Hessian of the
square-distance function (Sakail, [1996| Ex. 4 p. 154).

Proof. The upper-bound is directly proven in|Karcher| (1977, Proof of Cor. 1.6), and we prove the
lower-bound via Lemmain the supplement. Let b = Exp, (' (Exp, Y(2) — Exp; *(y))). Using

d(y,b) = ||Exp;1(b)|\ and Lemma
d(y, z) < d(y,b) + d(b, Exp, (Exp, ' (2)))
< ||[Exp; ' (y) — Exp; ' (2)]]
+ e1(K)|[Exp; ' (y) — Exp, ' (2)[| (| Exp; ' (y) — Exp, ' (2)[| + |[Exp, * ()])?
O

The following contraction result is fairly classical and is proven using the Rauch comparison theorem
from differential geometry (Cheeger & Ebinl 2008)).

Lemma 5. (Mangoubi et al'} 2018, Lemma 1) Under Assumption[3} for z,y € M and w € T, M,
d(Exp, (w), Exp, (Thw)) < cs(K)d(z,y).

Eventually we need the following corollary of the famous Ambrose-Singer holonomy theorem (Am-
brose & Singer, |1953).

Lemma 6. (Karcher,[1977] Section 6) Under Assumption[3} for x,y,z € M and w € T, M,
[T Thw — Trwl| < es(K)d(x, y)d(y, 2)|w]-

C Proof of Lemma/[7 and

In this section we prove two important lemmas from which the proof of our main result mainly comes
out. Then we show, in the last subsection, how to combine them to prove this main result.

Lemma 7. Assume Assumptions[l| 2} B hold, and

€= min { 56 max{ca (), e (K)JnB -2 (f?a) / (15’5% o (%6))} (1

>
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Sfrom the main theorem. There exists a constant Ciax, V¢ > 3,6 € (0, %"] Sor any ug with d(Z,up) <
2.7 /(rklog(%)), k = B/7.

T = min {h;lf {t|fu0(ut) — f(up) < —3?} ,&7} ,

then ¥ < cmax /B, we have V0 < t < T, d(ug, u) < 3(&7).

Lemma 8. Assume Assumptions [I| 2] [35| and Eq. (I4) hold. Take two points ug and wo which
are perturbed from approximate saddle point, where d(i,ug) < 2.7 /(klog( %)), Exp; ' (wo) —

Exp; '(ug) = pres, ey is the smallest eigenvectorﬂ of H(%), pu € [6/(2V/d), 1], and the algorithm
runs two sequences {u; } and {w;} starting from uy and wy. Denote

T = min {irtlf {t|fwo (wy) — f(wo) < —334‘} ,ey} :
then V1 < cmax /1 if V0 < t < T, d(Z,us) < 3(¢5), we have T < ¢.7.

C.1 Proof of Lemmal/7|

Suppose f(urr1) = f(ue) < —3|lgradf (us)|*.
eT -1

d(ueg,uo)® < (Y (s, ur))?
0
eT -1

cT Z d(ut+1,ut)2
0

eT—1
<P Y |lgradf (u)|?
0

T —1

<2neT Z fue) — fluer)
0

=2neT (f(ug) — f(uez))
< 6neT F = 6672

IN

C.2 Proof of Lemmal8]

Note that, for any points inside a region with diameter R, under the assumption of Lemma 8] we have
max{co(K), c3(K)}R? < 1/2.
Define v, = Expj_}1 (wy) — Expg1 (ut), let vg = eq be the smallest eigenvector of H(Z), then let gz
be a unit vector, we have
Vi4+1 = (I - nH(i‘))’Ut + C(K7 12 ﬁ)d(utv wt)
. (d(ut, i’) + d(wt, i‘) + d(f, UQ))QQJ.

Let C := C(K, p, 3). Suppose 1emmais false, then 0 < t < T, d(us, &) < 3¢, d(wy, T) < 367,
$0 d(ug, wy) < 6., and the norm of the last term in Eq. is smaller than 14nCé¢.7 || v |.

Lemma 4 in the main paper indicates that
[vell € [1/2,2] - d(ug, we) = [3/2,6] - &7 (17)

(16)

Let ) be the norm of v; projected onto e, the smallest eigenvector of H(0), and o, be the norm of
v; projected onto the remaining subspace. Then Eq. (T6) is

V1 > (L+ 7)Y — pyJ ¥E + 67,
brp1 < (L4 07)de + pn/ 17 + 7.

“smallest eigenvector” means the eigenvector corresponding to the smallest eigenvalue.

1
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178 If T" > T, then inf; {t|fwo (w) — fwo) < 739} < T, and we know f(wr) — f(wg) < —2.57.

Prove that for all t < T', ¢y < 4uti,. Assume it is true for ¢, we have

dp(t + 1) > 4p(t +1) - ((1 + ) — pyJE + ¢?) :
brir < Apt(1+17) e + pn/ 7 + 67

So we only need to show that

(1 +4p(t + 1)\ 97 + 67 < (14 n7)1.

By choosing /cax < 56% and 1 < ¢ypax /B, we have
C
dp(t +1) < 4uT < 4nC. - 146*T = 56&25\/775 <1

This gives

A1+ ny)e > 20/ 207 > (1+ 4ult + 1))/ 07 + 67
Now we know ¢y < 4putth, <y, 50 g1 > (1 4+ 0y)h — v/2pay, and

d
p=1UenC.s < /e Clog™ (5)/p < 1/2,

80 Yry1 2 (L+17/2)¢
We also know that [|v|| < 6.7 for all ¢ < T from Eq. (7)), so

66.7 > |log| > b > (14 n7v/2) 0
dk

S
=(1 2)tlog™H(—
(L +77/2)"——log™ ()
0 dk
> (1 +n7/2)' ——log }(—).
( 777/)2\/8,_6 g ()
This implies
T < log(1 2"‘fc10g(%))
2log(1 +nv/2)
< log(12"‘fclog(d—“))
o ny

< (2+1og(12¢)) 7.

By choosing ¢ such that 2 + log(12¢) < ¢, we have T' < ¢, which finishes the proof.

C.3 Proof of function value decrease at an approximate saddle point

With Lemma [7| and [8] proved, we can lower bound the function value in O(7) iterations

decrease by ()(.#), thus match the convergence rate in the main theorem.
inf, {t\fuo (ug) — flug) < —3?}. Let " denote the operator Exp;01(~). 7' <T,

f(ur) = f(uo)
< Vf(uo>T<uT« ~ o) + 5 H (o) i — g, i — )
S (T H@)TE, = Hluo) i — o, T — o]
- 6||UT/ ~

< fuo(we) = fluo) + pd(uo, )|tz — uo?
< -3F +0(ps?*) < —25F.

e

Let T"
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Remark 1. What is left is bounding the volume of the stuck region, to get the probability of getting
out of the stuck region by the perturbation. The procedure is the same as in\Jin et al.|(2017). We
sample from a unit ball in T, M, where x is the approximate saddle point. In Lemma(7|and |8 we
study the inverse exponential map at the approximate saddle point x, and the coupling difference
between Exp;, ! (w) and Expy * (u). The iterates we study and the noise are all in the tangent space
ToM which is a Euclidean space, so the probability bound is same as the one inJin et al.|(2017).

D Experiment with retraction

In the main algorithm and its proof, we use the exponential map in the algorithm. The exponential map
is easy to compute for many manifolds, but one may also use retraction as a first order approximation
of exponential map. We do not theoretically study retraction, but the experiment below shows that
replacing exponential by a smooth retraction works well practically.

(a) (b)

Figure 4: (a) Function f with saddle point on a sphere. f(z) = 22 — 23 + 423. We plot the contour

of this function on unit sphere. The main algorithm initializes at zo = [1,0, 0] (a saddle point),
perturbs it towards x; and runs Riemannian gradient descent, and terminates at z* = [0, —1,0] (a
local minimum). We amplify the first iteration to make saddle perturbation visible. (b) We replace
exponential map by retraction R, (v) = (z + v)/||x 4+ v||2 and do the same experiment, which
addresses the generality of the result. We do not provide in this paper proof for algorithm with
retraction, but practically the iterates converge to an approximate saddle point.
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