
A How to bypass the barrier?

The primal problem in our framework (C) has several possible sources of looseness:

(1) We relax the nonlinearity σ(l) on a box domain {z(l) ≤ z ≤ z(l)}. This relaxation is
simple to perform, but might come at the cost of losing some correlations between the
coordinates of z and of obtaining a looser relaxation. Note that our framework does consider
the correlations between coordinates of z(l) to get bounds for all later layers, however it
relies on z(l) and z(l) which are considered individually, without interactions within the
same layer.

(2) We solve for the bounds z[l], z[l] recursively, and we incur some gap for every recursion;
a loose bound in earlier layers will make bounds for later layers even looser. This can be
problematic for very deep networks or recurrent networks.

(3) In the specific case of ReLU, we lose a bit every time we relax over an unstable neuron;
one possible future direction is to combine branch-and-bound with convex relaxation to
strategically split the domains of unstable neurons.

Any method that improves on any of the above issues can possibly bypass the barrier; see, e.g., SDP-
based verifiers [Raghunathan et al., 2018b] can consider the interaction between each neuron within
one layer; [Anderson et al., 2018] can relax the combination of one ReLU layer and one affine layer.
On the other hand, exact verifiers [Katz et al., 2017, Ehlers, 2017], local Lipschitz-constant-based
verifiers [Zhang et al., 2019, Raghunathan et al., 2018a], and hybrid approaches [Bunel et al., 2018,
Singh et al., 2019b] do not fall under the purview of our framework. In general, none of them are
strictly better than the convex relaxation approach and they make trading-offs between speed and
accuracy. However, it would be fruitful to consider combinations of these methods in the future, as
done in Singh et al. [2019b]. We hope our work will foster much thought in the community toward
new relaxation paradigms for tight neural network verification.

B The optimal layer-wise convex relaxation

B.1 The optimal convex relaxation of a single nonlinear neuron

In this section, we give the optimal convex relaxation of a single nonlinear neuron x = σ(z), which
is the convex hull of its graph. Although the proof is elementary, we provide it for completeness.
Proposition B.1. Suppose the activation function σ : [z, z] ⊂ Rnz → R is bounded from above and
below. Let σopt and −σopt be the greatest closed convex functions majored by σ and −σ, respectively,
i.e.,

σopt(z) := sup
(α,γ)∈A

α>z + γ, where A = {(α, γ) : α>z′ + γ ≤ σ(z′),∀z′ ∈ [z, z]},

σopt(z) := inf
(α,γ)∈A′

α>z + γ, where A′ = {(α, γ) : α>z′ + γ ≥ σ(z′),∀z′ ∈ [z, z]}
(12)

Then we have,

1. Both σopt and σopt are continuous in [z, z].

2. {
(z, x) : σopt(z) ≤ x ≤ σopt(z), z ≤ z ≤ z

}
= conv

(
{(z, x) : x = σ(z), z ≤ z ≤ z}

)
,

where conv denotes the closed convex hull.

Proof.

1. By the boundedness of σ on [z, z], we know that the effective domain of σopt and −σopt is [z, z].
By definition (12), σopt and −σopt are closed convex functions. By Theorem 10.2 in Rockafellar
[2015], we know that both σopt and −σopt are continuous in [z, z], so is σopt.

2. We first decompose the left-hand-side into 3 terms:{
(z, x) : σopt(z) ≤ x ≤ σopt(z), z ≤ z ≤ z

}
=
{
σopt(z) ≤ x

}
∩
{
x ≤ σopt(z)

}
∩
{
z ≤ z ≤ z

}
.

12

Let F = {(α, γ) : αT z′ + γ ≤ σ(z′),∀z′ ∈ [z, z]} and F = {(α, γ) : αT z′ + γ ≥ σ(z′),∀z′ ∈
[z, z]}. For the first term, by definition (12) we have{

σopt(z) ≤ x
}

= ∩{(α,γ):αT z′+γ≤σ(z′),∀z′∈[z,z]}{αT z + γ ≤ x}
= ∩{(α,β,γ):β<0,αT z′+βσ(z′)+γ≤0,∀z′∈[z,z]}{αT z + βx+ γ ≤ 0}.

For the second term, by definition (12) we have{
x ≤ σopt(z)

}
= ∩{(α,γ):αT z′+γ≤−σ(z′),∀z′∈[z,z]}{αT z + γ ≤ −x}
= ∩{(α,β,γ):β>0,αT z′+βσ(z′)+γ≤0,∀z′∈[z,z]}{αT z + βx+ γ ≤ 0}.

For the third term, we have{
z ≤ z ≤ z

}
= ∩{(α,γ):αT z′+γ≤0,∀z′∈[z,z]}{αT z + γ ≤ 0}
= ∩{(α,β,γ):β=0,αT z′+βσ(z′)+γ≤0,∀z′∈[z,z]}{αT z + βx+ γ ≤ 0}.

Combining the three terms, we conclude the proof by{
(z, x) : σopt(z) ≤ x ≤ σopt(z), z ≤ z ≤ z

}
= ∩{(α,β,γ):αT z′+βσ(z′)+γ≤0,∀z′∈[z,z]} {αT z + βx+ γ ≤ 0}
=conv

(
{(z, x) : x = σ(z), z ≤ z ≤ z}

)
,

where we use the definition of closed convex hull in the last identity.

B.2 The optimal convex relation of a nonlinear layer

When x(l+1) = σ(l)(z(l)) is a nonlinear layer that has a vector output x(l+1) ∈ Rn(l+1)

, the optimal
convex relaxation may not have a simple analytic form as σ(l)

opt(z
(l)) ≤ x(l+1) ≤ σ

(l)
opt(z

(l)). Fortu-
nately, if there is no interaction (as defined below) among the output neurons, the optimal convex
relaxation can be given as a simple analytic form.
Definition B.2 (non-interactive layer). Let σ : Rm → Rn and x = σ(z) be a nonlinear layer with
input z ∈ [z, z] ⊂ Rm and output x ∈ Rn. For each output xj , let Ij ⊂ [m] be the minimal set of
z’s entries that affect xj , where xj = σ(zIj). We call the layer x = σ(z) non-interactive if the sets
Ij (j ∈ [n]) are mutually disjoint.

Commonly used nonlinear activation layers are all non-interactive. It is obvious that all entry-wise
nonlinear layers, such as (leaky-)ReLU and sigmoid, are non-interactive. A MaxPool layer with
non-overlapping regions (stride no smaller than kernel size) is also non-interactive. Finally, any layer
with scalar-valued output is non-interactive. When we treat a general nonlinear specification (as
proposed in Qin et al. [2019]) as an additional nonlinear layer x(L+1) = F (x(0), x(L)), this layer
is automatically non-interactive. This nice property ensures that our framework can deal with very
general specifications.

The optimal convex relaxation of a non-interactive layer has a simple analytic form as below.

Proposition B.3. If the layer σ(l) : [z(l), z(l)]→ Rn(l+1)

is non-interactive, we have{
(z(l), x(l+1)) : σ(l)

opt(z
(l)) ≤ x(l+1) ≤ σ(l)

opt(z
(l))
}
=

conv
(
{(z(l), x(l+1)) : x(l+1) = σ(l)(z(l)), z(l) ≤ z(l) ≤ z(l)}

)
,

where conv denotes the closed convex hull, and vector-valued functions σ(l)
opt(z) and σ(l)

opt(z) are defined in (6)
for each output entry.

Thanks to its non-interaction, Proposition B.3 is a direct consequence of item 2 in Proposition B.1.

C Convex relaxations not included in Problem (C).

We emphasize that by optimal, we mean the optimal convex relaxation of the single nonlinear
constraint x(l+1) = σ(l)(z(l)) (see Proposition (B.3)) instead of the optimal convex relaxation of the

13

nonconvex feasible set of the original problem (O). In fact, for neural networks with more than two
hidden layers (L ≥ 2), the optimal convex relaxation of the nonconvex feasible set of problem (O) is
a strict subset of the feasible set of problem (C), even with the tightest bounds (z[L], z[L]) and the
optimal choice of σ(l)

opt(z) and σ(l)
opt(z) in (6). It is possible to obtain other (maybe tighter) convex

relaxations [Anderson et al., 2018], but it comes with more assumptions on the nonlinear layers and
more complex convex constraints.

For example, Raghunathan et al. [2018b] rewrites the ReLU nonlinearity as a quadratic constraint, and
then proposes a semidefinite programming (SDP) relaxation for the resulting quadratic optimization
problem. Problem (C) does not cover this SDP-relaxation. Sometimes Problem (C) provides tighter
relaxation than the SDP-relaxation, e.g., the case when there is only one neuron in a layer, while
sometimes the SDP-relaxation provides tighter relaxation than Problem (C), e.g., the examples pro-
vided in Raghunathan et al. [2018b]. The SDP-relaxation currently only works for ReLU nonlinearity.
It is not clear to us how to extend the SDP-relaxed verifier to general nonlinearities. On the other
hand, Problem (C) can handle any non-interactive nonlinear layer and any nonlinear specification.

D Greedily solving the primal with linear bounds.

In this section, we show how to greedily solve (C) by over-relaxing the problem to give a lower bound
directly, and discuss the relationships between algorithms in Figure 1, especially for the algorithms in
primal view.

Relaxing the ReLU neurons. We start with giving exactly one linear upper bound and exactly one
linear lower bound for each activation function in (C):

min
(x[L+1],z[L])∈D

c>x(L) + c0

s.t. z(l) = W(l)x(l) + b(l), l ∈ {0, · · · , L− 1},

a(l)z(l) + b(l) ≤x(l+1) ≤ a(l)z(l) + b
(l)
, l ∈ {0, · · · , L− 1},

(13)

Typically, the selection of a(l), a(l), b
(l)

, b(l) can depend on z(l) and z(l) to minimize the error
between the upper/lower bound and the activation function. For element-wise activation functions,
the linear upper and lower bounds are usually also element-wise. For example, for an unstable ReLU

neuron with z(l)
i > 0 and z(l)

i < 0, one upper bound is x(l+1)
i ≤ z

(l)
i

z
(l)
i −z

(l)
i

z
(l)
i −

z
(l)
i z

(l)
i

z
(l)
i −z

(l)
i

. According

to Proposition B.1, this is the optimal convex relaxation for the upper bound. For the lower bound, the
optimal convex relaxation (x

(l+1)
i ≥ z(l)

i)∩ (x
(l+1)
i ≥ 0) is not achievable as one linear function; we

use any over-relaxed bounds x(l+1)
i ≥ a(l)

i z
(l)
i with 0 ≤ a(l)

i ≤ 1 as the lower bound. This perspective
covers Fast-Lin [Weng et al., 2018], DeepZ [Singh et al., 2018] and Neurify [Wang et al., 2018b],

where the lower bound is fixed as a(l)
i = a

(l)
i =

z
(l)
i

z
(l)
i −z

(l)
i

; this is referred as a “zonotope” relaxation

in AI2 [Gehr et al., 2018] and DeepZ. AI2 is a general technique of using “abstract transformers”
(sound relaxations of neural network elements) to verify neural networks, but it uses suboptimal
relaxations for ReLU non-linearity; DeepZ further refines the transformers for ReLU and significantly
outperforms AI2 [Singh et al., 2018]. Other activation functions can be linearly bounded as discussed
in CROWN [Zhang et al., 2018], DeepZ and DeepPoly [Singh et al., 2019a]; CROWN and DeepPoly
are also more general and do not require a(l)

i = a
(l)
i to allow a more flexible selection of bounds.

Deriving the Greedy Primal Method. Assuming we have obtained the linear upper and lower
bounds for x(l+1) with respect to z(l), z(l+1)

i can be formed greedily as a linear combination of these
linear bounds: we greedily select the upper bound x(l+1)

i ≤ a(l)
i z

(l)
i + b

(l)
i when W

(l+1)
i,k is negative,

and select the lower bound x(l+1)
i ≥ a

(l)
i z

(l)
i + b

(l)

i otherwise. This bound reflects the worst case
scenario without considering any other neurons:

z
(l+1)
i ≥ z(l+1)

i := A
(l)
i,: z

(l) + b
′(l)
i (14)

14

where matrix A(l)
i,k =

{
W

(l+1)
i,k a

(l)
k ,W

(l+1)
i,k < 0

W
(l+1)
i,k a

(l)
k ,W

(l+1)
i,k ≥ 0

reflects the chosen upper or lower bound based

on the sign of W(l+1)
i,k , and vector b′(l)i =

∑
k,W

(l+1)
i,k ≥0

W
(l+1)
i,k b

(l)
k +

∑
k,W

(l+1)
i,k <0

W
(l+1)
i,k b

(l)

k +b
(l)
i .

The lower bound z(l+1)
i can also be formed similarly. Eventually, we get one linear upper bound and

one linear lower bound for z(l+1)
i , written as:

A
(l)
i,: z

(l) + b
′(l)
i ≤ z(l+1)

i ≤ A(l)

i,: z
(l) + b

′(l)
i (15)

A sharp-eyed reader can notice that it is possible to also get a similar bound for each component of
z(l) and plug it into (15), thus obtaining a linear upper bound and a linear lower bound for z(l+1)

i

with respect to z(l−1). To do this, we first substitute z(l) = W(l)x(l) + b(l) into Eq. (15), obtaining

A
(l)
i,: (W(l)x(l) + b(l)) + b

′(l)
i ≤ z(l+1)

i ≤ A(l)

i,: (W(l)x(l) + b(l)) + b
′(l)
i

Applying the bounds on x(l) with respect to z(l−1), and using a similar technique as we did above to
obtain (15), we get linear upper and lower bounds for z(l+1)

i with respect to z(l−1) in the following
form:

A
(l−1)
i,: z(l−1) + b

′(l−1)
i ≤ z(l+1)

i ≤ A(l−1)

i,: z(l−1) + b
′(l−1)

i (16)

where b′(l−1)
i and b

′(l−1)

i collect all bias terms in the substitution process. Caution has to be taken

when formingA(l−1)
i,: andA

(l−1)

i,: , as we need to choose a(l−1)
k or a(l−1)

k based on the sign ofA(l)
i,: W

(l)
:,k,

since the coefficients before each inequality now become A(l)
i,: W

(l) rather than just W(l):

A
(l−1)
i,k =

{
A

(l)
i,: W

(l)
:,ka

(l−1)
k , A

(l)
i,: W

(l)
:,k < 0

A
(l)
i,: W

(l)
:,ka

(l−1)
k , A

(l)
i,: W

(l)
:,k ≥ 0

An eagle-eyed reader can notice that we can continue this process until we have reached z(0), and
obtain the following linear bounds:

A
(0)
i,: z

(0) + b
′(0)
i ≤ z(l+1)

i ≤ A(0)

i,: z
(0) + b

′(0)

i (17)

whereA(0)
i,: ,A

(0)

i,: , b′(0)
i and b

′(0)

i can be formed similarly as above. Substituting z(0) = W(0)x(0)+b(0)

(x(0) = x is the input of the neural network) simply yields:

Ai,:x+ b′i ≤ z
(l+1)
i ≤ Ai,:x+ b′i (18)

where Ai,: = A
(0)
i,: W

(0), Ai,: = A
(0)

i,: W
(0) captures the products of W of all layers and the chosen

a
(l)
k or a(l)

k for each layer; b′, b′ collects all bias terms (we refer the readers to Theorem 3.2 in Zhang
et al. [2018] for the exact form of A,A, b′, b′). This procedure beautifully works as the linear
combination of linear bounds are still linear bounds. Eq. (18) is a remarkable result, as the output
of a non-linear function (neural network) has been directly bounded linearly for all x close to xnom.
This allows us to immediately give upper and lower bounds of z(l+1)

i by considering the worst case
x ∈ Sin(xnom). When the set is an L∞ normed ball, this is obvious,

− ε‖Ai,:‖1 +Ai,:x
nom + b′i ≤ z

(l+1)
i ≤ ε‖Ai,:‖1 +Ai,:x

nom + b′i, (19)

The entire bound propagation process does not involve any LP solver, so it is efficient and can scale to
quite large networks. The final objective c>x(L) + c0 can be treated as an additional linear layer after
z(L−1). Because to form the bounds for z(L−1) we need to compute bounds for all z(l), l ∈ [L− 1]
beforehand, each in O(l) time, the time complexity of this method is quadratic in L.

15

Connections Between Existing Methods. For each neuron, the selection of linear bounds are
completely independent; this allows further improvements in this greedy algorithm. For example,
the selection of a(l)

k can depend on z(l)
k and z(l)

k to adaptively minimize the error between the lower
bound and ReLU function. CROWN [Zhang et al., 2018] and DeepPoly [Singh et al., 2019a] used this
strategy to achieve tighter verification results than Fast-Lin [Wang et al., 2018b], DeepZ [Singh et al.,
2018] and Neurify [Wang et al., 2018b]. Note that although the bound propagation techniques used in
these works can be viewed as using different linear relaxations and solve the primal problem greedily
in our framework, each of the works has some unique features. For example, DeepPoly [Singh
et al., 2019a] and DeepZ [Singh et al., 2018] carefully consider floating-point rounding during the
computation; Weng et al. [2018] gives a theoretical hardness proof based on a reduction from the
set-cover problem; Neurify [Wang et al., 2018b] combines the relaxed bound with a branch-and-bound
search to give concrete instances of adversarial example if they exist, and also uses the bound for
training [Wang et al., 2018a].

One the other hand, instead of propagating the bounds of z(l+1) to z(l−k) as shown above, we can
decouple layer z(l−(k−1)) and z(l−k) entirely: suppose we have obtained concrete upper and lower
bounds for z(l−(k−1)), we can treat z(l−(k−1)) as the input layer and only consider a k-layer network
to compute the bounds of z(l+1). This leads to interval bounds propagation (IBP) [Gowal et al.,
2018] (k = 1) and “Box Domain” [Mirman et al., 2018] which gives even looser bounds, but its
computation cost is also greatly reduced.

The greedy algorithm in primal space is also closely connected to the greedy algorithm in dual space;
the dual of (13) will recover a dual formulation with solution (47), and the closed from solution are
related to the chosen slopes a(l)

i and a(l)
i . This explains the equivalence of Fast-Lin and the greedy

algorithm to solve the dual problem presented in Algorithm 1 of [Wong and Kolter, 2018].

The Relationships Between Algorithms in Figure 1. Based on the above discussions, we now
revisit Figure 1, and discuss each arrow in this figure on the “primal view” side.

First of all, the arrow from “Optimal layer-wise convex relaxation” to CROWN [Zhang et al., 2018]
trivially holds since CROWN is a greedy algorithm to solve LP relaxations (problem C plus Eq. (7)),
which can be included in the convex relaxation framework. Additionally, CROWN is proposed as a
more general variant of Fast-Lin [Weng et al., 2018]. In Fast-Lin, the linear relaxation uses the same
slope for the upper and lower bounds; in CROWN, the slopes can be different. In other words, in
Eq. (7), a(l) = a(l) for Fast-Lin but this is not a requirement for CROWN.

Despite originating from different perspectives, DeepZ [Singh et al., 2018] and Fast-Lin [Weng et al.,
2018] share the same relaxations and give numerically identical bounds; so do DeepPoly [Singh et al.,
2019a] and CROWN. This can be observed by translating between the different notations of these
papers. Particularly, Singh et al. [2019b] commented “DeepZ has the same precision as Fast-Lin
and DeepPoly has the same precision as CROWN”, although they have several implementation
differences.

The arrows from “LP-Relaxed Dual” to CROWN and “LP-Relaxed Dual” to Fast-Lin come from
equation (7), where CROWN and Fast-Lin use one linear upper bound and one linear lower bound as
constraints instead of the general convex constraints in (C), so the problem C becomes a special case
of an LP-relaxed problem.

Fast-Lin and Neurify [Wang et al., 2018b] use the same relaxation for ReLU neurons (and unlike
other works, these two only deal with ReLU activation functions). This can be observed by comparing
Figure 3 in Wang et al. [2018b] and Figure 1 in Weng et al. [2018]: the choice of the slopes a(l)

and a(l) are the same. Numerically, both algorithms also produce the same results, but Neurify
additionally implements a branch-and-bound search for solving the exact verification problem with
the relaxation based bounds.

16

Figure 4: Illustration of strong duality proof for a convex problem. Left: proof under Slater’s
condition (picture from [Boyd and Vandenberghe, 2004] Section 5.3.2). Right: our proof. In both
settings, the set A and B are convex and do not intersect, so they can be separated by a hyperplane.
Slater’s condition (Left) assumes existence of a point that strictly satisfies the inequality constraints,
i.e., (ũ, t̃) in Figure 5(left), and thus any separating hyperplane must be nonvertical. In our setting
(Right), we take B to be a much larger set (thanks to Lemma E.1), and thus any separating hyperplane
must be nonvertical. Therefore, we can get strong duality without the Slater’s condition.

E Strong duality for Problem (C): p∗C = d∗C

Consider the following perturbed version of problem (C):

p̃∗C := min
(x[L+1],z[L])∈D

c>x(L) + c0

s.t. z(l) = W(l)x(l) + b(l) + v(l), l ∈ [L],

σ(l)(z(l))− u(l) ≤ x(l+1) ≤ σ(l)(z(l)) + u(l), l ∈ [L].

(20)

Lemma E.1. We assume that for each l ∈ [L], both σ(l) and σ(l) have a finite Lipschitz constant
in the domain [z(l), z(l)]. There exists a positive constant CC > 0 such that for any perturbations
(u[L], u[L], v[L]), we have

p̃∗C ≥ p∗C − CC‖(u[L], u[L], v[L])‖2 (21)

Lemma E.1 shows that the optimal value of the perturbed problem, i.e., p̃∗C , “smoothly” changes with
the perturbations. We delay the proof of Lemma E.1 in Section E.2. Combined with convexity, this
ensures the strong duality for problem (C).

Proof of Theorem 4.1. The structure of the proof follows the proof of strong duality given the Slater’s
condition in [Boyd and Vandenberghe, 2004] (Section 5.3.2). However, we do not assume the Slater’s
condition in our result here. Let’s define

A =
{

(u[L], u[L], v[L], t) : ∃(x[L+1], z[L]) ∈ D, σ(l)(z(l))− u(l) ≤ x(l+1) ≤ σ(l)(z(l)) + u(l),

z(l) = W(l)x(l) + b(l) + v(l),∀l ∈ [L], c>x(L) + c0 ≤ t
}
,

and
B =

{
(u[L], u[L], v[L], t) : t < p∗C − CC‖(u[L], u[L], v[L])‖2

}
.

A is convex because the problem (20) is convex. B is convex by definition. The sets A and B do
not intersect, as illustrated in Figure 4. To see this, suppose (u[L], u[L], v[L], t) ∈ A ∩ B. Since
(u[L], u[L], v[L], t) ∈ B, we have t < p∗C − CC‖(u[L], u[L], v[L])‖2. Since (u[L], u[L], v[L], t) ∈ A,
there exists (x[L+1], z[L]) ∈ D such that it satisfies the constraints in problem (20), and t ≥ c>x(L) +

c0 ≥ p̃∗C ≥ p∗C − CC‖(u[L], u[L], v[L])‖2, where the last inequality comes from (21). This is a
contradiction!

17

By the separating hyperplane theorem, there exists (λ[L], λ
[L]
, µ[L], ν) 6= 0 and α such that

(u[L], u[L], v[L], t) ∈ A ⇒ λ[L]>u[L] + λ[L]>u[L] + µ[L]>v[L] + νt ≥ α, (22)

and
(u[L], u[L], v[L], t) ∈ B ⇒ λ[L]>u[L] + λ[L]>u[L] + µ[L]>v[L] + νt ≤ α, (23)

From (22), we conclude that λ[L] ≥ 0, λ
[L] ≥ 0 and ν ≥ 0. Otherwise, λ[L]>u[L] + λ[L]>u[L] + νt

is unbounded from below over A, contradicting (22). Since (0, 0, 0, t) ∈ B for any t < p∗C , we have
νt ≤ α for any t < p∗C thanks to (23), and thus νp∗C ≤ α. Together with (22), we conclude that for
any (x[L+1], z[L]) ∈ D,

ν(c>x(L) + c0) +

L−1∑
l=0

µ(l)>(z(l) −W(l)x(l) − b(l)) +

L−1∑
l=0

λ(l)>(σ(l)(z(l))− x(l+1))

+

L−1∑
l=0

λ
(l)>

(x(l+1) − σ(l)(z(l))) ≥ α ≥ νp∗C .

(24)

Assume that ν > 0. In that case, we can divide (24) by ν to obtain

L(x[L+1], z[L], λ[L]/ν, λ
[L]
/ν, µ[L]/ν) ≥ p∗C

for all (x[L+1], z[L]) ∈ D, where L(·), defined in (8), is the Lagrangian of (C). Minimizing

over (x[L+1], z[L]) ∈ D, we obtain gC(µ[L]/ν, λ[L]/ν, λ
[L]
/ν) ≥ p∗C . By weak duality, we have

gC(µ
[L]/ν, λ[L]/ν, λ

[L]
/ν) ≤ p∗C , so in fact gC(µ[L]/ν, λ[L]/ν, λ

[L]
/ν) = p∗C . This shows that strong

duality holds, and that the dual optimum is attained, at least in the case when ν > 0.

Now we consider the case ν = 0. From (24), we conclude that for any (x[L+1], z[L]) ∈ D,

L−1∑
l=0

µ(l)>(z(l) −W(l)x(l) − b(l)) +

L−1∑
l=0

λ(l)>(σ(l)(z(l))− x(l+1))

+

L−1∑
l=0

λ
(l)>

(x(l+1) − σ(l)(z(l))) ≥ α ≥ 0.

(25)

Taking any feasible point of problem (C), i.e., (x[L+1], z[L]) ∈ SC and combining with λ[L] ≥
0, λ

[L] ≥ 0, we know that the left-hand-side of (25) is non-positive, and thus α = 0. Then from (23),
we conclude that for any t ∈ R

‖(u[L], u[L], v[L])‖2 <
p∗C − t
CC

⇒ λ[L]>u[L] + λ[L]>u[L] + µ[L]>v[L] ≤ 0,

which can only be possible when (λ[L], λ
[L]
, µ[L]) = 0. Combined with ν = 0, this contradicts with

(λ[L], λ
[L]
, µ[L], ν) 6= 0, and thus ν cannot be 0.

E.1 Cases where the Slater’s condition fails but strong duality holds true by Theorem 4.1

We emphasize that Theorem 4.1 guarantees the strong duality for any pre-specified activation bounds
[z(l), z(l)] that can be either loose or tight, and for any σ(l) and σ(l) that have a finite Lipschitz
constant in the domain [z(l), z(l)]. There are several important cases when Slater’s condition does not
hold but strong duality holds true by Theorem 4.1.

The first typical scenario is when the pre-specified activation bounds [z(l), z(l)] is loose and all the
feasible activations z(l) are on the boundary. Let’s consider a simple one-layer neural network:

x(0) ∈ Sin(xnom),

z(0) = W(0)x(0) + b(0), z(0) ∈ [z(0), z(0)],

ReLU(z(0)) ≤ x(1) ≤ ReLU(z(0)).

18

Suppose that W(0) = 0, b(0) = −1, z(0) = −1 and z(0) = 1. Then z(0) can only be -1, and
ReLU(z0) = ReLU(z0) = 0, and thus there does not exist x(1) such that ReLU(z(0)) < x(1) <
ReLU(z(0)). In general, orthogonality between x(l) and span(W(l)) easily leads to degeneracy of
z(l), which can result in the failure of the Slater’s condition.

The second typical scenario is when the pre-specified activation bounds in later layers, e.g., z(1) ∈
[z(1), z(1)], forces all feasible points in previous layers, e.g., x(1), to be on the boundary. This
degenerate case may occur when one takes the branch-and-bound strategy to split unstable neurons.
Let’s consider a simple two-layer neural network:

x(0) ∈ Sin(xnom) := [−1, 1],

z(0) = x(0), z(0) ∈ [−1, 1],

ReLU(z(0)) ≤ x(1) ≤ ReLU(z(0)),

z(1) = x(1) − 1, z(1) ∈ [0, 1],

ReLU(z(1)) ≤ x(2) ≤ ReLU(z(1)).

Due to the pre-specified bound z(1) ∈ [0, 1], x(1) can only take value 1, which is on the boundary
of the nonlinear constraint ReLU(z(0)) ≤ x(1) ≤ ReLU(z(0)). This leads to failure of the Slater’s
condition.

After all, there are many edge cases that the Slater’s condition does not cover to prove Theorem 4.1.
Therefore, we would like to take a novel approach, utilizing the Lipschitz continuity of problem (C),
to prove the strong duality without the Slater’s condition.

E.2 Proof of Lemma E.1

Although the proof seems to be long, it is an elementary perturbation analysis for problem (C). We
write down every detail so that one can easily check its correctness.

Proof of Lemma E.1. When problem (20) is infeasible, i.e., X̃(L) = ∅, p̃∗C = +∞ and (21) naturally
holds true. In the following, we prove (21) when problem (20) is feasible.

In this case, we define X(0) = X̃(0) = Sin(xnom), Z(l), Z̃(l), X(l) and X̃(l) recursively as follows:

Z(l) = {W(l)x(l) + b(l) : x(l) ∈ X(l)} ∩ [z(l), z(l)],

Z̃(l) = {W(l)x̃(l) + b(l) + v(l) : x̃(l) ∈ X̃(l)} ∩ [z(l), z(l)],

X(l+1) = {x(l+1) : σ(l)(z(l)) ≤ x(l+1) ≤ σ(l)(z(l)), z(l) ∈ Z(l)},
X̃(l+1) = {x̃(l+1) : σ(l)(z̃(l))− u(l) ≤ x̃(l+1) ≤ σ(l)(z̃(l)) + u(l), z̃(l) ∈ Z̃(l)}.

Intuitively, Z(l), Z̃(l), X(l) and X̃(l) are the set of activations that are achievable by the original
problem (C) and the perturbed problem (20) given x(0) ∈ Sin(xnom) and z(l) ∈ [z(l), z(l)]. Since
both problems are feasible, all the sets above are non-empty.

In the first step, we prove that for every l ∈ [L+ 1], there exist positive constants C(l)
x and C(l)

z such
that

sup
x̃(l)∈X̃(l)

dist(x̃(l), X(l)) ≤ C(l)
x ‖(u[L], u[L], v[l])‖2, (26)

sup
z̃(l)∈Z̃(l)

dist(z̃(l), Z(l)) ≤ C(l)
z ‖(u[L], u[L], v[l+1])‖2, (27)

where dist(s,S) := infs′∈S ‖s− s′‖2. This means that the perturbation in the achievable activations
are “smooth".

Since X(l) = X̃(l) = Sin(xnom), we have that (26) holds true for l = 0 with C(0)
x = 0. In the

following, we use mathematical induction to prove (27) for 0 ≤ l ≤ L− 1 and (26) for 1 ≤ l ≤ L.

19

First, suppose dist(x̃(l), X(l)) ≤ C
(l)
x ‖(u[L], u[L], v[l])‖2 holds true for any x̃(l) ∈ X̃(l). Then for

any z̃(l) = W(l)x̃(l) + b(l) + v(l) ∈ Z̃(l), we have

dist(z̃(l), Z(l)) := inf
z(l)∈Z(l)

‖z̃(l) − z(l)‖ ≤ inf
x(l)∈X(l)

‖W(l)(x̃(l) − x(l)) + v(l)‖

≤ inf
x(l)∈X(l)

‖W(l)‖‖x̃(l) − x(l)‖+ ‖v(l)‖ = ‖W(l)‖dist(x̃(l), X(l)) + ‖v(l)‖

≤ ‖W(l)‖C(l)
x ‖(u[L], u[L], v[l])‖+ ‖v(l)‖ ≤

(
(C(l)

x)2‖W(l)‖2 + 1
)2

‖(u[L], u[L], v[l+1])‖.

Therefore, (27) holds true with C(l)
z =

(
(C

(l)
x)2‖W(l)‖2 + 1

)2

.

Then by definition, for any x̃(l+1) ∈ X̃(l+1), there exists z̃(l) ∈ Z̃(l) such that

σ(l)(z̃(l))− u(l) ≤ x̃(l+1) ≤ σ(l)(z̃(l)) + u(l).

By the induction assumption, there exists z(l) ∈ Z(l) such that

dist(z̃(l), z(l)) ≤ C(l)
z ‖(u[L], u[L], v[l+1])‖2.

Thus, we have

dist(x̃(l+1), X(l+1)) = inf
x(l+1)∈X(l+1)

‖x̃(l+1) − x(l+1)‖

≤ inf{‖x̃(l+1) − x(l+1)‖ : σ(l)(z(l)) ≤ x(l+1) ≤ σ(l)(z(l))}.

We re-parametrize x̃(l+1) and x(l+1) as

x̃(l+1) = σ(l)(z̃(l)) + t̃, x(l+1) = σ(l)(z(l)) + t,

where
−u(l) ≤ t̃ ≤ ∆σ(l)(z̃(l)) + u(l), 0 ≤ t ≤ ∆σ(l)(z(l)),

∆σ(l)(z̃(l)) = σ(l)(z(l))− σ(l)(z(l)).

It is easy to prove that if σ(l) and σ(l) have Lipschitz constant L(l) and L
(l)

respectively, ∆σ(l) has a
Lipschitz constant L(l) + L

(l)
. Then we have

dist(x̃(l+1), X(l+1)) ≤ ‖σ(l)(z̃(l))− σ(l)(z(l))‖+ inf
t∈[0,∆σ(l)(z(l))]

‖t̃− t‖

≤ L(l)‖z̃(l) − z(l)‖+

(∑
k

inf
tk∈[0,∆σ

(l)
k (z(l))]

|t̃k − tk|2
)1/2

.

We have the entry-wise bound for t̃− t:

inf
tk∈[0,∆σ

(l)
k (z(l))]

|t̃k − tk|2 ≤ max(|u(l)
k |

2, |∆σ(l)
k (z̃(l))−∆σ

(l)
k (z(l)) + u(l)|2)

≤ 2
(
|∆σ(l)

k (z̃(l))−∆σ
(l)
k (z(l))|2 + |u(l)

k |
2 + |u(l)|2

)
Therefore, we get

inf
t∈[0,∆σ(l)(z(l))]

‖t̃− t‖ ≤
√

2
(
‖∆σ(l)(z̃(l))−∆σ(l)(z(l))‖2 + ‖u(l)

k ‖
2 + ‖u(l)‖2

)1/2

≤
√

2
(

(L(l) + L
(l)

)2‖z̃(l) − z(l)‖2 + ‖u(l)
k ‖

2 + ‖u(l)‖2
)1/2

≤
√

2(L(l) + L
(l)

)2(C
(l)
z)2 + 2 ‖(u[l+1], u[l+1], v[l+1])‖2

Similarly, we have L(l)‖z̃(l) − z(l)‖ ≤ L(l)C
(l)
z ‖(u[l+1], u[l+1], v[l+1])‖2. Therefore, we obtain

dist(x̃(l+1), X(l+1)) ≤ C(l+1)
x ‖(u[l+1], u[l+1], v[l+1])‖2,

20

where C(l+1)
x = L(l)C

(l)
z +

√
2(L(l) + L

(l)
)2(C

(l)
z)2 + 2.

Then by mathematical induction, we proved that (27) for 0 ≤ l ≤ L− 1 and (26) for 1 ≤ l ≤ L.

In the second step, we prove (21). Thanks to (26) with l = L, we have for any x̃(L) ∈ X̃(L), there
exists x(L) ∈ X(L) such that

dist(x̃(L), x(L)) ≤ C(L)
x ‖(u[L], u[L], v[L])‖2.

Then we obtain

p∗C − (c>x̃(L) + c0) ≤ c>(x(L) − x̃(L)) ≤ ‖c‖‖x̃(L) − x(L)‖
≤ C(L)

x ‖c‖‖(u[L], u[L], v[L])‖2.

Taking the infimum over x̃(l) ∈ X̃(l), we have proved (21) with CC = C
(L)
x ‖c‖.

F Equivalence of the optimal layer-wise dual relaxations: d∗Copt
= d∗O

Lemma F.1. Suppose the activation function σ : [z, z]→ R is bounded from above and below and
that σ(z) ≤ σ(z) ≤ σ(z) for all z ∈ [z, z]. Define

fO(µ, λ) := inf
z∈[z,z]

µz − λσ(z), (28)

fC(µ, λ, λ) := inf
z∈[z,z]

µz + λσ(z)− λσ(z). (29)

For any µ, λ ≥ 0 and λ ≥ 0, we have

fC(µ, λ, λ) ≤ fC(µ,−
(
λ− λ

)
− ,
(
λ− λ

)
+

), (30)

where λ+ = max(λ, 0) and λ− = min(λ, 0).

When σopt and σopt are the optimal convex relaxations defined in (12), we write fC as fCopt . In this
case, we have that for any µ and λ

fCopt(µ,−λ−, λ+) = fO(µ, λ). (31)

Proof. First let’s prove (30). For λ ≥ λ ≥ 0, we have

fC(µ,−
(
λ− λ

)
− ,
(
λ− λ

)
+

) = fC(µ, λ− λ, 0)

and
fC(µ, λ, λ) = inf

z∈[z,z]
µz + λσ(z)− λσ(z) = inf

z∈[z,z]
µz + (λ− λ)σ(z)− λ(σ(z)− σ(z))

(i)

≤ sup
z∈[z,z]

µz − (λ− λ)σ(z) = fC(µ, λ− λ, 0),

where we use λ(σ(z)− σ(z)) ≥ 0 in (i). Similarly for λ ≥ λ ≥ 0, we have

fC(µ,−
(
λ− λ

)
− ,
(
λ− λ

)
+

) = fC(µ, 0, λ− λ)

and
fC(µ, λ, λ) = inf

z∈[z,z]
µz + λσ(z)− λσ(z) = sup

z∈[z,z]

µz − (λ− λ)σ(z)− λ(σ(z)− σ(z))

(i)

≤ sup
z∈[z,z]

µz − (λ− λ)σ(z) = fC(µ, 0, λ− λ),

where we use λ(σ(z)− σ(z)) ≥ 0 in (i).

Then let’s prove (31). For λ < 0 (λ+ = 0 and λ− = λ), by definition we have

fCopt(µ,−λ, 0) = inf
z∈[z,z]

µz − λσopt(z) = λ sup
z∈[z,z]

µ

λ
z − σopt(z)

(i)
=: λ

(
σopt

)∗
(µ/λ)

(ii)
= λ (σ)

∗
(µ/λ)

(iii)
:= inf

z∈[z,z]
µz − λσ(z) = fO(µ, λ),

21

where we use the definition of convex conjugate in (i) and (iii) and the Fenchel-Moreau theorem
(Theorem 12.2 in Rockafellar [2015]) in (ii). For λ = 0, it is obvious. Similarly, for λ > 0 (λ+ = λ
and λ− = 0), by definition we have

fCopt(µ, 0, λ) = inf
z∈[z,z]

µz − λσopt(z) = −λ sup
z∈[z,z]

−µ
λ
z − (−σopt)(z)

(i)
=: −λ (−σopt)

∗
(−µ/λ)

(ii)
= −λ (−σ)

∗
(−µ/λ)

(iii)
:= inf

z∈[z,z]
µz − λσ(z) = fO(µ, λ),

where we use the definition of convex conjugate in (i) and (iii) and the Fenchel-Moreau theorem in
(ii), again.

Proof of Theorem 4.2. In the first step, we simplify the form of gC(µ[L], λ[L], λ
[L]

). By definition
(8), we have

gC(µ
[L], λ[L], λ

[L]
) = g(0)(µ(0)) +

L−1∑
l=1

g(l)(µ(l), λ
(l−1) − λ(l−1)) + g(L)(c, λ

(l−1) − λ(l−1))

+

L−1∑
l=0

(
g̃

(l)
C (µ(l), λ(l), λ

(l)
)− b(l)>µ(l)

)
,

(32)
where

g(0)(µ(0)) = inf
x(0)∈Sin(xnom)

(
−W(0)>µ(0)

)>
x(0) (33)

g(l)(µ(l), λ(l−1)) = inf
x(l)

(
λ(l−1) −W(l)>µ(l)

)>
x(l) = 1λ(l−1)=W(l)>µ(l) , (34)

g(L)(c, λ(L−1)) = inf
x(L)

(
λ(L−1) + c

)>
x(L) + c0 = 1λ(L−1)=−c + c0, (35)

and

g̃
(l)
C (µ(l), λ(l), λ

(l)
) = inf

z(l)≤z(l)≤z(l)

{
µ(l)>z(l) + λ(l)>σ(l)(z(l))− λ(l)>

σ(l)(z(l))

}
. (36)

In the second step, for any µ[L], λ[L] ≥ 0 and λ
[L] ≥ 0, we apply (30) in Lemma F.1 entry-wisely on

(36), and obtain
g̃

(l)
C (µ(l), λ(l), λ

(l)
) ≤ g̃(l)

C (µ(l),−λ(l)
− , λ

(l)
+),

in which λ(l) := λ(l) − λ
(l)

. After Plugging λ[L] = λ
[L]
+ + λ

[L]
− and λ[L] := λ[L] − λ

[L]
into

equation (32), we obtain that

gC(µ
[L], λ[L], λ

[L]
) ≤ gC(µ[L],−λ[L]

− , λ
[L]
+). (37)

Therefore, the dual problem (9) can be rewritten as an unconstrained optimization problem as

d∗C = max
µ[L],λ[L]

gC(µ
[L],−λ[L]

− , λ
[L]
+). (38)

In the third step, we simplify gO(µ[L], λ[L]) based on its definition (10) and obtain

gO(µ[L], λ[L]) = g(0)(µ(0)) +

L−1∑
l=1

g(l)(µ(l), λ(l−1))) + g(L)(c, λ(L−1))

+

L−1∑
l=0

(
g̃

(l)
O (µ(l), λ(l))− b(l)>µ(l)

) (39)

in which
g̃

(l)
O (µ(l), λ(l)) = inf

z(l)≤z(l)≤z(l)
µ(l)>z(l) − λ(l)>σ(l)(z(l)). (40)

22

In the forth step, for any µ[L] and λ[L], since all the nonlinear layers are non-interactive, we apply
(31) in Lemma F.1 entry-wisely on (36) and (40) and obtain

g̃
(l)
Copt

(µ(l),−λ(l)
− , λ

(l)
+) = g̃

(l)
O (µ(l), λ(l)).

After plugging λ[L] = λ
[L]
+ +λ

[L]
− into (32), we see that the other three terms in gCopt(µ

[L],−λ[L]
− , λ

[L]
+)

and gO(µ[L], λ[L]) are the same. Therefore, we have proved that for any µ[L] and λ[L], we have

gCopt(µ
[L],−λ[L]

− , λ
[L]
+) = gO(µ[L], λ[L]) (41)

Finally, combining (11), (38) and (41), we obtain d∗Copt
= d∗O.

G A greedy algorithm to solve the dual problems

G.1 Some useful results to simplify the dual problems

We provide the following useful results when solving (9) and (11). First, the dual problem (9) can
be rewritten as an unconstrained optimization problem inspired by (38). We define a two-argument
function, reusing the name gC , as

gC(µ
[L], λ[L]) := gC(µ

[L],−λ[L]
−), λ

[L]
+).

Then we have the following useful results.
Proposition G.1. Denote λ+ = max(λ, 0) and λ− = min(λ, 0).

1. For dual of the convex relaxed problem (C) defined in (9), we have

d∗C = max
µ[L],λ[L]

{
gC(µ

[L], λ[L]) := c0 + g(0)(µ(0)) +

L−1∑
l=0

(
g̃

(l)
C (µ(l), λ(l))− b(l)>µ(l)

)}
,

(42)
where

λ(L−1) = −c, λ(l) = W(l+1)>µ(l+1) ∀l ∈ [L− 1], (43)

g(0)(µ(0)) = inf
x(0)∈Sin(xnom)

(
−W(0)>µ(0)

)>
x(0), (44)

and

g̃
(l)
C (µ(l), λ(l)) = inf

z(l)≤z(l)≤z(l)

{
µ(l)>z(l) − λ(l)

−
>σ(l)(z(l))− λ(l)

+
>σ(l)(z(l))

}
.

2. For the dual of the original nonconvex problem (O) defined in (11), we have

d∗O := max
µ[L],λ[L]

{
gO(µ[L], λ[L]) = c0 + g(0)(µ(0)) +

L−1∑
l=0

(
g̃

(l)
O (µ(l), λ(l))− b(l)>µ(l)

)}
,

(45)
where (43) still holds true and

g̃
(l)
O (µ(l), λ(l)) = inf

z(l)≤z(l)≤z(l)
µ(l)>z(l) − λ(l)>σ(l)(z(l)).

3. Suppose that a nonlinear neuron x(l+1)
j = σ(l)(z

(l)
Ij

) is effectively linear within the input

domain Sin(xnom), i.e., there exists a linear relation x(l+1)
j = V

(l)
j z

(l)
Ij

+ d
(l)
j for all x(0) ∈

Sin(xnom), then we can simplify the convex relaxed problem (C) by setting

σ
(l)
i (z(l)) = σ

(l)
i (z(l)) = V

(l)
j z

(l)
Ij

+ d
(l)
j ,

or simplify the original nonconvex problem (O) by setting

σ
(l)
i (z(l)) = V

(l)
j z

(l)
Ij

+ d
(l)
j .

If this neuron does not interact with other neurons in the same layer, i.e., z(l)
Ij

is not the input

of x(l+1)
k for any k 6= j. Then for any optimal point for both dual problems, we have

µ
(l)
Ij

= V
(l)
j
>λ

(l)
j . (46)

23

Similar results have been obtained in several previous works [Wong and Kolter, 2018, Dvijotham
et al., 2018b, Wong et al., 2018, Qin et al., 2019].

Proof.

1. (42) is a straightforward rewriting of (32) with (34), (35), (33) and (36).

2. (45) is a straightforward rewriting of (39) with (34), (35), (33) and (40).

3. This can be proved with the same treatment of linear layers in the two items above.

G.2 Greedily solving the dual with linear bounds

Suppose the relaxed bounds σ and σ are linear, i.e.,

σ(l)(z(l)) := a(l)z(l) + b(l), σ(l)(z(l)) := a(l)z(l) + b
(l)
.

In this case, in the dual problem (42) we have

d∗C = max
µ[L],λ[L]

{
gC(µ

[L], λ[L]) := c0 + g(0)(µ(0)) +

L−1∑
l=0

(
g̃

(l)
C (µ(l), λ(l))− b(l)>µ(l)

)}
,

where

g̃
(l)
C (µ(l), λ(l)) = inf

z(l)≤z(l)≤z(l)

{(
µ(l) − λ(l)

+ a(l) − λ(l)
− a

(l)
)
z(l) +

(
λ

(l)
+ b

(l) − λ(l)
− b

(l)
)}

.

In the following, we propose a dual greedy algorithm to greedily (approximately) solve the dual
problem (9) and/or its simplified version (42). Let λ[L] be determined by (43) and µ[L], for stable
neurons, be determined by (46). Both of these are optimal. For unstable neurons (z(l)

i ≤ 0 ≤ z(l)
i), a

suboptimal µ[L] can be obtained by

µ(l) = arg max
µ(l)

g̃
(l)
C (µ(l), λ(l)),

which has a closed form solution

µ
(l)
i = a

(l)
i

(
λ

(l)
i

)
+

+ a
(l)
i

(
λ

(l)
i

)
−
.

Notice that the above suboptimal solution for unstable neurons and the optimal solution (46) for
stable neurons (a(l) = a(l) and b(l) = b

(l)
) can be unified in a single formulae.

Finally, we summarize our algorithm to greedily solve the dual problem as

λ(L−1) = −c, µ(l) = a(l)
(
λ(l)
)

+
+a(l)

(
λ(l)
)
−

λ(l) = W(l+1)>µ(l+1) ∀l ∈ [L−1], (47)

and the corresponding lower bound is

gC(µ
[L], λ[L]) = c0 + g(0)(µ(0)) +

L−1∑
l=0

(
b
(l)> (

λ(l)
)

+
− b(l)>

(
λ(l)
)
−
− b(l)>µ(l)

)
. (48)

We point out that the algorithm above can exactly recover what was proposed in Theorem 1 in Wong
and Kolter [2018]. Their ν is our µ and their ν̂ is our λ.

24

H Which problem to solve in practice?

Thanks to the strong duality, the same lower bound can be achieved from both the primal and the
dual problems, and thus we have the freedom to choose the problem to solve. When the relaxed
upper and lower bounds, i.e., σ(l) and σ(l), are piece-wise linear (e.g. (4) for ReLU networks),
both the primal and dual problems are linear programs and can be efficiently solved by existing
LP solvers (which is what we use in the coming sections). In other cases, we recommend to
solve the dual problem (11) for two reasons. First, the primal relaxed problem (C) is a constrained
optimization problem, and its constraints may not have a simple analytic form when σ(l) and σ(l) are
not piecewise linear; see examples in Fig. 2. On the contrary, the dual problem (11) can be framed as
an unconstrained optimization problem and its objective function has a simple analytic form for some
common activation functions [Dvijotham et al., 2018b]. Second, the optimization process of (11) can
be stopped anytime to give a lower bound of p∗O, thanks to weak duality, but this is not true of the
primal view. Of course, σ(l) and σ(l) must be in the form of (6) to achieve the optimal value.

25

I Additional Experimental Details

I.1 Neural Networks Used

Here is a list of the network architectures that we use in this paper along with their references if
applicable.

MNIST robust error experiment

• MLP-A: a multilayer perceptron consisting of 1 hidden layer with 500 neurons [Tjeng et al.,
2019].

• MLP-B: a multilayer perceptron consisting of 2 hidden layers with 100 neurons each.

MNIST ε-search experiment

• CNN-SMALL: ConvNet architecture with two convolutional layers with 16 and 32 filters
respectively (size (size 4× 4 and stride of 2 in both), followed by two fully-connected layers
with 100 and 10 units respectively [Wong et al., 2018].
• CNN-WIDE-K: ConvNet architecture with two convolutional layers of 4×k and 8×k filters

(size 4× 4 and stride of 2 in both) followed by a 128× k fully connected layer followed by
two fully-connected layers of sizes 128× k and 10 respectively. The parameter k is used to
control the width of the network [Wong et al., 2018].

• CNN-DEEP-K: ConvNet architecture with k convolutional layers with 8 filters followed
by k convolutional filters with 16 filters followed by two fully-connected layers of sizes
100× k and 10 respectively. The parameter k is used to control the depth of the network
[Wong et al., 2018].

• MLP-[9]-500: a multilayer perceptron consisting of 9 hidden layer with 500 neurons each.
• MLP-[9]-100: a multilayer perceptron consisting of 9 hidden layer with 100 neurons each.
• MLP-[2]-100: a multilayer perceptron consisting of 2 hidden layer with 100 neurons each.

CIFAR-10 ε-search experiment

• CNN-SMALL: ConvNet architecture with two convolutional layers with 16 and 32 filters
respectively (size (size 4× 4 and stride of 2 in both), followed by two fully-connected layers
with 100 and 10 units respectively.
• CNN-WIDE-K: ConvNet architecture with two convolutional layers of 4×k and 8×k filters

(size 4× 4 and stride of 2 in both) followed by a 128× k fully connected layer followed by
two fully-connected layers of sizes 128× k and 10 respectively. The parameter k is used to
control the width of the network.

I.2 Training Modes

In this paper, we use only one pre-trained network from the literature, and we train the rest from
scratch.

Pre-trained Networks

• ADV-MLP-A: this is a multilayer perceptron with 1 hidden layer having 500 units. It is
trained using PGD with l∞ perturbation of ε = 0.1, and is used in Tjeng et al. [2019]
and Raghunathan et al. [2018a]. It can be found at https://github.com/vtjeng/
MIPVerify_data/tree/master/weights/mnist/RSL18a.

Networks Trained from Scratch. We train all models in parallel on a GPU-cluster with P100
GPUs.

• All networks in the paper that have the prefix or training mode ADV are trained with PGD
using the code available at https://github.com/locuslab/convex_adversarial/
blob/master/examples/mnist.py.

26

https://github.com/vtjeng/MIPVerify_data/tree/master/weights/mnist/RSL18a.
https://github.com/vtjeng/MIPVerify_data/tree/master/weights/mnist/RSL18a.
https://github.com/locuslab/convex_adversarial/blob/master/examples/mnist.py
https://github.com/locuslab/convex_adversarial/blob/master/examples/mnist.py

• All networks in the paper that have the prefix or training mode LPD are trained with the
robust training method of Wong et al. [2018] using the code available at https://github.
com/locuslab/convex_adversarial/blob/master/examples/mnist.py.

• All networks in the paper that have the prefix NOR or training mode NORMAL are trained the
regular cross-entropy loss using the code available at https://github.com/locuslab/
convex_adversarial/blob/master/examples/mnist.py.

• All the CIFAR-10 networks in the paper have the same naming convention as above,
but are trained using the code available at https://github.com/locuslab/convex_
adversarial/blob/master/examples/cifar.py.

J Parallel Computation Details

Why do we need parallel computing to solve LP-ALL? The nature of our LP-ALL algorithm
requires solving a number of LP that scales with the number of neurons in the network we are
verifying. For example, if we want to verify a network with 10k neurons on ten samples the MNIST
dataset. We need to solve roughly 10k LPs/sample× 10 samples = 100k LPs.

The average time for solving an LP varies with the size of the network (see Fig. 5 and 6). It also
varies depending on which layer in the network the neuron, for which we are solving the LP, is in
(see Fig. 7). Let us say on average the duration for solving one LP is 10 sec on the CPUs we use,
which is reasonable for networks that we consider in this paper. Therefore, for verifying one network,
we need around 1 million sec which is roughly 11 days.

Doing this for all the models in the paper and for more samples would take years. This is why
parallelizing the computation was crucial. Therefore we conduct all the experiments on a cluster
with 1000 CPU-nodes. Another key point here was to make sure that the scheduling pipeline on
the cluster has very low latency, because we need to solve around 100 million jobs in total in the
paper, each of which is on the order of seconds. So any latency in the pipeline can cause significant
overhead. The details of the scheduling pipeline are beyond the scope of this paper.

CPU specifications. Each CPU-node we used has 2 virtual CPUs with a 2.4 GHz Intel(R) Xeon(R)
E5-2673 v3 (Haswell) processor and 7GB of RAM.

Linear programming (LP) solver used. We construct all the LP models in python using CVXPY
[Diamond and Boyd, 2016], and the models are solved using an open-source solver, ECOS [Domahidi
et al., 2013]. We found this solver to be the fastest among other open-source solvers for our
application.

K Computational Time for Solving LP-ALL

The solve time of the LP in (C) depends mainly on the size and the training method of a neural
network. It also depends on the input-space dimension.

Dependence on architecture and training mode. Fig. 5 and 6 shows the average solve time of
the LP in (C) for various networks and training methods that are used in the paper on MNIST and
CIFAR-10 datasets, respectively. This averaging is over all the neurons in each network, and over ten
samples of each dataset. Note how the solve time increases as the network becomes wider or deeper.
This is because the number of decision variables and constraints in the LP increases as the network
becomes wider or deeper. Another observation is that, in contrast to MILP [Tjeng et al., 2019], the
solve time for robustly trained networks seems to be larger than those which are trained using the
regular cross-entropy loss or those which are randomly initialized. This is possibly due to the fact
that we are not exploiting the stability of neurons in our implementation of the LP as opposed to what
is done in the MILP implementation of Tjeng et al. [2019].

Dependence on which layer we are solving for. Fig. 7 shows the average solve time per neuron
per layer of the LP in (C) for each of the networks that are used in the paper on the CIFAR-10 dataset.
Notice how the solve time of the LP increases as we go deeper into the network.

27

https://github.com/locuslab/convex_adversarial/blob/master/examples/mnist.py
https://github.com/locuslab/convex_adversarial/blob/master/examples/mnist.py
https://github.com/locuslab/convex_adversarial/blob/master/examples/mnist.py
https://github.com/locuslab/convex_adversarial/blob/master/examples/mnist.py
https://github.com/locuslab/convex_adversarial/blob/master/examples/cifar.py
https://github.com/locuslab/convex_adversarial/blob/master/examples/cifar.py

Figure 5: Average duration for solving the LPs for each model (averaged over the neurons in the
model and over 10 samples of the MNIST dataset.

Figure 6: Average duration for solving the LPs for each model averaged over the neurons in the
model and over 10 samples of the CIFAR-10 dataset.

Figure 7: Average duration for solving the LPs per layer for each model averaged over the neurons in
the model and over 10 samples of the CIFAR-10 dataset.

28

L Full Results of Certified Bounds on the Minimum Adversarial Distortion
Experiment

L.1 Implementation details

In this experiment, we are interested in searching for the minimum adversarial distortion ε, which is
the l∞ radius of largest l∞ ball in which no adversarial examples can be crafted.

An upper bound on ε can be calculated by using PGD in a binary search setting: given an initial guess
of ε, PGD can be used to find an adversarial example. If successful, divide ε by 2; else multiply ε by
2; and repeat until the change in ε is below some tolerance (10−5 in our case).

Lower bounds on ε are calculated using LP-GREEDY, LP-LAST , or our LP-ALL algorithm in a
binary search setting; given an initial guess of ε, any of these algorithms can be used to check whether
the network is robust within ε-perturbation of the input. If robust, multiply ε by 2; else divide ε by 2;
and repeat until the change in ε is below a tolerance. The tolerances used in the paper are:

• tol(εLP-GREEDY) = 10−5 because LP-GREEDY is computationally very cheap.
• tol(εLP-LAST) = 5%× εLP-GREEDY because LP-LAST is computationally expensive.
• tol(εLP-ALL) = 5%× εLP-GREEDY because LP-ALL is computationally expensive.

Since solving LP-ALL is really expensive, we find the ε-bounds only for ten samples of the MNIST
and CIFAR-10 datasets. In this experiment, both ADV- and LPD-networks are trained with an l∞
maximum allowed perturbation of 0.1 and 8/255 on MNIST and CIFAR-10, respectively. The full
results are reported in Tables 2 and 3 respectively.

L.2 Results

Tables 2 and 3 both report, for ten samples of MNIST and CIFAR-10 respectively, for a wide range
of networks :

1. The training mode, whether the network is trained using regular CE loss (Normal), using
adversarial examples generated by PGD (ADV), or using the robust loss in Wong and Kolter
[2018] (LPD).

2. Mean lower bounds on ε found by LP-GREEDY, LP-LAST, and LP-ALL. Note that naturally
εLP-GREEDY ≤ εLP-LAST ≤ εLP-ALL

3. A mean upper bound on ε found by PGD.
4. The median percentage gap between PGD and the three LP-relaxed algorithms. The

percentage gap is defined as

%gap =
(εPGD − εLP-X)

εPGD
× 100.

It is also easy to see that naturally,
%gapLP-GREEDY ≥ %gapLP-LAST ≥ %gapLP-ALL

The results of both tables show that for all networks, the certified lower bounds on ε using LP-
GREEDY, LP-LAST, or LP-ALL are 1.5 to 5 times smaller than the upper bound found by PGD on
MNIST, and 1.5 to 2 times smaller than the upper bound found by PGD on MNIST. This gap can
also clearly be observed in Fig. 3 and Fig. 8 for MNIST and CIFAR-10, respectively.

Therefore, the improvement that we get using LP-ALL and LP-LAST over LP-GREEDY is not
significant and doesn’t close the gap with the PGD upper bound.

M Results on Randomly Initialized Networks

In this section, we report additional results for the ε-search experiment because they might be of
interest as a comparison. The results are reported in Table 4. The results are in accordance to what
was discussed in Seciton 6.2 i.e. for all networks and both datasets, the certified lower bounds on ε
using LP-GREEDY, LP-LAST, or LP-ALL are 2 to 3 times smaller than the upper bound found by
PGD. Furthermore, the improvement that we get using LP-ALL and LP-LAST over LP-GREEDY is
not significant and doesn’t close the gap with the PGD upper bound.

29

Table 2: Certified bounds on the minimum adversarial distortion ε for ten random samples from the
test set of MNIST.

NETWORK
TRAINING

MODE

MEAN LOWER BOUND
(×10−3)

MEAN UPPER BOUND
(×10−3)

MEDIAN
PERCENTAGE GAP (%)

LP-GREEDY LP-LAST LP-ALL PGD LP-GREEDY LP-LAST LP-ALL

CNN-SMALL NORMAL 14.98 16.29 18.87 52.70 69.12 66.03 61.40
ADV 73.42 77.09 85.94 155.16 52.52 50.14 44.42
LPD 153.17 160.83 160.83 226.72 29.72 26.21 26.21

CNN-WIDE-1 NORMAL 14.09 15.76 16.92 39.61 58.84 54.69 52.66
ADV 81.52 86.25 91.76 142.89 43.59 40.77 37.58
LPD 116.72 122.55 122.55 183.66 33.90 30.59 30.59

CNN-WIDE-2 NORMAL 13.29 14.83 16.82 43.95 68.34 64.40 60.42
ADV 91.50 96.08 104.02 179.86 49.83 47.32 41.98
LPD 148.07 156.78 169.77 221.67 32.45 27.76 21.03

CNN-WIDE-4 NORMAL 12.84 14.37 16.45 47.23 72.23 68.06 63.06
ADV 67.64 72.34 79.90 178.01 62.72 59.37 55.17
LPD 142.30 149.41 155.23 217.64 34.92 31.67 29.34

CNN-WIDE-8 NORMAL 10.82 11.72 13.35 47.75 75.49 71.85 69.36
ADV 62.57 67.42 77.66 181.09 64.45 62.17 55.57
LPD N.A N.A N.A N.A N.A N.A N.A

CNN-DEEP-1 NORMAL 15.21 16.78 19.58 44.79 66.50 62.04 55.44
ADV 94.68 99.41 100.20 166.38 39.81 36.80 35.93
LPD 136.09 142.89 142.89 184.23 22.10 18.20 18.20

CNN-DEEP-2 NORMAL 6.12 6.42 8.76 43.32 84.47 83.69 78.65
ADV 102.47 107.60 112.82 185.70 39.35 36.32 36.32
LPD N.A N.A N.A N.A N.A N.A N.A

MLP-[9]-500 NORMAL 12.64 13.27 16.84 45.84 74.57 73.30 63.14
ADV 20.77 21.99 28.50 129.45 84.60 83.83 79.05
LPD N.A N.A N.A N.A N.A N.A N.A

MLP-[9]-100 NORMAL 11.35 11.92 14.23 31.37 64.13 62.34 57.03
ADV 19.41 21.12 25.41 94.57 75.15 71.42 63.96
LPD 68.25 71.51 73.96 103.87 29.79 26.28 26.28

MLP-[2]-100 NORMAL 14.19 15.11 15.83 28.14 52.66 47.82 45.56
ADV 41.68 43.76 43.76 81.22 36.23 33.04 33.04
LPD 81.50 85.33 85.33 118.10 25.01 21.26 21.26

Table 3: Certified bounds on the minimum adversarial distortion ε for ten random samples from the
test set of CIFAR-10.

NETWORK
TRAINING

MODE

MEAN LOWER BOUND
(×10−3)

MEAN UPPER BOUND
(×10−3)

MEDIAN
PERCENTAGE GAP (%)

LP-GREEDY LP-LAST LP-ALL PGD LP-GREEDY LP-LAST LP-ALL

CNN-SMALL NORMAL 7.48 7.86 8.46 20.13 49.40 46.87 44.23
ADV 24.33 26.53 27.59 37.90 34.50 24.67 24.67
LPD 67.34 72.27 77.84 157.01 52.94 48.13 43.13

CNN-WIDE-1 NORMAL 6.97 7.32 7.56 14.57 43.01 40.16 39.39
ADV 58.52 63.26 67.84 115.47 49.83 46.63 42.15
LPD 57.03 62.51 65.83 122.00 41.22 38.29 32.40

CNN-WIDE-2 NORMAL 8.27 8.86 9.46 22.16 58.66 54.53 52.46
ADV 42.05 45.99 49.09 74.13 35.10 29.85 25.54
LPD 73.19 81.75 87.38 157.03 47.64 39.78 39.78

CNN-WIDE-4 NORMAL 4.14 4.35 4.63 10.97 40.27 37.28 33.03
ADV 29.11 32.84 35.45 71.57 50.59 44.21 43.18
LPD 41.62 47.17 48.51 104.49 45.19 39.67 39.67

30

Figure 8: The median percentage gap of minimum adversarial distortion for CIFAR-10, in the same
format as Fig. 3. For more details, please refer to Table 3 in Appendix L.2.

Table 4: Certified bounds on the minimum adversarial distortion ε for ten random samples from the
test set of MNIST and CIFAR-10 on randomly initialized networks (no training).

NETWORK
TRAINING

MODE

MEAN LOWER BOUND
(×10−3)

MEAN UPPER BOUND
(×10−3)

MEDIAN
PERCENTAGE GAP (%)

LP-GREEDY LP-LAST LP-ALL PGD LP-GREEDY LP-LAST LP-ALL

MNIST
CNN-SMALL RANDOM 5.79 6.08 6.25 14.86 51.37 48.94 48.94
CNN-WIDE-1 RANDOM 10.42 10.94 11.98 33.77 67.09 65.45 62.16
CNN-WIDE-2 RANDOM 8.12 8.53 9.34 29.43 72.54 71.17 68.42
CNN-WIDE-4 RANDOM 8.68 9.12 9.99 45.26 78.65 77.59 75.45
CNN-DEEP-1 RANDOM 11.12 11.81 12.79 42.28 72.76 71.40 68.67
MLP-[2]-100 RANDOM 4.69 5.16 5.25 15.71 64.85 58.53 57.83

CIFAR-10
CNN-SMALL RANDOM 8.77 10.01 10.13 24.50 62.61 57.04 57.04
CNN-WIDE-1 RANDOM 5.61 5.89 6.09 11.33 45.27 42.53 41.46
CNN-WIDE-2 RANDOM 2.83 3.31 3.31 6.24 50.60 46.13 46.13
CNN-WIDE-4 RANDOM 8.93 8.52 9.00 28.69 69.63 68.11 68.11

31

