
A The W2V shift

The number of negative samples per observed word pair arises in the optimum of the W2V loss
function (4) as the so-called shift term, −log k. The shift is of a comparable magnitude to empirical
PMI values [2] and causes dot product interactions to take more negative values, distorting embeddings
relative to there being no shift term.

Under certain word embedding interactions, e.g. the linear combination associated with analogies,
the shift terms cancel and thus have no effect [2]. However, elsewhere the shift term has been seen to
have a detrimental impact on downstream task performance that removing it corrects [28].

Stemming from an arbitrarily chosen hyper-parameter k, the shift term is an artefact of the W2V
algorithm that vanishes only if k=1. Setting that explicitly reduces the number of negative samples
and results in poorer performance of the embeddings. Alternatively, k can be effectively set to 1 by
averaging the loss function components of each set of k negative samples, i.e. multiplying by 1

k .

B Properties of the PMI surface: proofs (Sec 4.1)

P1 S, and any subsurface of S, is non-linear. This follows directly from the construction of S,
in particualr the application of the natural logarithm to the linear surfaceR.

P2 S contains the origin Follows from construction: p = p ∈ Q implies 1 = p
p(E) ∈ R, and

therefore 0=log 1∈S
P3 Probability vector q∈Q is normal to the tangent plane of S at s = log q

p ∈S. Consider
q = (q1, ..., qn) ∈ Q as having free parameters qj<n that determine qn, and let J ∈ Rn×(n−1)

define the tangent plane to S at s, i.e. Ji,j =
∂si
∂qj

. It can be seen that for i < n, Ji,j = q−1j if
i=j, and Ji,j=0 otherwise; and that Jn,j=−(

∑n−1
j=1

qj)
−1 ∀j. It follows that q>J = 0 and q is

therefore normal to the tangent plane.

P4 S does not intersect with the fully positive or fully negative orthants (excluding 0). This
follows from the fact that components of one probability distribution, e.g. p(E|wi), cannot all be
greater (or all less) than their counterpart in another, e.g. p(E). Any point in the fully positive or
fully negative orthants would contradict this.

P5 The sum of 2 points s + s′ lies in S only for certain s, s′ ∈S. For probability vectors p,
q, q′ ∈Q and s = log(q/p), s′ = log(q′/p)∈S, we consider operations element-wise with
correspondign vector elements denoted by lower case: s + s′ ∈ S iff s + s′ = log(q∗/p) for
some probability vector q∗∈Q. Thus, (q/p)(q′/p) = q∗/p, or simply (q/p)q′ = q∗, whereby
components (q/p)q′ must sum to 1, or in vector terms (q/p)>q′ = 1. since q′ is a probability
we can also say (q/p− 1)>q′ = 0, and we have that s + s′∈S only if s′ = log(q′/p)∈S with
q′ a probability vector orthogonal to (q/p)− 1. We see that the intersection of the hyperplane
orthogonal to (q/p)− 1 and the simplex defines points q′ that correspond to points in s′∈S that
can be added to s, i.e. Ss (See Figs 3a and 3b). Trivially 0∈Ss, ∀s∈S .

(a) Given point s′ = logq′/p∈S, those q′ on
simplex Q such that s′ = logq′/p satisfies s+ s′∈S .

(b) Subsurfaces Ss for a given point s∈S, and
Ss′ for any point s′∈Ss; showing also s+ s′∈S

Figure 3: Understanding the PMI surface S.

12



C Further Geometric properties of the PMI surface

Combining both geometric and probabilistic arguments shows:

1. PMI vectors of words wj that are both conditionally and marginally independent of word wi, lie
in a strict subsurface Spi⊂S;

2. only pj ∈ Spi add to pi to give another point on the surface, specifically pi + pj = pi,j

corresponding to the joint occurrence of wi and wj ;

3. for any pj /∈ Spi , pi+pj is off the surface, separated from p{w,w
′} by an error vector εi,j ,

reflecting statistical dependence between wi and wj .

4. By symmetry, s′∈Ss iff s∈Ss′ , thus subsurfaces occur in distinct pairs (Ss,Ss′ ) that partition all
points in S. Furthermore, for any pair of points t∈Ss, t′∈Ss′ , their sum t + t′∈S and every
s∈S is the sum of a unique such pair, which we deonte Ss ⊕Ss′ = S , analogous to the Cartesian
product.

D Comparison to embedding relationships of previous works

The following relationships between W2V embeddings and probabilities are assumed in [4]:

wi = ci, log p(wi) ≈ ‖wi‖
2d

2
− logZ and log p(wi, cj) ≈ ‖wi+wj‖

2d

2
− 2 logZ,

By rearranging w>i cj ≈ PMI(wi, cj), as is claimed to follow from those above, we prove (below):

log p(wi) ≈ −wi
>ci

2 + log p(wi,ci)
2 and log p(wi, cj) ≈ −(wi−wj)

>(ci−cj)
2 +

log p(wi,ci)p(wj ,cj)
2 .

Having previously shown that wi 6=ci (Sec 5.1), if we nevertheless assume that equality for the sake
of comparison, it can be seen that the relationships above differ fundamentally, e.g. having opposite
sign. Also, the assumed constant Z can be seen to vary arbitrarily with the extent to which each word
co-occurs with itself.

D.1 Proofs

Noting p(wi)=p(ci), since the difference is only the role attributed to a word, shows:

w>i cj ≈ log
p(wi,cj)
p(wi)p(cj)

= log p(wi, cj)− log p(wi)− log p(wj) (11)

If i = j, i.e. target and context words are the same, it follows that:

w>i ci ≈ log p(wi, ci)− 2 log p(wi)

i.e. log p(wi) ≈ −w
>
i ci

2 + log p(wi,ci)
2 (12)

In the general case:

(wi −wj)
>(ci − cj) = w>i ci −w>j ci −w>i cj + w>j cj

∗
= w>i ci + w>j cj ,−2w>i cj

(11,12)

≈ (log p(wi, ci)− 2 log p(wi)) + (log p(wj , cj)− 2 log p(wj))

− 2(log p(wi, cj)− log p(wi)− log p(wj))

= log p(wi, ci) + log p(wj , cj)− 2 log p(wi, cj)

thus log p(wi, cj) ≈ −(wi−wj)
>(ci−cj)
2 +

log p(wi,ci)p(wj ,cj)
2 . (13)

The step marked * relies on w>i cj = w>i (I
′wj) = (w>i I′)wj = c>i wj = w>j ci, which follows

from C=I′W.
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E Why order matters in analogies

Here, we develop the explanation of [2] to interpret the finding of Linzen [23] that some words within
a particular analogy are more accurately predicted than others (see their “Reverse (add)”).

From [2], we see that for analogy “wa is to wa∗ as wb is to wb∗”, a “total error” term arises in
the relationship pb

∗
+ pa = pa

∗
+ pb between PMI vectors, and thus also word embeddings, due

to statistical interactions between word pairs {wa, wb∗} and {wb, wa∗}. Thus if wb∗ is considered
“missing” and to be predicted to complete the analogy, the statistical independence with wa is relevant,
whereas if wb is to be predicted, statistical independence with wa∗ is relevant. One of these may
happen to exhibit higher independence, thus introduces less error and so be “easier to predict”.

Separately, PMI vectors are unevenly distributed due to the non-uniform Zipf distribution of words.
As such, some PMI vectors may happen to lie in more “cluttered” regions than others, an effect that
may be exacerbated when projected to the far fewer dimensions of word embeddings. Thus, for the
same magnitude error terms, words whose PMI vectors lie in more cluttered regions may be “harder
to predict” due to many potential false positives nearby.

These two reasons explain (more concretely that the intuition of [23]) why the same analogy might
more accurately be solved by predicting wb rather than wb∗ , or vice versa.

F Experimental details

F.1 Training

PMI values are pre-computed from the corpus similarly to [29], substituting −1 for missing PMI values.
We use the text8 data set [24] containing c.17m tokens and c.0.5m unique words (sourced from the
English Wikipedia dump, 03/03/06). 5 random word pairs (negative samples) are generated for each
true word co-occurrence (positive sample) according to unigram word distributions. Dimensionality
is 500. Words appearing less than 5 times are filtered and down-sampling is applied (see [26]). All
models converged within 100 epochs (full passes over the PMI matrix). Learning rates that worked
well were selected for each model: 0.01 for the least squares models, 0.007 for the W2V loss function.
Results are averaged over 3 random seeds.

F.2 Testing

Embeddings are evaluated on relatedness, similarity and analogy tasks using WordSim353 [11, 1].
Ranking is by cosine similarity and evaluation compares Spearman’s correlation between rankings
and human-assigned similarity scores. Analogies use Google’s analogy data set [25] of c.20k semantic
and syntactic analogy questions “wa is to wa∗ as wb is to ..?”. Out-of-vocabulary words are filtered
as standard [21]. Accuracy is computed by comparing argminwb∗

‖wa −wa∗ −wb + wb∗‖ to the
labelled answer.
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