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Abstract

Dimensionality reduction is a classical technique widely used for data analysis.
One foundational instantiation is Principal Component Analysis (PCA), which
minimizes the average reconstruction error. In this paper, we introduce the multi-
criteria dimensionality reduction problem where we are given multiple objectives
that need to be optimized simultaneously. As an application, our model captures
several fairness criteria for dimensionality reduction such as the Fair-PCA problem
introduced by Samadi et al. [2018] and the Nash Social Welfare (NSW) problem.
In the Fair-PCA problem, the input data is divided into k groups, and the goal is to
find a single d-dimensional representation for all groups for which the maximum
reconstruction error of any one group is minimized. In NSW the goal is to maximize
the product of the individual variances of the groups achieved by the common
low-dimensional space.
Our main result is an exact polynomial-time algorithm for the two-criteria dimen-
sionality reduction problem when the two criteria are increasing concave functions.
As an application of this result, we obtain a polynomial time algorithm for Fair-
PCA for k = 2 groups, resolving an open problem of Samadi et al. [2018], and
a polynomial time algorithm for NSW objective for k = 2 groups. We also give
approximation algorithms for k > 2. Our technical contribution in the above results
is to prove new low-rank properties of extreme point solutions to semi-definite
programs. We conclude with experiments indicating the effectiveness of algorithms
based on extreme point solutions of semi-definite programs on several real-world
datasets.

1 Introduction

Dimensionality reduction is the process of choosing a low-dimensional representation of a large,
high-dimensional data set. It is a core primitive for modern machine learning and is being used
in image processing, biomedical research, time series analysis, etc. Dimensionality reduction can
be used during the preprocessing of the data to reduce the computational burden as well as at the
final stages of data analysis to facilitate data summarization and data visualization [Raychaudhuri
et al., 1999; Iezzoni and Pritts, 1991]. Among the most ubiquitous and effective of dimensionality
reduction techniques in practice are Principal Component Analysis (PCA) [Pearson, 1901; Jolliffe,
1986; Hotelling, 1933], multidimensional scaling [Kruskal, 1964], Isomap [Tenenbaum et al., 2000],
locally linear embedding [Roweis and Saul, 2000], and t-SNE [Maaten and Hinton, 2008].
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One of the major obstacles to dimensionality reduction tasks in practice is complex high-dimensional
data structures that lie on multiple different low-dimensional subspaces. For example, Maaten
and Hinton [2008] address this issue for low-dimensional visualization of images of objects from
diverse classes seen from various viewpoints, or Samadi et al. [2018] study PCA on human data
when different groups in the data (e.g., high-educated vs low-educated or men vs women) have an
inherently different structure. Although these two contexts might seem unrelated, our work presents a
general framework that addresses both issues. In both setting, a single criteria for the dimensionality
reduction might not be sufficient to capture different structures in the data. This motivates our study
of multi-criteria dimensionality reduction.

As an illustration, consider applying PCA on a high dimensional data to do a visualization analysis in
low dimensions. Standard PCA aims to minimize the single criteria of average reconstruction error
over the whole data. But the reconstruction error on different parts of data can be widely different. In
particular, Samadi et al. [2018] show that on real world data sets, PCA has more reconstruction error
on images of women vs images of men. A similar phenomenon is also noticed on other data sets
when groups are formed based on education. Unbalanced average reconstruction error or equivalently
unbalanced variance could have implications of representational harms [Crawford, 2017] in early
stages of data analysis.

Multi-criteria dimensionality reduction. Multi-criteria dimensionality reduction could be used
as an umbrella term with specifications changing based on the applications and the metrics that
the machine learning researcher has in mind. Aiming for an output with a balanced error over
different subgroups seems to be a natural choice as reflected by minimizing the maximum of average
reconstruction errors studied by Samadi et al. [2018] and maximizing geometric mean of the variances
of the groups, which is the well-studied Nash social welfare (NSW) objective [Kaneko and Nakamura,
1979; Nash Jr, 1950]. Motivated by these settings, the more general question that we would like to
study is as following.
Question 1. How might one redefine dimensionality reduction to produce projections which optimize
different groups’ representation in a balanced way?

For simplicity of explanation, we first describe our framework for PCA, but the approach is general
and applies to a much wider class of dimensionality reduction techniques. Consider the data points
as rows of an m ⇥ n matrix A. For PCA, the objective is to find an n ⇥ d projection matrix P
that maximizes the Frobenius norm, kAPk2F (this is equivalent to minimizing the reconstruction
error). Suppose that the rows of A belong to different groups, based on demographics or some other
semantically meaningful clustering. The definition of these groups need not be a partition; each
group could be defined as a different weighting of the data set (rather than a subset, which is a 0/1
weighting). Multi-criteria dimensionality reduction can then be viewed as simultaneously considering
objectives on the different weightings of A. One way to balance multiple objectives is to find a
projection P that maximizes the minimum objective value over each of the groups (weightings), i.e.,

max

P :PTP=Id
min

1ik
kAiPk2F = hAT

i Ai, PPT i. (FAIR-PCA)

(We note that our FAIR-PCA is different from one in Samadi et al. [2018], but equivalent by additive
and multiplicative scalings.) More generally, let Pd denote the set of all n⇥ d projection matrices P ,
i.e., matrices with d orthonormal columns. For each group Ai, we associate a function fi : Pd ! R
that denotes the group’s objective value for a particular projection. For any g : Rk ! R, we define
the (f, g)-multi-criteria dimensionality reduction problem as finding a d-dimensional projection P
which optimizes

max

P2Pd

g(f1(P ), f2(P ), . . . , fk(P )). (MULTI-CRITERIA-DIMENSION-REDUCTION)

In the above example of max-min Fair-PCA, g is simply the min function and fi(P ) = kAiPk2 is
the total squared norm of the projection of vectors in Ai. Other examples include: defining each
fi as the average squared norm of the projections rather than the total, or the marginal variance —
the difference in total squared norm when using P rather than the best possible projection for that
group. One could also choose the product function g(y1, . . . , yk) =

Q
i yi for the accumulating

function g. This is also a natural choice, famously introduced in Nash’s solution to the bargaining
problemNash Jr [1950]; Kaneko and Nakamura [1979]. This framework can also describe the pth

power mean of the projections, e.g. fi(P ) = kAiPk2 and g(y1, . . . , yk) =
⇣P

i2[k] y
p/2
i

⌘1/p
.
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The appropriate weighting of k objectives often depends on the context and application. The central
motivating questions of this paper are the following:

⇧ What is the complexity of FAIR-PCA ?

⇧ More generally, what is the complexity of MULTI-CRITERIA-DIMENSION-REDUCTION ?

Framed another way, we ask whether these multi-criteria optimization problems force us to incur
substantial computational cost compared to optimizing g over A alone. Samadi et al. [2018] intro-
duced the problem of FAIR-PCA and showed how to use the natural semi-definite relaxation to find
a rank-(d+ k � 1) approximation whose cost is at most that of the optimal rank-d approximation.
For k = 2 groups, this is an increase of 1 in the dimension (as opposed to the naïve bound of 2d,
by taking the span of the optimal d-dimensional subspaces for the two groups). The computational
complexity of finding the exact optimal solution to FAIR-PCA was left as an open question.

1.1 Results and techniques

Let us first focus on FAIR-PCA for ease of exposition. The problem can be reformulated as the
following mathematical program where we denote PPT by X . A natural approach to solving this
problem is to consider the SDP relaxation obtained by relaxing the rank constraint to a bound on the
trace.

Exact FAIR-PCA

max z

hAT
i Ai, Xi � z i 2 {1, . . . , k}
rank(X)  d

0 � X � I

SDP Relaxation of FAIR-PCA

max z

hAT
i Ai, Xi � z i 2 {1, . . . , k}

tr(X)  d

0 � X � I

Our first main result is that the SDP relaxation is exact when there are two groups. Thus finding an
extreme point of this SDP gives an exact algorithm for FAIR-PCA for two groups. Previously, only
approximation algorithms were known for this problem. This result also resolves the open problem
posed by Samadi et al. [2018].
Theorem 1.1. Any optimal extreme point solution to the SDP relaxation for FAIR-PCA with two
groups has rank at most d. Therefore, 2-group FAIR-PCA can be solved in polynomial time.

Given m datapoints partitioned into k  n groups in n dimensions, the algorithm runs in O(nm+

n6.5
) time. O(mnk) is from computing AT

i Ai and O(n6.5
) is from solving an SDP over n ⇥ n

PSD matrices [Ben-Tal and Nemirovski, 2001]. Our results also hold for the MULTI-CRITERIA-
DIMENSION-REDUCTION when g is monotone nondecreasing in any one coordinate and concave,
and each fi is an affine function of PPT (and thus a special case of a quadratic function in P ).
Theorem 1.2. There is a polynomial time algorithm for 2-group MULTI-CRITERIA-DIMENSION-
REDUCTION problem when g is concave and monotone nondecreasing for at least one of its two
arguments, and each fi is linear in PPT , i.e., fi(P ) = hBi, PPT i for some matrix Bi(A).

As indicated in the theorem, the core idea is that extreme-point solutions of the SDP, in fact, have
rank d, not just trace equal to d.

For k > 2, the SDP need not recover a rank d solution. In fact, the SDP may be inexact even
for k = 3 (see Section 8). Nonetheless, we show that we can bound the rank of a solution to the
SDP and obtain the following result. We state it for FAIR-PCA, though the same bound holds for
MULTI-CRITERIA-DIMENSION-REDUCTION under the same assumptions as in Theorem 1.1. Note
that this result generalizes Theorem 1.1.
Theorem 1.3. For any concave g that is monotone nondecreasing in at least one of its argu-
ments, there exists a polynomial time algorithm for FAIR-PCA with k groups that returns a
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d+
jq

2k +

1
4 �

3
2

k
-dimensional embedding whose objective value is at least that of the optimal

d-dimensional embedding. If g is only concave, then the solution lies in at most d+ 1 dimensions.

This strictly improves and generalizes the bound of d + k � 1 for FAIR-PCA . Moreover, if the
dimensionality of the solution is a hard constraint, instead of tolerating s = O(

p
k) extra dimension

in the solution, one may solve FAIR-PCA for target dimension d� s to guarantee a solution of rank
at most d. Thus, we obtain an approximation algorithm for FAIR-PCA of factor 1� O(

p
k)

d .

Theorem 1.4. Let A1, . . . , Ak be data sets of k groups and suppose s :=

jq
2k +

1
4 �

3
2

k
< d.

Then, there exists a polynomial-time approximation algorithm of factor 1 � s
d = 1 � O(

p
k)

d to
FAIR-PCA problem.

That is, the algorithm returns a project P 2 Pd of exact rank d with objective at least 1 � s
d of

the optimal objective. More details on the approximation result are in Section 4. The runtime of
Theorems 1.2 and 1.3 depends on access to first order oracle to g and standard application of the
ellipsoid algorithm would take ˜O(n2

) oracle calls.

We now focus our attention to the marginal loss function. This measures the maximum over the
groups of the difference between the variance of a common solution for the k groups and an
optimal solution for an individual group (“the marginal cost of sharing a common subspace"). For
this problem, the above scaling method could substantially harm the objective value, since the
target function is nonlinear. MULTI-CRITERIA-DIMENSION-REDUCTION captures the marginal
loss functions by setting the utility fi(P ) = kAiPk2F � maxQ2Pd kAiQk2F for each group i and
g(f1, f2, . . . , fk) := min{f1, f2, . . . , fk}, giving an optimization problem

min

P2Pd

max

i2[k]

✓
max

Q2Pd

kAiQk2F � kAiPk2F
◆

(1)

and the marginal loss objective is indeed the objective of the problem.

In Section 5, we develop a general rounding framework for SDPs with eigenvalue upper bounds and
k other linear constraints. This algorithm gives a solution of desired rank that violates each constraint
by a bounded amount. The precise statement is Theorem 1.8. It implies that for FAIR-PCA with
marginal loss as the objective the additive error is

�(A) := max

S✓[m]

b
p

2|S|+1cX

i=1

�i(AS)

where AS =

1
|S|

P
i2S Ai.

It is natural to ask whether FAIR-PCA is NP-hard to solve exactly. The following result implies that
it is, even for the target dimension d = 1.
Theorem 1.5. The max-min FAIR-PCA problem for target dimension d = 1 is NP-hard when the
number of groups k is part of the input.

This raises the question of the complexity for constant k � 3 groups. For k groups, we would
have k constraints, one for each group, plus the eigenvalue constraint and the trace constraint; now
the tractability of the problem is far from clear. In fact, as we show in Section 8, the SDP has an
integrality gap even for k = 3, d = 1. We therefore consider an approach beyond SDPs, to one that
involves solving non-convex problems. Thanks to the powerful algorithmic theory of quadratic maps,
developed by Grigoriev and Pasechnik [2005], it is polynomial-time solvable to check feasibility
of a set of quadratic constraints for any fixed k. As we discuss next, their algorithm can check for
zeros of a function of a set of k quadratic functions, and can be used to optimize the function. Using
this result, we show that for d = k = O(1), there is a polynomial-time algorithm for rather general
functions g of the values of individual groups.
Theorem 1.6. Let the fairness objective be g : Rk ! R where g is a degree ` polynomial in some
computable subring of Rk and each fi is quadratic for 1  i  k. Then there is an algorithm to
solve the fair dimensionality reduction problem in time (`dn)O(k+d2).
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By choosing g to be the product polynomial over the usual (⇥,+) ring or the min function which is
degree k in the (min,+) ring, this applies to the variants of FAIR-PCA discussed above and various
other problems.

SDP extreme points. For k = 2, the underlying structural property we show is that extreme point
solutions of the SDP have rank exactly d. First, for k = d = 1, this is the largest eigenvalue problem,
since the maximum obtained by a matrix of trace equal to 1 can also be obtained by one of the
extreme points in the convex decomposition of this matrix. This extends to trace equal to any d, i.e.,
the optimal solution must be given by the top k eigenvectors of ATA. Second, without the eigenvalue
bound, for any SDP with k constraints, there is an upper bound on the rank of any extreme point, of
O(

p
k), a seminal result of Pataki [1998] (see also Barvinok [1995]). However, we cannot apply this

directly as we have the eigenvalue upper bound constraint. The complication here is that we have to
take into account the constraint X � I without increasing the rank.
Theorem 1.7. Let C and A1, . . . , Am be n⇥ n real matrices, d  n, and b1, . . . bm 2 R. Suppose
the semi-definite program SDP(I):

minhC,Xi subject to (2)
hAi, Xi �i bi 8 1  i  m (3)

tr(X)  d (4)
0 � X � In (5)

where �i 2 {,�,=}, has a nonempty feasible set. Then, all extreme optimal solutions X⇤ to

SDP(I) have rank at most r⇤ := d+
jq

2m+

9
4 �

3
2

k
. Moreover, given a feasible optimal solution,

an extreme optimal solution can be found in polynomial time.

To prove the theorem, we extend Pataki [1998]’s characterization of rank of SDP extreme points
with minimal loss in the rank. We show that the constraints 0 � X � I can be interpreted as
a generalization of restricting variables to lie between 0 and 1 in the case of linear programming
relaxations. From a technical perspective, our results give new insights into structural properties of
extreme points of semi-definite programs and more general convex programs. Since the result of
Pataki [1998] has been studied from perspective of fast algorithms Boumal et al. [2016]; Burer and
Monteiro [2003, 2005] and applied in community detection and phase synchronization Bandeira et al.
[2016], we expect our extension of the result to have further applications in many of these areas.

SDP iterative rounding. Using Theorem 1.7, we extend the iterative rounding framework for
linear programs (see Lau et al. [2011] and references therein) to semi-definite programs, where the
0, 1 constraints are generalized to eigenvalue bounds. The algorithm has a remarkably similar flavor.
In each iteration, we fix the subspaces spanned by eigenvectors with 0 and 1 eigenvalues, and argue
that one of the constraints can be dropped while bounding the total violation in the constraint over the
course of the algorithm. While this applies directly to the FAIR-PCA problem, in fact, is a general
statement for SDPs, which we give below.

Let A = {A1, . . . , Am} be a collection of n ⇥ n matrices. For any set S ✓ {1, . . . ,m}, let �i(S)
the ith largest singular of the average of matrices 1

|S|
P

i2S Ai. We let

�(A) := max

S✓[m]

b
p

2|S|+1cX

i=1

�i(S).

Theorem 1.8. Let C be a n ⇥ n matrix and A = {A1, . . . , Am} be a collection of n ⇥ n real
matrices, d  n, and b1, . . . bm 2 R. Suppose the semi-definite program SDP:

minhC,Xi subject to
hAi, Xi � bi 8 1  i  m

tr(X)  d

0 � X � In

has a nonempty feasible set and let X⇤ denote an optimal solution. The Algorithm ITERATIVE-SDP
(see Figure 2 in Appendix) returns a matrix ˜X such that
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1. rank of ˜X is at most d,

2. hC, ˜Xi  hC,X⇤i, and

3. hAi, ˜Xi � bi ��(A) for each 1  i  m.

The time complexity of Theorems 1.7 and 1.8 is analyzed in Sections 2 and 5. Both algorithms
introduce the rounding procedures that do not contribute significant computational cost; rather,
solving the SDPis the bottleneck for running time both in theory and practice.

1.2 Related work

As mentioned earlier, Pataki [1998] (see also Barvinok [1995]) showed low rank solutions to semi-
definite programs with a small number of affine constraints can be obtained efficiently. Restricting
a feasible region of certain SDPs relaxations with low-rank constraints has been shown to avoid
spurious local optima [Bandeira et al., 2016] and reduce the runtime due to known heuristics and
analysis [Burer and Monteiro, 2003, 2005; Boumal et al., 2016]. We also remark that methods based
on Johnson-Lindenstrauss lemma can also be applied to obtain bi-criteria results for FAIR-PCA
problem. For example, So et al. [2008] give algorithms that give low rank solutions for SDPs with
affine constraints without the upper bound on eigenvalues. Here we have focused on single criteria
setting, with violation either in the number of dimensions or the objective but not both. We also
remark that extreme point solutions to linear programming have played an important role in the
design of approximation algorithms [Lau et al., 2011] and our result adds to the comparatively small,
but growing, number of applications for utilizing extreme points of semi-definite programs.

A closely related area, especially to MULTI-CRITERIA-DIMENSION-REDUCTION problem, is multi-
objective optimization which has a vast literature. We refer the reader to Deb [2014] and references
therein. We also remark that properties of extreme point solutions of linear programs [Ravi and
Goemans, 1996; Grandoni et al., 2014] have also been utilized to obtain approximation algorithms
to multi-objective problems. For semi-definite programming based methods, the closest works are
on simultaneous max-cut [Bhangale et al., 2015, 2018] that utilize the sum of squares hierarchy to
obtain improved approximation algorithms.

The applications of multi-criteria dimensionality reduction in fairness are closely related to studies
on representational bias in machine learning [Crawford, 2017; Noble, 2018; Bolukbasi et al., 2016]
and fair resource allocation in game theory [Wei et al., 2010; Fang and Bensaou, 2004]. There have
been various mathematical formulations suggested for representational bias in ML [Chierichetti et al.,
2017; Celis et al., 2018; Kleindessner et al., 2019; Samadi et al., 2018] among which our model
covers unbalanced reconstruction error in PCA suggested by Samadi et al. [2018]. From the game
theory literature, our model covers Nash social welfare objective [Kaneko and Nakamura, 1979;
Nash Jr, 1950] and others [Kalai et al., 1975; Kalai, 1977].

2 Low-rank solutions of MULTI-CRITERIA-DIMENSION-REDUCTION

In this section, we show that all extreme solutions of SDP relaxation of MULTI-CRITERIA-
DIMENSION-REDUCTION have low rank, proving Theorem 1.1-1.3. Before we state the results,
we make the following assumptions. In this section, we let g : Rk ! R be a concave function
which is monotonic in at least one coordinate, and mildly assume that g can be accessed with a
polynomial-time subgradient oracle and is polynomially bounded by its input. We are explicitly given
functions f1, f2, . . . , fk which are affine in PPT , i.e. we are given real n⇥ n matrices B1, . . . , Bk

and constants ↵1,↵2, . . . ,↵k 2 R and fi(P ) =

⌦
Bi, PPT

↵
+ ↵i.

We assume g to be G-Lipschitz. For functions f1, . . . , fk, g that are L1, . . . , Lk, G-Lipschitz, we
define an ✏-optimal solution to (f, g)-MULTI-CRITERIA-DIMENSION-REDUCTION problem as a pro-

jection matrix X 2 Rn⇥n, 0 � X � In of rank d whose objective value is at most G✏
⇣Pk

i=1 L
2
i

⌘1/2

from the optimum. In the context where an optimization problem has affine constraints Fi(X)  bi
where Fi is Li Lipschitz, we also define ✏-solution as a projection matrix X 2 Rn⇥n, 0 � X � In of
rank d that violates ith affine constraints by at most ✏Li. Note that the feasible region of the problem
is implicitly bounded by the constraint X � In.
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In this section, the algorithm may involve solving an optimization under a matrix linear inequality,
which may not give an answer representable in finite bits of computation. However, we give
algorithms that return an ✏-close solution whose running time depends polynomially on log

1
✏ for any

✏ > 0. This is standard for computational tractability in convex optimization (see, for example, in
Ben-Tal and Nemirovski [2001]). Therefore, for ease of exposition, we omit the computational error
dependent on this ✏ to obtain an ✏-feasible and ✏-optimal solution, and define polynomial running
time as polynomial in n, k and log

1
✏ .

We first prove Theorem 1.7 below. To prove Theorem 1.1-1.3, we first show that extreme point
solutions in semi-definite cone under affine constraints and X � I have low rank. The statement
builds on a result of Pataki [1998]. We then apply our result to MULTI-CRITERIA-DIMENSION-
REDUCTION problem, which contains the FAIR-PCA problem. Finally, we show that the existence
of a low-rank solution leads to an approximation algorithm to FAIR-PCA problem.

Proof of Theorem 1.7: Let X⇤ be an extreme point optimal solution to SDP(I). Suppose rank of X⇤,
say r, is more than r⇤. Then we show a contradiction to the fact that X⇤ is extreme. Let 0  l  r of
the eigenvalues of X⇤ be equal to one. If l � d, then we have l = r = d since tr(X)  d and we are
done. Thus we assume that l  d� 1. In that case, there exist matrices Q1 2 Rn⇥r�l, Q2 2 Rn⇥l

and a symmetric matrix ⇤ 2 R(r�l)⇥(r�l) such that

X⇤
= (

Q1 Q2)

✓
⇤ 0

0 Il

◆
(

Q1 Q2)
>
= Q1⇤Q

>
1 +Q2Q

T
2

where 0 � ⇤ � Ir�l, QT
1 Q1 = Ir�l, QT

2 Q2 = Il, and that the columns of Q1 and Q2 are orthogonal,
i.e. Q = (

Q1 Q2) has orthonormal columns. Now, we have

hAi, X
⇤i = hAi, Q1⇤Q

>
1 +Q2Q

>
2 i = hQ>

1 AiQ1,⇤i+ hAi, Q2Q
>
2 i

and tr(X⇤
) = hQ>

1 Q1,⇤i+ tr(Q2Q
>
2 ) so that hAi, X

⇤i and tr(X⇤
) are linear in ⇤.

Observe the set of s⇥ s symmetric matrices forms a vector space of dimension s(s+1)
2 with the above

inner product where we consider the matrices as long vectors. If m+ 1 < (r�l)(r�l+1)
2 then there

exists a (r� l)⇥ (r� l)-symmetric matrix � 6= 0 such that hQ>
1 AiQ1,�i = 0 for each 1  i  m

and hQ>
1 Q1,�i = 0.

But then we claim that Q1(⇤ ± ��)Q>
1 + Q2Q

T
2 is feasible for small � > 0, which implies a

contradiction to X⇤ being extreme. Indeed, it satisfies all the linear constraints by construction of �.
Thus it remains to check the eigenvalues of the newly constructed matrix. Observe that

Q1(⇤± ��)Q>
1 +Q2Q

T
2 = Q

✓
⇤± �� 0

0 Il

◆
Q>

with orthonormal Q. Thus it is enough to consider the eigenvalues of
✓
⇤± �� 0

0 Il

◆
.

Observe that eigenvalues of the above matrix are exactly l ones and eigenvalues of ⇤± ��. Since
eigenvalues of ⇤ are bounded away from 0 and 1, one can find small � such that the eigenvalues
of ⇤ ± �� are bounded away from 0 and 1 as well, so we are done. Therefore, we must have
m+ 1 � (r�l)(r�l+1)

2 which implies r � l  � 1
2 +

q
2m+

9
4 . By l  d� 1, we have r  r⇤.

For the algorithmic version, given feasible ¯X , we iteratively reduce r � l by at least one until
m+ 1 � (r�l)(r�l+1)

2 . While m+ 1 < (r�l)(r�l+1)
2 , we obtain � by using Gaussian elimination.

Now we want to find the correct value of ±� so that ⇤0
= ⇤± �� takes one of the eigenvalues to

zero or one. First, determine the sign of hC,�i to find the correct sign to move ⇤ that keeps the
objective non-increasing, say it is in the positive direction. Since the set of feasible X is convex and
bounded, the ray f(t) = Q1(⇤+ t�)Q>

1 +Q2Q
>
2 , t � 0 intersects the boundary of feasible region

at a unique t0 > 0. Perform binary search for the correct value of t0 and set � = t0 up to the desired
accuracy. Since hQ>

1 AiQ1,�i = 0 for each 1  i  m and hQ>
1 Q1,�i = 0, the additional tight

constraint from moving ⇤

0  ⇤ + �� to the boundary of feasible region must be an eigenvalue
constraint 0 � X � In, i.e., at least one additional eigenvalue is now at 0 or 1, as desired. We apply
eigenvalue decomposition to ⇤

0 and update Q1 accordingly, and repeat.
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The algorithm involves at most n rounds of reducing r � l, each of which involves Gaussian
elimination and several iterations (from binary search) of 0 � X � In which can be done by
eigenvalue value decomposition. Gaussian elimination and eigenvalue decomposition can be
done in O(n3

) time, and therefore the total runtime of SDP rounding is ˜O(n4
) which is polynomial. 2

In practice, one may initially reduce the rank of given feasible ¯X using an LP rounding (in O(n3.5
)

time) introduced in Samadi et al. [2018] so that the number of rounds of reducing r � l is further
bounded by k � 1. The runtime complexity is then O(n3.5

) +

˜O(kn3
).

The next corollary is obtained from the bound r � l  � 1
2 +

q
2m+

9
4 in the proof of Theorem 1.7.

Corollary 2.1. The number of fractional eigenvalues in any extreme point solution X to SDP(I) is

bounded by
q
2m+

9
4 �

1
2  b

p
2m+ 1c.

We are now ready to state the main result of this section that we can find a low-rank solution for
MULTI-CRITERIA-DIMENSION-REDUCTION . Recall that Pd is the set of all n ⇥ d projection
matrices P , i.e., matrices with d orthonormal columns and the (f, g)-MULTI-CRITERIA-DIMENSION-
REDUCTION problem is to solve

max

P2Pd

g(f1(P ), f2(P ), . . . , fk(P )) (6)

Theorem 2.2. There exists a polynomial-time algorithm to solve (f, g)-MULTI-CRITERIA-

DIMENSION-REDUCTION that returns a solution ˆX of rank at most r⇤ := d +

jq
2k +

1
4 �

3
2

k

whose objective value is at least that of the optimal d-dimensional embedding.

The proof of Theorem 2.2 appears in Appendix. If the assumption that g is monotonic in at least one
coordinate is dropped, Theorem 2.2 will hold with r⇤ by indexing constraints (11) in SDP(II) for all
groups instead of k � 1 groups.

3 Experiments

First, we note that experiments for two groups were done in Samadi et al. [2018]. The algorithm
outputs optimal solutions with exact rank, despite their weaker guarantee that the rank may be
violated by at most 1. Hence, our result of Theorem 1.1 is a mathematical explanation of their
missing empirical finding for two groups. We extend their experiments to more number of groups
and objectives as follows (See Appendix for results on NSW objective and an additional dataset).

We perform experiments using the algorithm as outlined in Section 2 on the Default Credit data
set [Yeh and Lien, 2009] for different target dimensions d. The data is partitioned into k = 4, 6 groups
by education and gender and preprocessed to have mean zero and the same variance over features. We
specified our algorithms by two objectives for MULTI-CRITERIA-DIMENSION-REDUCTION problem
introduced earlier: the marginal loss function and Nash social welfare. The code is publicly available
at https://github.com/SDPforAll/multiCriteriaDimReduction. Figure 1 shows
the marginal loss by our algorithms compared to the standard PCA. Our algorithms significantly
reduce “unfairness” in terms of the marginal loss that the standard PCA introduces.

In the experiments, extreme point solutions from SDPs enjoy lower rank violation than our worst-case
guarantee. Indeed, while the guarantee is that the numbers of additional rank are at most s = 1, 2 for
k = 4, 6, almost all SDP solutions have exact rank, and in rare cases when the solutions are not exact,
the rank violation is only one. While we know that our rank violation guarantee cannot be improved
in general (due to the integrality gap in Section 8), this opens a question of whether the guarantee is
better for instances that arise in practice.
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Figure 1: Marginal loss function (see (1)) of standard PCA compared to our SDP-based algorithms
on Default Credit data. SDPRoundNSW and SDPRoundMar-Loss are two runs of the SDP-based
algorithms maximizing NSW and minimizing marginal loss. Left: k = 4 groups. Right: k = 6.
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