A Proofs

Throughout this section, we refer to the following Initial Value Problem (IVP)

dh(t)
- f(h(t),t)

h(0) =x

)

where h(t) € R? and f : R? x R — R% is continuous in ¢ and globally Lipschitz continuous in h, i.e.
there is a constant C' > 0 such that

[£(hy(2), ) — £(hu(t), )] < Cllha(t) — ha(8)]]

for all ¢ € R. These conditions imply the solutions of the IVP exist and are unique for all ¢ (see e.g.
Theorem 2.4.5 in|/Ahmad & Ambrosetti| (2015)).

We define the flow ¢;(x) associated to the vector field f(h(¢),t) as the solution at time ¢ of the
ODE starting from the initial condition h(0) = x. The flow measures how the solutions of the ODE
depend on the initial conditions. Following the analogy between ResNets and NODEs, we define
the features ¢(x) output by the ODE as the flow at the final time 7" to which we solve the ODE,
i.e. ¢(x) = ¢ (x). Finally, we define the NODE model as the composition of the feature function
¢ : R? — R? and a linear map £ : RY — R.

For clarity and completeness, we include proofs of all statements. Whenever propositions or theorems
are already known we include references to proofs.

A.1 ODE trajectories do not intersect

This result is well known and proofs can be found in standard ODE textbooks (e.g. Proposition C.6
in|Younes| (2010)).

Proposition. Ler hy(t) and ha(t) be two solutions of the ODE (1)) with different initial conditions,
i.e. h1(0) # ho(0). Then, forallt € (0,T)], hy(t) # ha(t). Informally, this proposition states that
ODE trajectories cannot intersect.

Proof. Suppose there exists some ¢ € (0,7 where h;(#) = hy(). Define a new IVP with initial
condition h(f) = h; () = hy(f) and solve it backwards to time ¢ = 0. As the backwards IVP also
satisfies the existence and uniqueness conditions, its solution h(¢) is unique implying that its value at
t = 0 is unique. This contradicts the assumption that h; (0) # hy(0) and so there is no ¢ € (0, T]]

such that hy (t) = ha(t).

A.2 Gronwall’s Lemma

We will make use of Gronwall’s Lemma and state it here for completeness. We follow the statement
as given inHoward| (1998)):

Theorem. Let U C R? be an open set. Let f : U x [0,T] — R be a continuous function and let
hy,hy : [0,T] — U satisfy the IVPs:

dh, (¢) B B
T f(hy(t),t), hy(0) =x

dhy(¢) B B
s f(ha(t),t), ha(0) =xo

Assume there is a constant C' > 0 such that
[£(ha(t),t) — f(hu(2),t)]| < Cllha(t) —hi(t)||
Then fort € [0,T
o (t) — hy (8)]] < e“*[|lx2 — x|

Proof. See e.g. [Howard| (1998) or Theorem 3.8 in|Younes| (2010).



B Proof for 1d example

Let g14 : R — R be a function such that

{gld(—l) =1
g1a(1) = —1
Proposition 1. The flow of an ODE cannot represent g14().

Proof. The proof follows two steps:

(a) Continuous trajectories mapping —1 to 1 and 1 to —1 must cross each other.
(b) Trajectories of ODEs cannot cross each other.

This is a contradiction and implies the proposition. Part (b) was proved in Section[A.T] All there is
left to do is to prove part (a).

Suppose there exists an f such that there are trajectories hq (t) and ha(¢) where
hi(0) = —1 hy(T) =1
he(0) =1 ho(T)=-1

As hq(t) and hs(t) are solutions of the IVP, they are continuous; see, e.g.,(Coddington & Levinson
(1955). Define the function h(t) = ho(t) — h1(t). Since both h;(t) and hz(t) are continuous, so is
h(t). Now h(0) = 2 and h(T") = —2, so by the Intermediate Value Theorem there is some ¢ € [0, 7]

where h(t) = 0, i.e. where hy(t) = ha(t). So hy(t) and hq(t) intersect.

C Proof that ¢,(x) is a homeomorphism

Since the following theorem plays a central part in the paper, we include a proof of it here for
completeness. For a more general proof, we refer the reader to Theorem C.7 in|Younes|(2010).

Theorem. Forallt € [0,T), ¢; : R — R? is a homeomorphism.
Proof. In order to prove that ¢, is a homemorphism, we need to show that

(a) ¢, is continuous
(b) ¢, is a bijection

(c) ¢ is continuous

Part (a). Consider two initial conditions of the ODE system, h; (0) = x and h5(0) = x + 0 where §
is some perturbation. By Gronwall’s Lemma, we have

Iha(t) — by ()] < e|ha (0) — ha(0)]] = e

Rewriting in terms of ¢;(x), we have

| < e“lal]

[f1(x +0) — d1(x)

Letting 6 — 0, this implies that ¢;(x) is continuous in x for all ¢ € [0, T7].

Part (b). Suppose there exists initial conditions x; # X2 such that ¢ (x1) = ¢;(x2). We define the
IVP starting from ¢ (x;) and solve it backwards to time ¢ = 0. The solution of the IVP is unique, so
it cannot map ¢, (x1) back to both x; and x5. So for each x; # xo, we must have ¢4 (x1) # ¢¢(x2),
that is the map between x and ¢;(x) is one-to-one.

Fart (c). To check that the inverse ¢, L is continuous, we note that we can set the initial condition
to h(t) = ¢;(x) and solve the IVP backwards in time (as it satisfies the existence and uniqueness
conditions). The same reasoning as part (a) then applies.

Therefore ¢, is a continuous bijection and its inverse is continuous, i.e. it is a homeomorphism.



(a) (b)

Figure 1: (a) Diagram of g(x) in 2d. (b) An example of the map ¢(x) from input data to features
necessary to represent g(x) (which NODEs cannot learn).

Corollary. Features of Neural ODEs preserve the topology of the input space.

Proof. Since ¢(x) is a homeomorphism, so is ¢(x) = ¢ (x). Homeomorphims preserve topological
properties, so Neural ODEs can only learn features which have the same topology as the input space.

This corollary implies for example that NODEs cannot break apart or create holes in a connected
region of the input space.

D Proof that there are classes functions NODEs cannot represent

This section presents a proof of the main claim of the paper.

Let0 <ry <ryg<rsgandletg: R¢ — R be a function such that

g9(x) = =1 if [x|[ <
gx)=1 ifrg <|x|]| <rs

We denote the sphere where g(x) = —1 by A = {x: ||x|| < 71} and the annulus where g(x) = 1 by
B = {x: 1y < ||x|| < r3} (see Fig. [1). For aset S, we write ¢(S) = {y : y = ¢(x),x € S} to
denote the feature transformation of the set.

Proposition 2. Neural ODEs cannot represent g(x).

Proof. For a NODE to map points in A to —1 and points in B to +1, the linear map £ must map the
features in ¢(A) to —1 and the features in ¢(B) to +1, which implies that ¢(A) and ¢(B) must be
linearly separable. We now show that this is not possible if ¢ is a homeomorphism.

Define a disk D C R¥by D = {x € R? : ||x|| < ro} with boundary 0D = {x € R? : ||x|| = ro}
and interior int(D) = {x € R? : ||x|| < 2}. Now A C int(D), ANID = (h and D C B, that is
all points in 9D should be mapped to +1 (i.e. they are in B) and a subset of points in int(D) should
be mapped to —1 (i.e. they are in A). So if ¢(int(D)) and ¢(9D) are not linearly separable, then
neither are ¢p(A) or ¢(B).

The feature transformation ¢ is a homeomorphism, so ¢(int(D)) = int(¢(D)) and ¢(0D) =
9(¢(D)), i.e. points on the boundary get mapped to points on the boundary and points in the interior
to points in the interior (Armstrong,2013). So it remains to show that int(¢(D)) and 9(¢(D)) cannot
be linearly separated. For notational convenience, we will write D' = ¢(D).

Suppose all points in 9D’ lie above some hyperplane, i.e. suppose there exists a linear function
L(x) = wlx and a constant C such that £(x) > C for all x € dD’. If int(D’) were linearly
separable from 0D’ then £(x) < C for all x € int(D’). We now show that this is not the case.
Since D’ is a connected subset of R? (since D is connected and ¢ is a homeomorphism), every point
x € int(D’) can be written as a convex combination of points on the boundary D’ (to see this
consider a line passing through a point x in the interior and its intersection with the boundary). So if
x € int(D'), then

x=Ax1 + (1 — A\)x2



for some x;,%x9 € 0D’ and 0 < A < 1. Now,

L(x) =wlx

=wl(Ax1 + (1 — \)x2)
=Awlx; + (1 - ANwlxy
> A\C + (1—\)C

=C

so all points in the interior are on the same side of the hyperplane as points on the boundary, that is
the interior and the boundary are not linearly separable. This implies that the set of features ¢(A)
and ¢(B) cannot be linearly separated and so that NODEs cannot represent g(x).

oD
D D’
/ L(x)=C
) (b)

(a (©

Figure 2: (a) Diagram of the disk D and its boundary. The boundary is equal to the inner boundary of
B. (b) An example of how ¢ transforms the disk. (c) The boundary of the transformed set is above
the hyperplane, which implies that all points on the interior must also be above the hyperplane.

E Modeling NODEs and f(h(t), )

In this section, we describe how to choose and model f. We first note that f can be parameterized by
any standard neural net architecture, including ones with activation functions that are not everywhere
differentiable such as ReLU. Existence and uniqueness of solutions to the ODE are still guaranteed
and all results in this paper hold under these conditions.

The function f(h(t),¢) depends on both the time ¢ and the hidden state h(¢). Following the archi-
tecture used by |Chen et al.[|(2018), we model f as a CNN or an MLP with weights that are not a
function of time, and instead encode the time dependency by passing a concatenated tensor (h(t), )
as input to the neural network. The architectures of the CNNs and MLPs we used are described in the
following section.

F Experimental Details

We used the ODE solvers in the torchdiffecﬂ library for all experiments (Chen et al., [2018)).
We used the adaptive Dormand-Prince (Runge-Kutta 45) solver with an absolute and relative error
tolerance of 1e-3. The code to reproduce all results in this paper can be found at https://github.
com/EmilienDupont/augmented-neural-odes.

F.1 Architecture

Throughout all our experiments we used the ReLLU activation function. We also experimented with
softplus but found that this generally slowed down learning.

"https://github.com/rtqichen/torchdiffeq
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F.1.1 Toy datasets

We parameterized f by an MLP with the following structure and dimensions

dinput +1— dhidden — ReLU — dhidden — ReLU — dinput

where the additional dimension on the input layer is because we append the time ¢ as an input.
Choices for dinpu; and dhigden are given for each model in the following section.

F.1.2 Image datasets

We parameterized f by a convolutional block with the following structure and dimensions

e 1 x 1 conv, k filters, 0 padding.
e 3 x 3 conv, k filters, 1 padding.
e 1 x 1 conv, cfilters, 0 padding.

where £k is specified for each architecture in the following sections and c is the number of channels (1
for MNIST and 3 for CIFAR10, SVHN and ImageNet). We append the time ¢ as an extra channel on
the feature map before each convolution.

F.2 Hyperparameters

For the toy datasets, each experiment was repeated 20 times. The resulting plots show the mean and
standard deviation for these runs.

F.2.1 Hyperparameter search

To ensure a fair comparison between models, we ran a large hyperparameter search for each model
and chose the hyperparameters with the lowest loss to generate the plots in the paper. We used
skorch and scikit-learn|(Pedregosa et al.,[2011) to run the hyperparameter searches and ran 3
cross validations for each setting.

For d = 1 and d = 2 we trained on g(x) (i.e. on the dataset of concentric spheres), with 1000 points
in the inner sphere and 2000 points in the outer annulus. We used r; = 0.5, 7 = 1.0 and r3 = 1.5
and trained for 50 epochs. The space of hyperparameters we searched were:

e Batch size: 64, 128

e Learning rate: le-3, 5-4, le-4

Hidden dimension: 16, 32

e Number of layers (for ResNet): 2, 5, 10

e Number of augmented dimensions (for ANODE): 1, 2, 5

The best parameters for ResNets:

e d = 1: Batch size 64, learning rate 1e-3, hidden dimension 32, 5 layers

e d = 2: Batch size 64, learning rate le-3, hidden dimension 32, 5 layers
The best parameters for Neural ODEs:

e d = 1: Batch size 64, learning rate le-3, hidden dimension 32
e d = 2: Batch size 64, learning rate 1e-3, hidden dimension 32

The best parameters for Augmented Neural ODEs:

e d = 1: Batch size 64, learning rate le-3, hidden dimension 32, augmented dimension 5

e d = 2: Batch size 64, learning rate 1e-3, hidden dimension 32, augmented dimension 5


https://github.com/skorch-dev/skorch
https://scikit-learn.org/stable/

F.2.2 Image experiments

For all image datasets, we used k = 64 filters and repeated each experiment 5 times. For models with
approximately the same number of parameters we used, for MNIST

o NODE: 92 filters — 84,395 parameters
o ANODE: 64 filters, augmented dimension 5 — 84,816 parameters

and for CIFAR10 and SVHN

e NODE: 125 filters — 172,358 parameters
o ANODE: 64 filters, augmented dimension 10 — 171,799 parameters

For the ImageNet experiments, we used the Tiny ImageNet dataset consisting of 200 classes of
64 x 64 images. We also repeated each experiment 5 times. We used models with approximately the
same number of parameters, specifically:

o NODE: 164 filters — 366,269 parameters

e ANODE: 64 filters, augmented dimension 5 — 365,714 parameters

For all image experiments, we used a batch size of 256.

G Additional Results
In this section, we show additional results which were not included in the main paper.

G.1 Feature space evolution

We visualize the evolution of the feature space when training a NODE on g(x) and on a separable
function in Fig. [3] As can be seen, the NODE struggles to push the inner sphere out of the annulus
for g(x). On the other hand, when training on the separable dataset, the NODE easily transforms the
input space.

G.2 Parameter efficiency

As noted in the main paper, when we augment the dimension of the ODEs, we also increase the
number of parameters of the model. We test whether the improved performance of ANODEs is due
to the higher number of parameters by training NODEs and ANODEs with the same number of
parameters on MNIST and CIFAR10. As can be seen in Fig. {4} the augmented model achieves lower
losses with fewer NFEs than a NODE with the same number of parameters, suggesting that ANODEs
use the parameters more efficiently than NODEs.

G.3 Augmentation and weight decay

Grathwohl et al.[(2018) train NODE models with weight decay to reduce the NFEs. As ANODEs
also achieve low NFEs, we test models with various combinations of weight decay and augmentation
and show results in Fig. [5] We find that ANODE:s significantly outperform NODEs even when using
weight decay. However, using both weight decay and augmentation achieves the lowest NFEs at the
cost of a slightly higher loss.

G.4 Comparing ResNets, NODEs and ANODEs

In the main paper, we compare the training time of ResNets with NODEs and the training time of
NODEs with ANODEs. In Fig. [] we compare all three methods in a single plot.

G.5 Training accuracy

We include additional plots of training accuracy in Fig.
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Figure 3: Evolution of the feature space during training. The leftmost tile shows the feature space for
arandomly initialized NODE and the rightmost tile shows the feature space after training. The top
row shows a model trained on g(x) and the bottow row a model trained on a separable function.
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Figure 4: Losses, NFEs and NFEs vs Loss for various augmented models on MNIST and CIFARI10.
Note that p indicates the size of the augmented dimension, so p = 0 corresponds to a regular NODE
model.

G.6 Additional test results for SVHN

The test loss and accuracy on SVHN as training progresses are shown in Fig. [§]

G.7 Additional train results for SVHN

Additional results for SVHN which were not included in the main paper are shown in Fig. [0}

G.8 Additional results for ImageNet

Additional results for ImageNet which were not included in the main paper are shown in Fig. [10]

G.9 Examples of flows

We include further plots of flows learned by NODEs and ANODEs in Fig. [TT] As can be seen,
ANODEs consistently learn simple, nearly linear flows, while NODEs require more complicated
flows to separate the data.
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Figure 5: Losses and NFEs for models with and without weight decay. ANODEs perform better than
NODEs with weight decay but adding weight decay to ANODE:s also reduces their NFEs at the cost
of a slightly higher loss.
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Figure 6: Losses for various models trained on g(x) in d = 2. As can be seen, ANODEs are slightly
slower than ResNets, but faster than NODEs.
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Figure 7: Training accuracy for MNIST (left), CIFAR10 (middle) and SVHN (right).
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Figure 8: Test loss and accuracy during training for SVHN.
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Figure 9: Loss, NFEs, loss vs NFEs during training for NODEs and ANODEs on SVHN.
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Figure 10: NFEs, loss vs NFEs and accuracy vs NFEs during training for NODEs and ANODESs on
64 x 64 ImageNet.

Figure 11: Flows learned by NODEs and ANODEs trained on various datasets. The top row shows
results for NODEs, the bottom row shows results for ANODESs. The models in the left column were
trained on separable data, whereas the models in the right column were trained on g(x). NODEs
learn more complex flows, particularly on data which is not separable.
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