
Appendix: MaCow: Masked Convolutional Generative Flow

A Dequantization

As described in §2, generative flows are defined on continuous random variables. Many real-world
datasets, however, are recordings of discrete representations of signals, and fitting a continuous density
model to discrete data produces a degenerate solution that places all probability mass on discrete
datapoints (Uria et al., 2013; Ho et al., 2019). A common solution to this problem is “dequantization”
that converts the discrete data distribution into a continuous one.

Specifically, in the context of natural images, each dimension (pixel) of the discrete data x takes on
values in {0, 1, . . . , 255}. The dequatization process adds continuous random noise u to x, resulting
a continuous data point of:

y = x+ u, (1)
where u ∈ [0, 1)d is continuous random noise taking values from interval [0, 1). By modeling the
density of Y ∈ Y with pθ(y), the distribution of X is defined as:

Pθ(x) =

∫
Y
pθ(y) dy =

∫
[0,1)d

pθ(x+ u) du. (2)

By restricting the range of u in [0, 1), the mapping between y and a pair of x and u is bijective. Thus,
we have pθ(y) = pθ(x+ u) = pθ(x, u).

By introducing a dequantization noise distribution q(u|x), the training objective in (1) can be
re-written as:

EP (X)

[
− logPθ(X)

]
= EP (X)

[
− log

∫
[0,1)d

pθ(X,u) du

]

= EP (X)

[
Eq(u|X)

[
− log

pθ(X,u)

q(u|X)

]
−KL

(
q(u|X)||pθ(u|X)

)]

≤ EP (X)

[
Eq(u|X)

[
− log pθ(X,u)

]
+ Eq(u|X)

[
log q(u|X)

]]
= Ep(Y )

[
− log pθ(Y )

]
+ EP (X)Eq(u|X)

[
log q(u|X)

]
, (3)

where p(y) = P (x)q(u|x) is the distribution of the dequantized variable Y under the dequantization
noise distribution q(u|X).

Uniform Dequantization. The most common dequantization method in prior work is uniform
dequantization where the noise u is sampled from the uniform distribution Unif(0, 1) such that

q(u|x) ∼ Unif(0, 1),∀x ∈ X .

From (3), we have
EP (X) [− logPθ(X)] ≤ Ep(Y ) [− log pθ(Y )] ,

as log q(u|x) = 0,∀x ∈ X .

Variational Dequantization. As discussed in Ho et al. (2019), uniform dequantization directs
pθ(y) to assign uniform density to unit hypercubes [0, 1)d, which is difficult for smooth distribution
approximators. They proposed a parametric dequantization noise distribution qφ(u|x) with a training
objective to optimize the evidence lower bound (ELBO) provided in (3):

min
θ,φ

Epφ(Y ) [− log pθ(Y )] + EP (X)Eqφ(u|X) [log qφ(u|X)] , (4)

where pφ(y) = P (x)qφ(u|x). In this paper, we implemented both these two dequantization methods
for our MACOW, as is detailed in §4).

11



B Experimental Details

B.1 Model details

Table 4: Hyper-parameters for MACOW in our experiments.
DataSet Dequant Batch Size Levels Depths per Level # Param # Param Glow

CIFAR-10 Unif 512 3 [[12, 12], [12, 12], 12] 41.2M 44.2MVar 512 3 [[12, 12], [12, 12], 12] 43.5M

ImageNet Unif 160 4 [[16, 16], [16, 16], [12, 12], 12] 117.2M 111.6MVar 160 4 [[16, 16], [16, 16], [12, 12], 12] 122.5M

LSUN Unif 160 5 [[32, 32], [32, 32], [16, 16], [12, 12], 6] 166.6M 198.1MVar 160 5 [[32, 32], [32, 32], [16, 16], [12, 12], 6] 171.9M

CelebA-HQ Unif 40 6 [[24, 24], [16, 16], [16, 16], [8, 8], [4, 4], 2] 171.9M 170.8MVar 40 6 [[24, 24], [16, 16], [16, 16], [8, 8], [4, 4], 2] 177.3M

B.2 Optimization

Parameter optimization is performed with the Adam optimizer (Kingma and Ba, 2014) with β =
(0.9, 0.999) and ε = 1e − 8. Warmup training is applied to all the experiments: the learning rate
linearly increases to for 500 updates to the initial learning rate 1e− 3. Then we use exponential decay
to decrease the learning rate with decay rate is 0.999997.
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C More samples from our experiments

Figure 4: Samples from 5-bit, 128×128 LSUN bedrooms.
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Figure 5: Samples from 5-bit, 128×128 LSUN church.
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Figure 6: Samples from 5-bit, 128×128 LSUN towers.
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Figure 7: Synthetic celebrities sampled from 5-bit 256×256 CelebA-HQ.
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Figure 8: Samples from 8-bit imagenet 64×64 with uniform dequantization
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Figure 9: Samples from 8-bit imagenet 64×64 with variational dequantization
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