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S-1 D-LORD: LORD++ with discarding

Instead of applying discarding rule to LORD described in [1], we apply the discarding rule to its
equivalent form LORD++ under the framework of GAI++ [2] for theoretical simplicity, and call the
resulted variant as D-LORD. Now consider uniformly conservative p-values as defined in (4), where
the filtration F t−1 = σ(R1:t−1, S1:t−1). As before, we derive D-LORD from an empirical estimate
of FDP∗ defined in (5). Specifically, let

F̂DPD-LORD(t) :=

∑
j≤t

αj

τj
1{Pj ≤ τj}

|R(t)| ∨ 1
. (S-1)

Compare F̂DPD-LORD with the original estimator that LORD++ based upon

F̂DPLORD++(t) :=

∑
j≤t αj

|R(t)| ∨ 1
, (S-2)

we say F̂DPD-LORD is a better estimator, since with many conservative null p-values, its numerator
will be a much tighter estimate of

∑
j≤t,j∈H0

αj , compared with the naive estimate of LORD++

that is
∑
j≤t αj . To see why this is true, just notice that the expectation of 1{Pj≤τj}

τj
will be much

smaller than 1 for conservative null p-values. We call an online FDR algorithm as an instance of the
“D-LORD algorithm" if it updates αt in a way such that it maintains the invariant F̂DPD-LORD(t) ≤ α
for all t. We show how to ensure this invariant in a fully online fashion by providing an explicit
instance of D-LORD with constant τ as the following D-LORD∗ algorithm. The simulation results in
Section 4 demonstrate the power advantage of D-LORD∗ over LORD++.

Algorithm S-1: The D-LORD∗ algorithm
Input: FDR level α, discarding threshold τ ∈ (0, 1], sequence {γj}∞j=0 which is nonnegative,

nonincreasing and sums to one, initial wealth W0 ≤ α.
for t=1, 2, . . . do

Reject the t-th null if Pt ≤ αt, where αt : = min{τ, α̃t}, and
α̃t : = τ

(
W0γSt + (α−W0)γSt−κ∗

1
+ α

∑
j≥2 γSt−κ∗

j

)
.

Here,
κj = min{i ∈ [t− 1] :

∑
k≤i 1{Pk ≤ αk} ≥ j}, κ∗j =

∑
i≤κj

1{Pi ≤ τ},
St =

∑
i<t 1{Pi ≤ τ}.

end
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Here we present the following theorem for error control of D-LORD. Recall the definition of uniformly
conservative p-values (4); and here we call a function ft(R1:t−1, S1:t−1) : {0, 1}2(t−1) → [0, 1]
as the “monotonic” function of the past if it is coordinatewise nondecreasing with regard Rj , and
coordinatewise nonincreasing with regard Sj .
Theorem S-1. If the null p-values are uniformly conservative, and suppose we choose τj ≥ αj for
each j ∈ N, where αj is the testing level for j-th hypothesis, then we have:

(a) any algorithm with F̂DPD-LORD(t) ≤ α for all t ∈ N also enjoys mFDR(t) ≤ α for all t ∈ N.
Further, if the null p-values are independent of each other and of the non-nulls, and for all t, αt and
1− τt are both monotonic functions of the past, then we additionally have:

(b) any algorithm with F̂DPD-LORD(t) ≤ α for all t ∈ N also enjoys FDR(t) ≤ α for all t ∈ N.
As an immediate corollary, D-LORD∗ (Algorithm S-1) enjoys both mFDR and FDR control.

The proof of Theorem S-1 is presented in Section S-7.

S-2 D-StBH: Storey-BH with discarding

The discarding rule can also be applied to offline settings. Here we present the D-StBH, i.e. the
discarding version of an adaptive offline FDR control method — Storey-BH [3, 4]. Just as SAFFRON
is an online analog of Storey-BH, ADDIS may be regarded as an online analog of D-StBH.

Now we present the specific approach. Denote the number of hypotheses as n. Given targeted FDR
level α, user defined constants λ < τ ∈ (0, 1], we define

F̂DPD-StBH(s) :=
n · s · π̂0

(
∑
j 1{Pj ≤ s}) ∨ 1

, where π̂0 : =
1 +

∑n
i=1 1{λ < Pi ≤ τ}
n(τ − λ)

. (S-3)

D-StBH then calculates ŝ : = max{s : s ≤ τ, F̂DPD-StBH(s) ≤ α}, and reject the set {i : Pi ≤ ŝ}.
With many conservative nulls, we claim D-StBH would be more powerful than Storey-BH, since
π̂0 serves as a tighter estimator for the true π0 : = |H0|/n in terms of expectation. As always, we
present the error control of the new method under some reasonable assumptions, and the simulations
demonstrating its power advantage in Section 4.
Theorem S-2. If p-values are independent with each other and the nulls are uniformly conservative
as defined in (2), then D-StBH controls FDR at level α.

Theorem S-2 is proved in Section S-8 .

S-3 Asynchronous setting

Here we formalize the asynchronous setting. An asynchronous testing process consists of tests that
start and finish at random times. Without loss of generality, one can take the starting times of each
tests as 1, 2, . . . , and refer them as H1, H2, . . . , and take the finish time of each tests as E1, E2, . . .
accordingly (let Et = j, if j ≤ Et < j + 1). Notice that Et may be bigger than t. One has to decide
the testing level for Ht at its starting time, with only information of tests that finished before time
t. It is worth mentioning that this framework is a generalization of the classical online FDR setting,
since it reduces to the classical setting when Et = t for all t. We refer readers to [5] for more detailed
definition and discussion.

In the following of the section, we present the modified ADDIS algorithm under asynchronous setting,
which we will refer as ADDISasync. We derive the new method respectively from the following two
empirical estimators for the oracle metric FDP∗ for true FDP, which is

F̂DPADDISasync(t) :=

∑
j≤t

αj

(τj−λj)
(1{λj < Pj ≤ τj , Ej < t}+ 1{Ej ≥ t})

(
∑
j≤t 1{Pj ≤ αj , Ej < t}) ∨ 1

. (S-4)

As before, {τj}∞j=1, {λj}∞j=1, {αj}∞j=1 are some user defined sequences, where each terms is in range
[0, 1]. We use Pt to refer the p-value that results from the test started at time t, which is not known
at time t, but only at time Et (unless they are identical). Similarly, St, Ct, Rt are defined in the
same way as Section 2, to indicate whether the hypothesis started at time t is selected, candidate of
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rejection, or rejected, respectively. Like Pt, they are also not known before time Et. Additionally,
denote Rt = {i : Ei = t, Ri = 1}, Ct = {i : Ei = t, Ci = 1} and St = {i : Ei = t, Si = 1}.
Correspondingly, denote R1:t = {R1, . . . ,Rt}, C1:t = {C1, . . . , Ct} and S1:t = {S1, . . . ,St}. As
always, we refer the online FDR algorithm as ADDISasync if it updates αt to maintain the invariant
F̂DPADDISasync(t) ≤ α for all t ∈ N.

Now we present explicit instance for ADDISasync algorithm for fixed τ and λ.

Algorithm S-2: The ADDIS∗async algorithm

Input: FDR level α, discarding threshold τ ∈ (0, 1], candidate threshold λ ∈ [0, τ), sequence
{γj}∞j=1 which is nonnegative, nonincreasing and sums to one, initial wealth W0 ≤ α.

for t = 1, 2, . . . do
Start t-th test with level αt : = min{λ, α̃t},
where α̃t : = (τ − λ)

(
W0γSt−C+

0
+ (α−W0)γSt−κ∗

1−C
+
1
+ α

∑
j≥2 γSt−κ∗

j−C
+
j

)
.

Here, St =
∑
i<t(1{Pi ≤ τ, Ei < t}+ 1{Ei ≥ t}),

C+
j =

∑
i<t 1{Pi ≤ λ, κj + 1 ≤ Ei < t},

κj = min{i ∈ [t− 1] :
∑
k≤t 1{Pk ≤ αk, Ek ≤ i} ≥ j},

κ∗j =
∑
i<t 1{Pi ≤ τ, Ei ≤ κj}.

end

As always, we present the error control for the ADDISasync, by proving theorem as the following.
Firstly, we clarify the following terms.

Here, we say Pi is uniformly conservative, if it satisfy the uniformly conservative condition defined
in (4), with specified filtration FEt−1, where F t−1 = σ{R1:t−1, C1:t−1,S1:t−1}. We insist that the
thresholds τj , λj and αj in ADDISasync are mappings from (R1:j−1, C1:j−1,S1:j−1) to [0, 1] for each
j ∈ N. Here, we say ft is a monotonic function of the past, if it is nondecreasing in |Rj | and |Cj |,
while nonincreasing in |Sj |.
Theorem S-3. If the null p-values are uniformly conservative, suppose we choose τj > λj ≥ αj for
each j ∈ N. Then we have:

(a) any algorithm with F̂DPADDISasync(t) ≤ α for all t ∈ N enjoys mFDR(t) ≤ α for all t ∈ N.
Next assume that the null p-values are independent of each other and of the non-nulls, and each
p-value Pt is independent of its decision time given FEt−1. If αt, λt, 1− τt are all designed to be
monotonic functions of the past for all t ∈ N, then we additionally have:

(b) any algorithm with F̂DPADDISasync(t) ≤ α for all t ∈ N enjoys FDR(t) ≤ α for all t ∈ N.
As an immediate corollary, ADDIS∗async (Algorithm S-2) have both mFDR and FDR control.

Theorem S-3 is proved using Lemma S-4, which is a modified version of Lemma S-1 in Section 2.
The proof is presented in Section S-9.

S-4 Proof of Lemma 1

Let Fj denote the CDF of null p-value Pj , for fixed b ∈ (0, 1), let hj(a) = bFj(a)− Fj(ab). Since
Fj is differentiable, let fj denote its density function, and notice that fj is monotonically increasing
by the fact that Fj is convex. Then we have that the derivative of hj is

h′j(a) = τjfj(a)− bfj(ab) ≥ 0.

Therefore, hj is increasing with a, which implies hj(a) ≤ hj(1). With simple rearrangement, we
have

Pr{ab < Pj ≤ b}
b(1− a)

≤ Pr{Pj > a}
(1− a)

as claimed.
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S-5 Proof of Theorem 1

Part (a) of Theorem 1 is proved using the the law of iterated expectations and the property of uniformly
conservative null p-values as stated in (4). Specifically, taking iterated expectation by conditioning
on {F j−1, Sj} respectively for each j ∈ H0, we have

E [|H0 ∩R(t)|] =
∑

j≤t,j∈H0

E [1{Pj ≤ αj}]

=
∑

j≤t,j∈H0

E
[
E
[
1{Pj ≤ αj}

∣∣ Sj ,F j−1]]
(i)
=

∑
j≤t,j∈H0

E
[
E
[
1{Pj
τj
≤ αj
τj
}
∣∣∣∣ Sj = 1,F j−1

]
Pr
{
Sj = 1

∣∣ F j−1}]

=
∑

j≤t,j∈H0

E
[
E
[
1{Pj
τj
≤ αj
τj
}
∣∣∣∣ Pj ≤ τj ,F j−1]Pr

{
Sj = 1

∣∣ F j−1}] ,
(S-5)

where (i) is true since αj < τj , therefore Pj ≤ αj implies Sj = 1. Then, using the property of the
uniformly conservative null p-values stated in (4), we have∑

j≤t,j∈H0

E
[
E
[
1{Pj
τj
≤ αj
τj
}
∣∣∣∣ Pj ≤ τj ,F j−1]Pr

{
Sj = 1

∣∣ F j−1}]

≤
∑

j≤t,j∈H0

E
[
αj
τj

Pr
{
Sj = 1

∣∣ F j−1}]

≤
∑

j≤t,j∈H0

E
[
αj
τj

E
[
1{θjτj < Pj}

(1− θj)

∣∣∣∣ Pj ≤ τj ,F j−1]Pr
{
Sj = 1

∣∣ F j−1}] ,
(S-6)

where θj ≡ λj/τj . Next, using the fact that αj , λj and τj are measurable with regard F j−1 for all
j ∈ N, the RHS of (S-6) equals∑

j≤t,j∈H0

E
[
E
[
αj
τj

1{θjτj < Pj}
(1− θj)

∣∣∣∣ Pj ≤ τj ,F j−1]Pr
{
Sj = 1

∣∣ F j−1}]

=
∑

j≤t,j∈H0

E
[
E
[
αj

1{λj < Pj ≤ τj}
(τj − λj)

∣∣∣∣ Sj = 1,F j−1
]

Pr
{
Sj = 1

∣∣ F j−1}]

=
∑

j≤t,j∈H0

E
[
E
[
αj

1{λj < Pj ≤ τj}
(τj − λj)

∣∣∣∣ Sj ,F j−1]]
(ii)
=

∑
j≤t,j∈H0

E
[
αj

1{λj < Pj ≤ τj}
(τj − λj)

]
(iii)
= E

 ∑
j≤t,j∈H0

αj
1{λj < Pj ≤ τj}

(τj − λj)

 ,

(S-7)

where (ii) is again obtained using law of the iterated expectations; and (iii) is obtained using the
linearity of expectation. Therefore, combine the results above, we have

E [|H0 ∩R(t)|] ≤ E

 ∑
j≤t,j∈H0

αj
1{λj < Pj ≤ τj}

(τj − λj)

 . (S-8)

Furthermore, since

F̂DPADDIS(t) ≤ α⇒
∑
j≤t

αj
1{λj < Pj ≤ τj}

(τj − λj)
≤ α(|R(t)| ∨ 1),

take expectation on each side and use (S-8), we have mFDR(t) ≤ α as claimed.

Next, in order to prove part (b), we need Lemma S-1 in the following, which is a modified version of
“reverse super-uniformity lemma” in [6]. Recall the definition of “monotonic (neg-montonic) function
of the past" in 2.2, we present Lemma S-1 as follows.
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Lemma S-1. Assume that the p-values P1, P2, . . . are independent and let g : {0, 1}T → R be any
coordinatewise nondecreasing function, and assume αt, λt and 1− τt are all monotonic function of
the past as defined in 2.2, while satisfying the constraints αt ≤ λt < τt for all t. Then, for any index
t ≤ T such that t ∈ H0, we have:

E
[

αt1{λt < Pt ≤ τt}
(τt − λt)(g(R1:T ) ∨ 1)

∣∣∣∣ F t−1, St = 1

]
≥ E

[
αt

τt(g(R1:T ) ∨ 1)

∣∣∣∣ F t−1, St = 1

]
≥ E

[
1{Pt ≤ αt}
g(R1:T ) ∨ 1

∣∣∣∣ F t−1, St = 1

]
.

The proof of Lemma S-1 is deferred in Section S-5.1.

Now, taking iterated expectations similarly as in the proof of part (a), we obtain the following:

FDR(t) = E [FDP(t)] = E
[
|H0 ∩R(t)|
|R(t)| ∨ 1

]
=

∑
j≤t,j∈H0

E
[
1{Pj ≤ αj}
|R(t)| ∨ 1

]

=
∑

j≤t,j∈H0

E
[
E
[
1{Pj ≤ αj}
|R(t)| ∨ 1

∣∣∣∣ Sj ,F j−1]]

=
∑

j≤t,j∈H0

E
[
E
[
1{Pj ≤ αj}
|R(t)| ∨ 1

∣∣∣∣ Sj = 1,F j−1
]

Pr
{
Sj = 1

∣∣ F j−1}]
(S-9)

Under the independence and monotonicity assumptions of part (b), and notice that |R(t)| =
∑t
i=1Ri

is a coordinatewise nondecreasing function with regard R1:t, we use Lemma S-1 to obtain the
following: ∑

j≤t,j∈H0

E
[
E
[
1{Pj ≤ αj}
|R(t)| ∨ 1

∣∣∣∣ Sj = 1,F j−1
]

Pr
{
Sj = 1

∣∣ F j−1}]

≤
∑

j≤t,j∈H0

E
[
E
[

αj
τj(|R(t)| ∨ 1)

∣∣∣∣ Sj = 1,F j−1
]

Pr
{
Sj = 1

∣∣ F j−1}]

≤
∑

j≤t,j∈H0

E
[
E
[
αj1{λj < Pj ≤ τj}
(τj − λj)(|R(t)| ∨ 1)

∣∣∣∣ Sj = 1,F j−1
]

Pr
{
Sj = 1

∣∣ F j−1}] (S-10)

Again using the law of iterated expectation and the linearity of expectation, we have the RHS of
(S-10) equals ∑

j≤t,j∈H0

E
[
E
[
αj1{λj < Pj ≤ τj}
(τj − λj)(|R(t)| ∨ 1)

∣∣∣∣ Sj ,F j−1]]

=
∑

j≤t,j∈H0

E
[
αj1{λj < Pj ≤ τj}
(τj − λj)(|R(t)| ∨ 1)

]

=E

 1

|R(t)| ∨ 1

∑
j≤t,j∈H0

αj
1{λj < Pj ≤ τj}

(τj − λj)

 , (S-11)

which is no larger than E
[
F̂DPADDIS(t)

]
≤ α by the definition of F̂DPADDIS(t). Therefore, combine

(S-9), (S-10) and (S-11), we have FDR(t) ≤ α as claimed.

Finally, we justify for the corollary that ADDIS∗ have mFDR and FDR control. Firstly, from
Algorithm 1, we know that ADDIS∗ makes sure τ > λ ≥ αj for all j, and constant λ and 1− τ is
obviously monotonic function of the past, while αt being a monotonic function of the past for all t is
verified in Section S-5.2. Then, from the definition of sequence {γj}∞j=0, after simple rearrangement,
we have F̂DPADDIS(t) ≤ α holds true. Therefore, ADDIS∗ satisfy all the requirements in the theorem,
thus having error control under corresponding assumptions of p-values.
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S-5.1 Proof of Lemma S-1

We use a technique of constructing a hallucinated vector, similar to [6], to prove Lemma S-1.
Specifically, to prove the first part of the inequality, first fix the time t, and then construct a hallucinated
vector P̃ , such that for each i ∈ N,

P̃i = τi · 1{i = t}+ Pi · 1{i 6= t}. (S-12)

Denote the corresponding hallucinated testing levels, candidate levels and selected levels resulting
from {P̃i} as {α̃i}, {λ̃i} and {τ̃j} respectively. Similarly, we define the corresponding hallucinated
indicator variables as

S̃i = 1{P̃i ≤ τ̃i}, C̃i = 1{P̃i ≤ λ̃i}, R̃i = 1{P̃i ≤ α̃i}.

Given λt < Pt ≤ τt, we have S̃t = St = 1, R̃t = Rt = 0, C̃t = Ct = 0. Therefore, R1:T = R̃1:T ,
and particularly R̃1:T is independent of Pt. These facts lead to:

E
[

αt1{λt < Pt ≤ τt}
(τt − λt)(g(R1:T ) ∨ 1)

∣∣∣∣ St = 1,F t−1
]

= E

[
αt1{λt < Pt ≤ τt}

(τt − λt)(g(R̃1:T ) ∨ 1)

∣∣∣∣∣ St = 1,F t−1
]

(i)
= E

[
αt

τt(g(R̃1:T ) ∨ 1)

∣∣∣∣∣ St = 1,F t−1
]
E
[
1{λt < Pt ≤ τt}

(1− λt/τt)

∣∣∣∣ St = 1,F t−1
]

(ii)

≥ E

[
αt

τt(g(R̃1:T ) ∨ 1)

∣∣∣∣∣ St = 1,F t−1
]
,

where (i) is obtained from the fact that R̃1:T is independent of Pt, and that λt, τt, ft are measurable
with regard F t−1; (ii) is obtained using the property of uniformly conservative null p-values stated in
(4).

Under the construction of hallucinated variables, if St = 1, then R̃i ≤ Ri for all i ∈ N. This
statement follows by the monotonicity of {αi} and {λi}, and the neg-monotonicity of {τi}. Notice
that for all i < t, we have S̃i = Si, R̃i = Ri, C̃i = Ci. Therefore, we may infer that αi = α̃i,
λi = λ̃i and τi = τ̃i for all i ≤ t. Since S̃t = St = 1, R̃t = C̃t = 0, that is S̃t = St, C̃t ≤ Ct,
R̃t ≤ Rt. Therefore we have that α̃t+1 ≤ αt+1, λ̃t+1 ≤ λt+1 and τ̃t+1 ≥ τt+1, which lead to
R̃t+1 ≤ Rt+1, C̃t+1 ≤ Ct+1 and S̃t+1 ≥ St+1 and so on. Recursively, we deduce R̃t+1 ≤ Rt+1 for
all i > t. Since g is a coordinatewise increasing function, we have

E

[
αt

τt(g(R̃1:T ) ∨ 1)

∣∣∣∣∣ St = 1,F t−1
]
≤ E

[
αt

τt(g(R1:T ) ∨ 1)

∣∣∣∣ St = 1,F t−1
]

(S-13)

Hence, we proved the first part of inequality in Lemma S-1.

To prove the second part of the inequality, alternatively, for all t ∈ N, we let P̃i = Pi · 1{i 6= t}, and
define α̃i, λ̃i, τ̃i and S̃i, C̃i, R̃i in same way as before.

On the other hand, given Pt ≤ αt, we have S̃t = St = R̃t = Rt = C̃t = Ct = 1. Therefore,
R1:T = R̃1:T , and particularly R̃1:T is independent of Pt. Again, we have:

E
[
1{Pt ≤ αt}
g(R1:T ) ∨ 1

∣∣∣∣ St = 1,F t−1
]
= E

[
1{Pt ≤ αt}
g(R̃1:T ) ∨ 1

∣∣∣∣∣ St = 1,F t−1
]

(i)
= E

[
αt

τt(g(R̃1:T ) ∨ 1)

∣∣∣∣∣ St = 1,F t−1
]
E
[
1{Pt ≤ αt}

αt/τt

∣∣∣∣ St = 1,F t−1
]

(ii)

≤ E

[
αt

τt(g(R̃1:T ) ∨ 1)

∣∣∣∣∣ St = 1,F t−1
]

(iii)

≤ E
[

αt
τt(g(R1:T ) ∨ 1)

∣∣∣∣ St = 1,F t−1
]
,
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where (i) is obtained from the fact that R̃1:T is independent of Pt, and that λt, τt, ft are measurable
with regard F t−1; and (ii) is true due to the property of uniformly conservative p-values stated in (4)
; and finally, (iii) is true from the similar logic in the proof of first part.

These concludes the proof of the second part of inequality in Lemma S-1.

S-5.2 Verify αt in ADDIS∗ is a monotonic function of the past

In applying Theorem 1 to prove that ADDIS∗ controls the FDR, it is assumed that ADDIS∗ is a
monotonic rule, meaning that αt is a monotonic function of the past as defined in 2.2. Here we justify
for this claim. In ADDIS∗, we assume λ and τ is constant, however the same arguments can be
applied if they change at every step, but are predictable as stated in Section 2 of the main paper.

We will prove this argument by proving that αt in ADDIS∗ satisfy some equivalent argument of
monotonicity defined in 2.2. Consider some (R1:t−1, C1:t−1, S1:t−1) and (R̃1:t−1, C̃1:t−1, S̃t−1)
for a fixed t. We will accordingly denote all relevant variables in the ADDIS∗ alogorithm which
result in (R1:t−1, C1:t−1, S1:t−1) and (R̃1:t−1, C̃1:t−1, S̃1:t−1), e.g. αt and α̃t, respectively. We
say (R̃1:t−1, C̃1:t−1, S̃1:t−1) � (R1:t−1, C1:t−1, St−1) if and only if, for each i ≤ t− 1, one of the
following holds:

(1) Ri = R̃i, Ci = C̃i, and Ri = R̃i;

(2) Ri = 0, Ci = 0, Si = 1, and R̃i = 0, C̃i = 1, S̃i = 1;

(3) Ri = 0, Ci = 0, Si = 1, and R̃i = 1, C̃i = 1, S̃i = 1;

(4) Ri = 0, Ci = 1, Si = 1, and R̃i = 1, C̃i = 1, S̃i = 1.

(5) Ri = 0, Ci = 0, Si = 1, and R̃i = 0, C̃i = 0, S̃i = 0;

Taking into account the possible relations between indicators for rejection, candidacy and tester,
one may notice the fact that Si ≥ Ci ≥ Ri for each i. Then the monotonicity defined in 2.2 of
a function αt is equivalent to the statement that (R̃1:t−1, C̃1:t−1, S̃1:t−1) � (R1:t−1, C1:t−1, St−1)
implies α̃t ≥ αt. Therefore, we will instead prove that this equivalent statement holds for αt in
ADDIS∗ for each t ∈ N. Specifically, recall the forms of αt in ADDIS∗:

αt : = min{λ, α̂t},

where α̂t : = (τ − λ)

W0γSt−C0+
+ (α−W0)γSt−κ∗

1−C1+
+ α

∑
j≥2

γSt−κ∗
j−Cj+

 .
(S-14)

We would like to prove that, given (R̃1:t−1, C̃1:t−1, S̃1:t−1) � (R1:t−1, C1:t−1, S1:t−1), we have
α̃t ≥ αt. First, notice that in (S-14), the index St − κ∗j − Cj+ is the number of non-candidate
testers (i.e. {i : Si = 1, Ci = 0}) between the j-th rejection before time t and time t. Provided with
(R̃1:t−1, C̃1:t−1, S̃1:t−1) � (R1:t−1, C1:t−1, S1:t−1), we must have that (R1:t−1, C1:t−1, S1:t−1)

never contains less non-candidate testers or more rejections compared to (R̃1:t−1, C̃1:t−1, S̃1:t−1),
from the definition of (R̃1:t−1, C̃1:t−1, S̃1:t−1) � (R1:t−1, C1:t−1, S1:t−1) above. Additionally,
notice that the sequence {γj}∞j=0 is nonincreasing and nonnegative, and W0, α−W0 and τ − λ in
(S-14) are strictly positive by construction. Therefore, the sum of the terms γSt−κ∗

j−Cj+
contributing

to αt is at most as great as the the sum of the terms γS̃t−κ̃∗
j−C̃j+

, and the same holds for the terms

with W0 and (α−W0). Consequently, we have α̃t ≥ αt. Therefore, ADDIS∗ is a monotonic rule as
claimed.

S-6 Proof of Theorem 2

Using a similar technique to [5], we prove this theorem by constructing a process which behaves
similarly to a submartingale, so that we could obtain a result by mimicking optimal stopping.
Specifically, for t ∈ N, define the process A(t) as:
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A(t) :=
∑

i≤t,i∈H0

(
−1{Pj ≤ αj}+

αj
(τj − λj)

1{λj ≤ Pj < τj}
)
,

where we take A(0) = 0. Denote R(t) as the set of all rejections made by time t, and V (t) as the set
of false rejections made by time t. Then, we bound

A(t) =
∑

i≤t,i∈H0

(
−1{Pj ≤ αj}+

αj
(τj − λj)

1{λj ≤ Pj < τj}
)

≤ −|V (t)|+
∑
j≤t

αj
(τj − λj)

1{λj < Pj ≤ τj}

= α(|R(t)| ∨ 1)− V (t) +
∑
j≤t

αj
(τj − λj)

1{λj < Pj ≤ τj} − α(|R(t)| ∨ 1)

(i)

≤ α(|R(t)| ∨ 1)− V (t),

where (i) is obtained using the fact that FDPADDIS(t) ≤ α for all t. Therefore, if we can
prove A(Tstop) ≥ 0 for any stopping time Tstop with finite expectation, then we instantly obtain
α|R(Tstop)| ≥ V (Tstop). Taking expectation on both side, and rearranging the terms, we obtain
mFDR(Tstop) ≤ α as claimed.

In order to prove A(Tstop) ≥ 0 for any stopping time Tstop with finite expectation, we need the
following lemma, which is proved in Section S-6.1.
Lemma S-2. If min{τj −λj} > ε for some ε > 0, and T is a random variable supported on N with
finite expectation, then the random variable

Y : = A(T ) ≡
∑

j≤T,j∈H0

(
1{Pj ≤ αj}+

αj
(τj − λj)

1{λj ≤ Pj < τj}
)

also has finite expectation.

Since A(Tstop ∧ t) → A(Tstop) almost surely as t → ∞, using Lemma S-2 and the dominate
convergence theorem, we conclude that

E [A(Tstop ∧ t)]→ E [A(Tstop)] , as t→∞. (S-15)

Additionally notice that

E [A(Tstop ∧ t)] = E [A(Tstop ∧ t)−A(0)] = E [(H ·A)(t)] , (S-16)

where

(H ·A)(t) :=
t∑

m=1

H(m)(A(m)−A(m− 1)), and H(t) := 1{Tstop ≥ t}.

Since Tstop is a stopping tome, it holds that {Tstop ≥ t} = {Tstop ≤ t}c ∈ F t−1, therefore H(t+ 1)
is measurable with respect to F t. Taking conditional expectation, we have:

E
[
(H ·A)(t+ 1)

∣∣ F t, St+1

]
= E

[
(H ·A)(t)

∣∣ F t, St+1

]
+ E

[
H(t+ 1)(A(t+ 1)−A(t))

∣∣ F t, St+1

]
(i)
= E

[
(H ·A)(t)

∣∣ F t, St+1

]
+H(t+ 1)1{t+ 1 ∈ H0}E

[
−1{Pt+1 ≤ αt+1}+

αt+1

(τt+1 − λt+1)
1{λt+1 < Pt+1 ≤ τt+1}

∣∣∣∣ F t, St+1

]
(ii)

≥ E
[
(H ·A)(t)

∣∣ F t, St+1

]
+H(t+ 1)1{t+ 1 ∈ H0}(−αt+1/τt+1 + αt+1/τt+1)1{St+1 = 1}

= E
[
(H ·A)(t)

∣∣ F t, St+1

]
,
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where (i) is obtained from the predictability of H(t + 1) with respect to F t, and the definition of
A(t); and (ii) is obtained using the uniform conservative property (4) of nulls.

Therefore, additionally applying the law of iterated expectation, we can have that:

E [(H ·A)(t+ 1)] ≥ E [(H ·A)(t)] .

Iteratively applying the same argument, we reach the conclusion that, for all t ∈ N :

E [(H ·A)(t)] ≥ 0. (S-17)

Combining with (S-15) and (S-16), we have that, for any stopping time Tstop with finite expectation,
A(Tstop) ≥ 0 , which leads to mFDR(Tstop) ≤ α as we discussed in the beginning.

S-6.1 Proof of Lemma S-2

We prove this lemma using an equivalent form of Y. Specifically, notice that we can reformulate Y as:

Y =

∞∑
j=1

(
1{Pj ≤ αj}+

αj
(τj − λj)

1{λj < Pj ≤ τj}
)
1{j ≤ T}.

From the condition that min {τj − λj} ≥ ε, we have

1{Pj ≤ αj}+
αj

(τj − λj)
1{λj < Pj ≤ τj} ≤ 1 +

1

ε
: = C for all j.

Thus, we can bound the expectation of Y as:

E [Y ] = E

 ∞∑
j=1

(
1{Pj ≤ αj}+

αj
(τj − λj)

1{λj ≤ Pj < τj}
)
1{j ≤ T}


≤ C

∞∑
j=1

Pr{T ≥ j} = C E [T ] <∞.

Therefore, we conclude that Y has finite expectation as claimed.

S-7 Proof of Theorem S-1

Similar to the proof of Theorem 1, part (a) of Theorem S-1 is proved using the property of uni-
formly conservative null p-values as stated in (4), and the law of iterated expectation. Specifically,
conditioning on {F j−1, Sj} respectively for each j ∈ H0, we have

E [|H0 ∩R(t)|] =
∑

j≤t,j∈H0

E [1{Pj ≤ αj}] =
∑

j≤t,j∈H0

E
[
E
[
1{Pj ≤ αj}

∣∣ Sj ,F j−1]]
(i)
=

∑
j≤t,j∈H0

E
[
E
[
1{Pj
τj
≤ αj
τj
}
∣∣∣∣ Pj ≤ τj ,F j−1]Pr

{
Sj = 1

∣∣ F j−1}]
(ii)

≤
∑

j≤t,j∈H0

E
[
αj
τj

Pr
{
Sj = 1

∣∣ F j−1}]
(iii)
=

∑
j≤t,j∈H0

E
[
E
[
αj
τj

1{Pj ≤ τj}
∣∣∣∣ Pj ≤ τj ,F j−1]Pr

{
Sj = 1

∣∣ F j−1}]

=
∑

j≤t,j∈H0

E
[
E
[
αj
τj

1{Pj ≤ τj}
∣∣∣∣ Sj ,F j−1]]

(iv)
=

∑
j≤t,j∈H0

E
[
αj
τj

1{Pj ≤ τj}
]
= E

 ∑
j≤t,j∈H0

αj
τj

1{Pj ≤ τj}

 ,
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where (i) is true since αj < τj for any j; (ii) is obtained using the uniformly conservative property of
null p-values; (iii) is true since αj and τj are both predictable given F j−1; and (iv) is obtained using
the law of iterated expectation. Therefore, we reach the conclusion that

E [|H0 ∩R(t)|] ≤ E

 ∑
j≤t,j∈H0

αj
1{Pj ≤ τj}

τj

 . (S-18)

Furthermore, since

F̂DPD-LORD(t) ≤ α⇒
∑
j≤t

αj
1{Pj ≤ τj}

τj
≤ α(|R(t)| ∨ 1),

take expectation on each side and use (S-18), we obtain mFDR(t) ≤ α with simple rearrangement,
which concludes the proof of part (a).

Additionally, under the independence and monotonicity assumption of part (b), using Lemma S-1
with simple modification, together with the same trick of taking iterated expectation and repeatedly
using the definition of uniformly conservative nulls, we have the following:

FDR(t) = E [FDP(t)] = E
[
|H0 ∩R(t)|
|R(t) ∨ 1|

]
=

∑
j≤t,j∈H0

E
[
1{Pj ≤ αj}
|R(t)| ∨ 1

]

=
∑

j≤t,j∈H0

E
[
E
[
1{Pj ≤ αj}
|R(t)| ∨ 1

∣∣∣∣ Sj ,F j−1]]

=
∑

j≤t,j∈H0

E
[
E
[
1{Pj ≤ αj}
|R(t)| ∨ 1

∣∣∣∣ Sj = 1,F j−1
]

Pr
{
Sj = 1

∣∣ F j−1}]

≤
∑

j≤t,j∈H0

E
[
E
[

αj
τj(|R(t)| ∨ 1)

∣∣∣∣ Sj = 1,F j−1
]

Pr
{
Sj = 1

∣∣ F j−1}]

=
∑

j≤t,j∈H0

E
[
E
[

αj
τj(|R(t)| ∨ 1)

∣∣∣∣ Sj ,F j−1]]

=
∑

j≤t,j∈H0

E
[

αj
τj(|R(t)| ∨ 1)

]
≤ E

[
F̂DPD-LORD(t)

]
≤ α.

(S-19)

This concludes the proof of statement (b).

S-8 Proof of Theorem S-2

We will prove this theorem using the trick of leave-one-out and the following lemma from [4].

Lemma S-3. (Inverse Binomial Lemma from [4]) Given a vector a : = (a1, . . . , am) ∈ [0, 1]m ,
constant b ∈ [0, 1], and independent Bernoulli variables Zi ∼ Bernoulli(b), the weighted sum
Z = 1 +

∑m
i=1 aiZi satisfies

1

1 + b
∑m
i=1 ai

≤ E
[
1

Z

]
≤ 1

b(1 +
∑m
i=1 ai)

. (S-20)

We refer reader to the paper for detailed proof of Lemma S-3.

For a fixed i ∈ H0 ∩ S, where S = {j : Pj ≤ τ, j ∈ [n]}, we use the leave-one-out trick to define
some random variable that is independent with Pi, say Y −i : = 1 +

∑
j∈H0,j 6=i 1{λ < Pj ≤ τ}. In
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this way, for all j ∈ H0, j 6= i, Y −ij : = 1{λ < Pj ≤ τ} is stochastically larger than Bernoulli(1−λ)
for j ∈ H0 conditioning on Pj ≤ τ , since the uniformly conservativeness defined in (2) implies that

Pr{λ < Pj ≤ τ | Pj ≤ τ} ≥ 1− λ/τ.

Denote m = |H0|, and mS = |H0 ∩ S|, let Z = 1 +
∑mS−1
i=1 Zi, where {Zi}mS−1

i=1 are independent
Bernoulli random variables with parameter 1− λ/τ . Additionally , since p-values are independent of
each other, we have

E
[
Y −i

∣∣ S] = 1 +
∑

j∈H0∩S,j 6=i

E
[
Y −ij

∣∣ Pj ≤ τ]
≥ 1 +

∑
j∈H0∩S,j 6=i

E [Zj ] = E [Z | S] .

Using Lemma S-3, we obtain

E
[

1

Y −i

∣∣∣∣ S] ≤ E
[
1

Z

∣∣∣∣ S] ≤ 1

(1− λ/τ)|H0 ∩ S|
. (S-21)

Let

π̂−i0 : =
1 +

∑
j≤n,j 6=i 1{λ < Pj ≤ τ}

n(τ − λ)
. (S-22)

It is easy to see that π̂−i0 ≥ Y −i

n(τ−λ) . Together with (S-21) and (S-23), we obtain

E
[

1

π̂−i0

∣∣∣∣ S] ≤ n(τ − λ)E [ 1

Y −i

∣∣∣∣ S] ≤ nτ

|H0 ∩ S|
. (S-23)

Using the definition of F̂DPD-StBH in (S-3), and the uniform conservativeness of p-values, we have
the following:

E
[∑

i∈H0∩S 1{Pi ≤ ŝ}
(
∑
i 1{Pi ≤ ŝ}) ∨ 1

∣∣∣∣ S] (i)

≤ E
[
α
∑
i∈H0∩S 1{Pi ≤ ŝ}

nπ̂0ŝ

∣∣∣∣ S]
=
α

n
E

[ ∑
i∈H0∩S

1{Pi ≤ ŝ}
π̂0ŝ

∣∣∣∣∣ S
]

(ii)
=

α

n
E

[ ∑
i∈H0∩S

1{Pi ≤ ŝ}
π̂−i0 ŝ

∣∣∣∣∣ S
]

(iii)
=

α

n
E

[ ∑
i∈H0∩S

1

π̂−i0

E
[
1{Pi ≤ ŝ}

ŝ

∣∣∣∣ P−i,S]
∣∣∣∣∣ S
]

(iv)
=

α

n
E

[ ∑
i∈H0∩S

1

π̂−i0

E
[
1{Pi ≤ ŝ}

ŝ

∣∣∣∣ P−i, Pi ≤ τ]
∣∣∣∣∣ S
]

(v)

≤ α

n
E

[ ∑
i∈H0∩S

1

τ π̂−i0

∣∣∣∣∣ S
]
=
α

n

∑
i∈H0∩S

E
[

1

τ π̂−i0

∣∣∣∣ S] (vi)

≤ α,

where (i) follows from the condition F̂DPD-StBH ≤ α; (ii) is true since π̂−i0 = π̂0 given 1{Pi ≤ ŝ} = 1,
using the fact that ŝ ≤ λ; (iii) is true since conditioning on Pi fully determines π̂−i0 ; (iv) follows from
the fact that ŝ ≤ λ; and (v) is obtained by noticing ŝ is coordinatewise nondecreasing in Pi for each i,
and using the lemma 1 in [4]; and the final step (vi) follows from (S-23). Therefore, we obtain that
E [FDP | S] ≤ α. Taking expectation with regard S on both side, we have FDR ≤ α as claimed.

S-9 Proof of Theorem S-3

Theorem S-3 is proved using similar technique in the proof of Theorem 1, we present the proof
here for completeness. Similarly, we need the following lemma for the proof, which is proved in
Section S-9.1.
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Lemma S-4. Assume that the p-values P1, P2, . . . are independent and let g : {0, 1}T → R be any
coordinatewise nondecreasing function. Further, assume that αt,λt and 1 − τt are all monotonic
functions of the past as defined in Section S-3, while satisfying the constraints αt ≤ λt < τt for all t.
Then, for any index t ≤ T such that Ht ∈ H0, we have:

E
[

αt1{λt < Pt ≤ τt}
(τt − λt)(g(|R|1:T ) ∨ 1)

∣∣∣∣ FEt−1, St = 1

]
≥ E

[
αt

τt(g(|R|1:T ) ∨ 1)

∣∣∣∣ FEt−1, St = 1

]
≥ E

[
1{Pt ≤ αt}
g(|R|1:T ) ∨ 1

∣∣∣∣ FEt−1, St = 1

]
,

where |R|1:T : = {|R1|, . . . , |RT |}.

DenoteR(t) = {i : Pi ≤ αi, Ei ≤ t}, we have the following:

E [|H0 ∩R(t)|] = E

 ∑
Ej≤t,j∈H0

1{Pj ≤ αj}

 (i)

≤
∑

j≤t,j∈H0

E [1{Pj ≤ αj}]

(ii)
=

∑
j≤t,j∈H0

E
[
E
[
1{Pj ≤ αj}

∣∣ FEj−1, Sj
]]

(iii)
=

∑
j≤t,j∈H0

E
[
E
[
1{Pj
τj
≤ αj
τj
}
∣∣∣∣ Pj ≤ τj ,FEj−1

]
Pr
{
Sj = 1

∣∣ FEj−1
}]

(iv)

≤
∑

j≤t,j∈H0

E
[
αj
τj

Pr
{
Sj = 1

∣∣ FEj−1
}]
,

where step (i) is true since the set of rejections by time t could be at most [t]; and (ii) is obtained via
taking iterated expectation by conditioning on {FEj−1, Sj} respectively for each j ∈ H0; and (iii) is
true since αj ≤ τj ; and finally, step (iv) follows from the uniformly conservativeness of nulls. Next,
notice that

∑
j≤t,j∈H0

E
[
αj
τj

Pr
{
Sj = 1

∣∣ FEj−1
}]

(v)

≤
∑

j≤t,j∈H0

E
[
αj
τj

E
[
1{λj < Pj}
(1− λj/τj)

∣∣∣∣ Pj ≤ τj ,FEj−1
]

Pr
{
Sj = 1

∣∣ FEj−1
}]

=
∑

j≤t,j∈H0

E
[
αj
τj

E
[
1{λj < Pj ≤ τj}

(1− λj/τj)

∣∣∣∣ Sj ,FEj−1
]]

=
∑

j≤t,j∈H0

E
[
αj

1{λj < Pj ≤ τj}
(τj − λj)

]
where (v) is true because of the uniformly conservativaness of null p-values, and the last two equalities
use the predictability of αj and τj with regard FEj−1. Then, by removing some constrains on the
index, and applying the condition that F̂DPADDISasync ≤ α, one obatin∑

j≤t,j∈H0

E
[
αj

1{λj < Pj ≤ τj}
(τj − λj)

]

≤
∑
j≤t

E
[

αj
(τj − λj)

(1{λj < Pj ≤ τj , Ej < t}+ 1{Ej ≥ t})
]

≤ α E

∑
j≤t

1{Pj ≤ αj , Ej < t}

 ∨ 1

 = α E [|R(t)| ∨ 1] ,

Therefore, we have
E [|H0 ∩R(t)|] ≤ αE [|R(t)| ∨ 1] .
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After rearranging the terms above, we have mFDR(t) ≤ α, as claimed. Therefore, we finished the
proof of first part of Theorem S-3.

Using the same tricks of taking iterated expectation, we have the following:

FDR(t) = E [FDP(t)] = E
[
|H0 ∩R(t)|
|R(t)| ∨ 1

]
= E

[∑
Ej≤t,j∈H0

1{Pj ≤ αj}
|R(t)| ∨ 1

]

≤ E
[∑

j≤t,j∈H0
1{Pj ≤ αj}

|R(t)| ∨ 1

]
=

∑
j≤t,j∈H0

E
[
1{Pj ≤ αj}
|R(t)| ∨ 1

]

=
∑

j≤t,j∈H0

E
[
E
[
1{Pj ≤ αj}
|R(t)| ∨ 1

∣∣∣∣ Sj ,FEj−1
]]
.

(S-24)

Under additional assumptions about the independence of p-values and monotonicity of αt and λt for
each t ∈ N , and notice that |R(t)| =

∑
i≤t,Ei<t

Ri =
∑
i<t |Ri| is coordinatewise nondecreasing

function of |R|1:t, we apply Lemma S-4 to the RHS of (S-24) to obtain the following:

∑
j≤t,j∈H0

E
[
E
[
1{Pj ≤ αj}
|R(t)| ∨ 1

∣∣∣∣ Sj ,FEj−1
]]

=
∑

j≤t,j∈H0

E
[
E
[
1{Pj ≤ αj}
|R(t)| ∨ 1

∣∣∣∣ Sj = 1,FEj−1
]

Pr
{
Sj = 1

∣∣ FEj−1
}]

≤
∑

j≤t,j∈H0

E
[
E
[

αj
τj(|R(t)| ∨ 1)

∣∣∣∣ Sj = 1,FEj−1
]

Pr
{
Sj = 1

∣∣ FEj−1
}]

≤
∑

j≤t,j∈H0

E
[
E
[

αj
τj(|R(t)| ∨ 1)

1{λj < Pj ≤ τj}
1− λj/τj

∣∣∣∣ Sj = 1,FEj−1
]

Pr
{
Sj = 1

∣∣ FEj−1
}]

(S-25)

Once again using the fact that αj ≤ τj for all j, and the law of iterated expectation, the RHS of
(S-25) equals ∑

j≤t,j∈H0

E
[
E
[

αj
τj(|R(t)| ∨ 1)

1{λj < Pj ≤ τj}
1− λj/τj

∣∣∣∣ Sj ,FEj−1
]]

=
∑

j≤t,j∈H0

E
[

αj
τj(|R(t)| ∨ 1)

1{λj < Pj ≤ τj}
(1− λj/τj)

]

≤
∑
j≤t

E
[

1

|R(t)| ∨ 1

αj
(τj − λj)

(1{λj < Pj ≤ τj , Ej < t}+ 1{Ej ≥ t})
]

=E
[
F̂DPADDISasync(t)

]
≤ α.

(S-26)

Therefore, combining (S-24), (S-26), and (S-26), we conclude FDR(t) ≤ α. This finishes the proof
of the second part of the theorem.

S-9.1 Proof of Lemma S-4

Similar to the proof of Lemma S-1, we prove this lemma by constructing a hallucinated vector.
Specifically, to prove the first part of the inequality, for any fixed t ∈ N, for all i ∈ N, let P̃i =
τi · 1{i = t}+ Pi · 1{i 6= t}, and keep the finish times for all the tests unchanged. Then we denote
the testing levels, candidate levels and selected levels resulted from the hallucinated {P̃i} as {α̃i},
{λ̃i} and {τ̃i} respectively. Correspondingly, we let

S̃i = 1{P̃i ≤ τ̃i}, C̃i = 1{P̃i ≤ λ̃i}, R̃i = 1{P̃i ≤ α̃i}.
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Given λt < Pt ≤ τt, we have S̃t = St = 1, R̃t = Rt = 0, C̃t = Ct = 0. This impliesR1:T = R̃1:T .
We then obtain the following:

E
[

αt1{λt < Pt ≤ τt}
(τt − λt)(g(|R|1:T ) ∨ 1)

∣∣∣∣ St = 1,FEt−1
]
= E

[
αt1{λt < Pt ≤ τt}

(τt − λt)(g(|̃R|1:T ) ∨ 1)

∣∣∣∣∣ St = 1,FEt−1

]
(i)
= E

[
αt

τt(g(|̃R|1:T ) ∨ 1)

∣∣∣∣∣ St = 1,FEt−1

]
E

[
1{λt < Pt ≤ τt}

(1− λt/τt)(g(|̃R|1:T ) ∨ 1)

∣∣∣∣∣ St = 1,FEt−1

]
(ii)

≥ E

[
αt

τt(g(|̃R|1:T ) ∨ 1)

∣∣∣∣∣ St = 1,FEt−1

]
(iii)

≥ E
[

αt
τt(g(|R|1:T ) ∨ 1)

∣∣∣∣ St = 1,FEt−1
]
,

where (i) is obtained from the fact that R̃1:T is independent of Pt, and (ii) is true because of the
uniformly conservativaness of null p-values, and (iii) is true since R̃i ⊆ Ri for all i given St = 1
using the similar logic in the proof of Lemma S-1 in Section S-5.1, that is utilizing the monotonicity
assumptions of αt, λt, and τt.

Similarly, for the second part of the inequality, we construct P̃i = Pi · 1{i = t}, and keep the finish
times for all the tests unchanged, while we define α̃t, λ̃t, τ̃t and R̃t, C̃t, S̃t in the same way as in
the proof of the first part. Notice that R̃1:T is independent of Pt, and that given Pt ≤ αt, we have
S̃t = St = 1, R̃t = C̃t = Rt = Ct = 1, which leads toR1:T = R̃1:T . Then we have the following:

E
[
1{Pt ≤ αt}
g(|R|1:T ) ∨ 1

∣∣∣∣ St = 1,FEt−1
]
= E

[
1{Pt ≤ αt}
g(|̃R|1:T ) ∨ 1

∣∣∣∣∣ St = 1,FEt−1

]

≤ E

[
αt

τt(g(|̃R|1:T ) ∨ 1)

∣∣∣∣∣ St = 1,FEt−1

]
≤ E

[
αt

τt(g(|R|1:T ) ∨ 1)

∣∣∣∣ St = 1,FEt−1
]
.

This concludes the whole proof Lemma S-4.

S-10 An equivalent form of ADDIS∗ algorithm

Algorithm S-3: The ADDIS∗ algorithm with explicit use of discarding
Input: FDR level α, discarding threshold τ ∈ (0, 1], candidate threshold λ ∈ [α, τ), sequence

{γj}∞j=0 which is nonnegative, nonincreasing and sums to one, initial wealth W0 ≤ α.
for t = 1, 2, . . . do

if Pt > τ then
Discard Pt and move to next round.

end
else

Reject the t-th null hypothesis if Pt/τ ≤ αt, where
αt : = (1− λ)

(
W0γSt−C0+

+ (α−W0)γSt−κ∗
1−C1+

+ α
∑
j≥2 γSt−κ∗

j−Cj+

)
.

Here, St =
∑
i<t 1{Pi ≤ τ}, Cj+ =

∑t−1
i=κj+1 1{Pi ≤ λ},

κj = min{i ∈ [t− 1] :
∑
k≤i 1{Pk ≤ αk} ≥ j}, κ∗j =

∑
i≤κj

1{Pi ≤ τ}.
end

end

S-11 Heatmap of g ◦ F

Here we show the heatmap of g ◦F versus θ : = λ/τ and τ given different choices of F . Specifically,
we let F be the CDF of all p-values (nulls and alternatives taken together) drawn as described in
Section 3, with different choices of µN , µA, and πA. In Figure S-1, we show results for µN ∈
{−0.5,−1}, µA ∈ {2, 3}, and πA ∈ {0.2, 0.3} respectively, which are some reasonably common

14



settings that one may expect in practice. We see that the heatmap of g ◦ F demonstrates the same
consistent pattern across different choices of F .
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Figure S-1: The heatmap of function g ◦ F , where F is the CDF of p-values drawn as described
in Section 3 with µN = −0.5, µA = 2, πA = 0.2 for plot (a); µN = −0.5, µA = 3, πA = 0.2
for plot (b); µN = −1, µA = 2, πA = 0.2 for plot (c); µN = −1, µA = 3, πA = 0.2 for plot
(d); µN = −0.5, µA = 2, πA = 0.3 for plot (e); µN = −0.5, µA = 3, πA = 0.3 for plot (f);
µN = −1, µA = 2, πA = 0.3 for plot (g); µN = −1, µA = 3, πA = 0.3 for plot (h).
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