
Supplementary Materials for Preventing Gradient
Attenuation in Lipschitz Constrained Convolutional

Networks

A Optimizing under spectral normalization

Here we provide theoretical analysis of the optimization properties of spectral normalization. We
focus on the setting in which the weight matrices are projected to the feasible set via spectral
normalization after each gradient update (i.e. projected gradient descent).

Firstly, we note that spectral normalization is a valid projection under the operator 2-norm [10] but
not the Frobenius norm, where the projection would clip all singular values larger than 1 [17]. Despite
this, all existing implementations of spectral normalization as a projection perform steepest descent
optimization in Euclidean space which is not guaranteed to converge [4]. We illustrate this with a
simple example.

Spectral norm projection counter-example Consider a constraint optimization problem:

A∗ = arg max
A:||A||2≤1

{Tr(AD)}, (1)

where A and D are diagonal, with diag(D) = [2, 1]. Clearly, the objective is maximized by A∗ = I .
However, the Euclidean steepest ascent direction is given by the gradient, which is D in this case. A
single gradient update (with learning rate α) and projection step acting on the diagonal of A looks
like this (assuming that x+ 2α > y + α throughout the course of learning, which is indeed the case
given the initialization): [

x
y

]
←
[

min{x+ 2α, 1}
(y + α)/max{x+ 2α, 1}

]
(2)

This update eventually converges to diag(A) = [1, 0.5], not the identity.

How do we fix this? To make sure that projected gradient descent will converge to the correct
stationary point we must choose our descent direction to induce the most change under the correct
norm: the operator 2-norm. Doing so leads to the following update,
Lemma A.1 (Steepest descent by matrix 2-norm). The first order approximation of the steepest
descent direction under the matrix operator 2-norm is given by the gradient with all non-zero singular
values rescaled to be equal. That is, given a loss function L : Rn×m → R, and corresponding
gradient at W , G = ∇L(W) = UΛV T , one steepest descent direction is D̄ = −UP(Λ)V T , where
the projection operator P sets all non-zero elements of Λ to 1.

Proof. (Lemma A.1) We seek the steepest descent direction,

D̄ = arg min
D
{L(W +D) : ||D||2 = 1}

Consider the first-order Taylor expansion of the loss,

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

L(W + D̄) ≈ L(W) + Tr(GD̄T),

where the trace is computing the vectorized dot product between the gradient and the descent direction.
Thus, the first order approximation of the steepest descent direction seeks to minimize Tr(GD̄T)
subject to the 2-norm constraint on D. Without loss of generality, we will write D = UU ′SV ′TV T ,
then we wish to minimize Tr(V ′SU ′TΛ) = Tr(KΛ) =

∑
i λiKii, where we write K = V ′SU ′T ,

and λi denotes the diagonal elements of Λ. We have reduced this to a simple constrained optimization
problem where we wish to make Kii as negative as possible. This can be achieved when Kii = −1
for every λi 6= 0. Thus, we have D̄ = −UP(Λ)V T .

In our experiments, we did not use the projection step with the correct steepest descent direction but
instead opted to rescale the matrices by their spectral norm during the forward pass and backpropagate
through this step.

B Examples of Lipschitz Functions

Affine Transformations All affine transformations are Lipschitz functions, and their Lipschitz
constant under L2 is given by their spectral norm, which is the largest singular value of that linear
transformation. A noteworthy special subset of linear transformations is the subset of orthogonal
linear transformations. A linear transformation is considered orthogonal if it has maximal rank
and all non-zero singular values equal to 1. They have the special property that an orthogonal
transformation O : Rn 7→ Rm will preserve norm if n ≤ m, that is, ||Ox||2 = ||x||2,∀x. In the
backward pass (backpropagation), the gradient signal becomes OT g, where g is is the incoming
gradient. Since the transpose of an orthogonal linear transformation is also orthogonal, we see that O
is gradient-norm-preserving for n ≥ m.

GroupSort GroupSort is a 1-Lipschitz activation function that is proposed in Anil et al. [2].
GroupSort partitions the activation vector into groups of same size and sorts the values within each
group in-place. Anil et al. [2] showed that GroupSort can recover ReLU and the absolute value
function. Most importantly, it addresses the capacity limitation induced by ReLU activation in
Lipschitz constrained networks [12].

C Algorithm Complexity of Different Approaches to Enforce Lipschitz
Convolution

For simplicity, we assume all the matrices to be square matrices with a size of c× c and convolution
kernel to be k× k× c× c where k is the kernel size and c is the channel size. We also assume all the
input has a spatial dimension of s× s. In practice, the kernel size of the convolution is usually small
(e.g., k = 3), so we consider it as a constant factor. Thus, we are mainly interested in considering the
time complexity with respect to s and c. In addition, we assume matrix multiplication of two c× c
matrices takes O(c3).

Orthogonalization using Björck and Power iteration First order Björck orthogonalization on
a c × c matrix takes O(c3) per iteration. We use power iterations to rescale the matrix before the
orthogonalization procedure to ensure convergence, which take O(c2) per iteration. Overall, the
orthogonalization takes O(c3). In practice, we use 20 iterations of first order Björck and 10 power
iterations.

OSSN This method computes an approximated spectral norm for the convolution operator and
scales down by that value. The approximated spectral norm is computed by power iteration for
convolution [10], which involves convolving the convolution kernel on a tensor with the full input
shape and convolving the transposed convolution kernel1 on the full output shape per iteration.
Overall, the time complexity is O(c3s2).

RKO This method simply orthogonalizes an c× k2c matrix, so it takes O(c3).
1Convolving a transposed kernel is equivalent to applying a transposed linear transformation

3

SVCM Singular value clipping and masking takes O(c3s2) per iteration (as analyzed in Sedghi
et al. [22]).

BCOP BCOP requires one orthogonalization of a c× c matrix and 2k − 2 orthogonalizations of
c×

⌈
c
2

⌉
matrices for the symmetric projectors. Overall, the runtime for BCOP is O(c3).

Standard BCOP RKO OSSN
0.041 0.138 0.120 0.113

Table 1: Time (in seconds) that each of the method takes for one training iteration with the “Large”
architecture on one NVIDIA P100 GPU on CIFAR-10 dataset. A batch size of 128 is used.

D Architectural Detail Considerations for GNP Convolutional Networks

In our construction of Lipschitz convolutional networks, we restrict ourselves further to GNP convo-
lutional networks. This has the benefit of preventing the gradient norm attenuation when each layer
of a Lipschitz network is constrained, as well as giving training stability through dynamical isometry.
To build a GNP network, we make every component of the network GNP. GNP convolutions have
already been established by using BCOP to make orthogonal convolutions; however, there are still
many more elements of a convolutional network to make GNP. An important realization is that due
to dynamical isometry in GNP networks, it is no longer necessary to use the typical methods for
adding stability in training, so these elements may be removed from the network. The following will
discuss all the architectural decisions made for constructing networks with the GNP property while
also leveraging the properties that GNP affords.

D.1 Residual Connections

Residual connections make it difficult and unnatural to maintain a small Lipschitz constant for the
network while being GNP. As well, a key feature of residual connections yields a stabler Jacobian
for better training dynamics; however, the dynamical isometry property of the networks means that
additional stability is not necessary. Therefore, we remove residual connections from our Lipschitz
convolutional network designs.

A residual connection layer can be expressed as g(x) = f(x)+x, where f is generally parameterized
by some shallow or deep neural network. We can then bound the Lipschitz constant Lip(g) in terms
of Lip(f),

||g(x1)− g(x2)|| = ||(f(x1) + x1)− (f(x2) + x2)|| ≤ ||f(x1)− f(x2)||+ ||x1 − x2||
So we have Lip(g) ≤ 1 + Lip(f), which may be a loose bound in general, but a tighter bound is not
easy to determine. To guarantee that g is 1-Lipschitz, we could only do so by having Lip(f) = 0,
which means f is a constant function, which obviously is not sufficiently expressive. Therefore,
getting a class of 1-Lipschitz functions with residual connections is not straightforward. A possible
workaround to this could be to constrain the Lipschitz constant of f to 1, then halve the value after
the residual connection, i.e. g(x) = f(x)+x

2 . This indeed will bound Lip(g) by 1, but then a problem
arises with gradient norm preservation. The Jacobian of g would be

∇xg =
∇xf + I

2

So for g to be GNP almost everywhere, we would require ∇xg = ∇xf+I
2 to be orthogonal almost

everywhere; however, there is no natural or well-known way to optimize over a class of non-linear
functions f such that ∇xf+I

2 is orthogonal almost everywhere. These reasons show why residual
connections are hard to reconcile with Lipschitz-constrained and GNP networks.

D.2 Zero-Padded Orthogonal Convolutions

Consider an orthogonal 1-D convolution kernel of size 2k + 1, represented by

[A−k · · · A0 · · · Ak]

4

Figure 1: Invertible Downsampling [13]

Then the corresponding Toeplitz matrix of the zero-padded convolution operation is

M =

A0 A1 . . . Ak 0 . . . 0 . . . 0
...

...
. . .

...
...

. . .
...

. . .
...

A−k A−k+1 . . . A0 A1 . . . 0 . . . 0
...

...
. . .

...
...

. . .
...

. . .
...

0 0 . . . 0 0 . . . A−k . . . A0

Since the kernel is orthogonal, MMT = I . This means that if Ri is the ith block row of M , then
RiR

T
j = δijI . In particular, we can take the first block row, then (k + 1)th block row (i.e. the one

with A−k as the first element), and the last row. The first row yields the condition
k∑
i=0

AiA
T
i = I

The (k + 1)th row yields
k∑

i=−k

AiA
T
i = I

And the last row yields
0∑

i=−k

AiA
T
i = I

Combining these conditions yields that A0A
T
0 = I . This then implies that all other matrices must

be 0. Therefore, all 1-D orthogonal kernels with zero-padding are only size 1 kernels, and so cyclic
padding is used instead.

D.3 Invertible Downsampling

The theory developed for the orthogonal convolution assumed stride 1. As such, we make sure all
the convolutions are done with only stride of 1. However, since striding is an important feature in
convolutional networks, we emulate it through an invertible downsampling layer [13] followed by
a stride-1 convolution. Invertible downsampling rearranges pixels in a single channel into multiple
channels so that a stride-1 convolution over the rearranged image is equivalent to a strided convolution
over the original image. This layer is illustrated in Figure 1 with input channel size 1 and stride 2.

D.4 Other Components

Batch Normalization Batch normalization is generally used to improve stability in training; however,
it is neither 1-Lipschitz nor gradient norm preserving. Therefore, it is removed from the network.

Linear Layers We directly use Björck orthogonalization (See Section G) procedure to enforce
orthogonal linear layers as done in Anil et al. [2].

Activation Functions The activation function we use is GroupSort as Anil et al. [2] found that
GroupSort enhances the network capacity of Lipschitz networks compared against ReLU. In particular,
we use GroupSort with a group size of 2, which is referred to as MaxMin [2] (or OPLU in Chernodub
and Nowicki [7]). We use MaxMin activation because we found it to work the best in practice.

5

E Network Architectures

We describe the details for the network architectures we used in this paper and compare the number
of parameters (See Table 2).

Small The “Small” convolutional network contains two convolutional layers with kernel size of 4,
stride 2, and channel sizes of 16 and 32 respectively, followed by two linear layers with 100 hidden
units.

Large The “Large” convolutional network contains four convolutional layers with kernel size of
3/4/3/4 and stride 1/2/1/2 with channel sizes of 32/32/64/64 respectively, followed by three linear
layers with 512 hidden units.

FC-3 The “FC-3” networks refer to a 3-layer fully connected network with the number of hidden
units of 1024.

Small Large FC-3 DCGAN Critic
MNIST 166,406 1,974,762 2,913,290

CIFAR-10 214,918 2,466,858 5,256,202
Wasserstein Distance Estimation 2,764,737

Table 2: Number of parameters for each architecture on different tasks.

DCGAN Critic All of the Wassertein distance estimation experiments uses a variant of the fully
convolutional critic architecture described by Radford et al. [21]. This architecture consists of
5 convolutional layers with kernel sizes of 4/4/4/4/4, strides of 2/2/2/2/1 and channel sizes of
64/128/256/512/1. We removed all the Batch Normalization layers and used either ReLU activation
or MaxMin activation.

It is important to note that, in general, it is difficult to make the whole network gradient-norm-
preserved because a linear transformation from a low dimensional vector to a high dimensional vector
is guaranteed to lose gradient norm under some inputs. Since the aforementioned architectures mostly
consist of layers that are decreasing in size, enforcing orthogonality is sufficient to enforce gradient
norm preservation throughout most part of the networks (usually only the first layer is increasing in
dimension).

F Training Details

Provable Robustness for MNIST and CIFAR-10 We used Adam optimizer and performed a
search over 0.01, 0.001, 0.0001 for the learning rate. We found 0.001 to work the best for all
experiments. We used exponential learning decay at the rate of 0.1 per 60 epochs. We trained the
networks for 200 epochs with a batch size of 128. All of our experiments were run on NVIDIA
P100 GPUs. No preprocessing was done on MNIST dataset (pixel values are between 0 and 1). For
CIFAR-10, standard data augmentation is applied with random cropping (with a maximum padding
of 4 pixels) and random horizontal flipping. The pixel values are between 0 and 1 with no scaling
applied.

Wasserstein Distance Estimation The STL-10 and CIFAR-10 GANs we used were trained using
the gradient penalized Wasserstein GAN framework [3, 11]. The generator and discriminator network
architectures were adapted from the ones used by Chen et al. [6]. The implementation as well as the
choice of hyperparameters is based on [14]. A learning rate of 0.0002 was used for both the generator
and discriminator. The gradient penalty applied on the discriminator was 50. The model was trained
for 128 epoch, with a batch size of 64 using the Adam optimizer [16] with β1 = 0.5 and β2 = 0.999.
The training was performed on NVIDIA P100 GPUs.

The DCGAN architecture [21] was used to independently compute the Wasserstein distance between
the data and generator distributions of the aforementioned GAN. For the CIFAR-10 dataset, each
example was upsampled to 64 × 64 using nearest neighbors interpolation. We used RMSprop

6

optimizer and performed a search over 0.1, 0.01, 0.001, 0.0001 for the learning rate. We found that
learning rate of 0.001 works the best for models with ReLU activation and learning rate of 0.0001
works the best MaxMin activation. The numbers reported in the table were corresponding to the best
learning rates. In practice, we also observed that the training with OSSN can be unstable under high
learning rate in our Wasserstein distance estimation experiments. We also used the same exponential
learning decay and a batch size of 64. All the networks were trained for 25,600 iterations on NVIDIA
P100 GPUs.

G Orthogonalization Procedure

Several ways have been proposed in the literature to orthogonalize an unconstrained matrix in a
differentiable manner [18, 5]. In this work, we adopt Björck orthogonalization algorithm from Björck
and Bowie [5].

The original Björck paper proposes the following iterative procedure to find the closest matrix under
the metric of the Frobenius norm of the difference matrix:

Björck(A) = A

(
I +

1

2
Q+

3

8
Q2 + · · ·+ (−1)p

(
− 1

2

p

)
Qp
)

where p ≥ 1 and Q = I − ATA. This function can be iterated arbitrarily to get tighter estimates
of orthogonal matrices. In all our experiments, we use p = 1 and iteratively apply this function 20
times.

H BCOP Implementation

BCOP consists of a series of block convolutions with symmetric projectors in each of the convolution
component. In practice, one could use any unconstrained matrix R ∈ Rn×bn2 c to parameterize a
symmetric projector P ∈ Rn×n with rank(P) = bn2 c as follows:

R̃ = Björck(R)

P = R̃R̃T
(3)

where Björck standards for the Björck orthongalization algorithm that computes the closest orthog-
onal matrix (closeness in terms of the Frobenius norm) given an arbitrary input matrix [5] (See
Appendix G for details on orthogonalization procedure).

For convergence guarantees of Björck, we also rescale the unconstrained matrix to be spectral norm
bounded by 1 using power iteration. This rescaling procedure does not change the output orthogonal
matrix at convergence because Björck is scale-invariant [5], i.e., Björck(αR) = Björck(R).

I Additional Ablation Experiments

In this section, we report the performance of some other alternative Lipschitz constrained convolutions
and compare them against BCOP’s performance (Table 3).

BCOP-Fixed Same as BCOP method (as introduced in Section ??) but the weights of the con-
volutions were frozen during training. Only the weights in the fully-connected layer are being
optimized. This method was tested as a sanity check to ensure that BCOP isn’t offloading all the
training to the fully connected layer while the BCOP convolutional layers did little of the work, as
was a phenomenon observed in Abadi et al. [1], Cox and Pinto [8].

RK-L2NE Another alternative reshaped kernel (RK) method that bounds the spectral norm of a
matrix as done in Qian and Wegman [20]. In particular,

||A||2 ≤ max(||AAT ||∞, ||ATA||∞)

We first compute the upper-bound of the spectral norm of the reshaped kernel as above and then scale
the matrix down by the factor. Similar to RKO, we scale the convolution kernel (reshaped from the
matrix that has a spectral norm of at most 1) down by a factor of K with K being the kernel size
of the convolution to ensure the spectral norm of the convolution is not greater than 1. All of the
computations above are done during the forward pass.

7

Dataset BCOP-Fixed RK-L2NE BCOP

MNIST
(ε = 1.58)

Small Clean 93.57± 0.17 95.85± 0.12 97.54± 0.06
Robust 7.51± 1.18 39.77± 0.73 45.84± 0.90

Large Clean 65.20± 3.94 96.76± 0.11 98.77± 0.05
Robust 0.00± 0.00 37.79± 1.21 56.66± 0.23

CIFAR-10
(ε = 36/255)

Small Clean 50.61± 0.65 58.82± 0.67 64.53± 0.30
Robust 36.44± 0.70 44.65± 0.61 50.01± 0.21

Large Clean 47.14± 0.38 56.75± 0.68 72.41± 0.22
Robust 27.43± 1.26 43.40± 0.46 58.72± 0.23

Table 3: Clean and robust accuracy on MNIST and CIFAR-10 using different Lipschitz convolutions.
The provable robust accuracy is evaluated at ε = 1.58 for MNIST and at ε = 36/255 for CIFAR-10.
Each experiment is repeated 5 times.

Dataset BCOP-Large FC-3 MMR-Universal
MNIST
(ε = 0.3)

Clean 98.77± 0.05 98.71± 0.02 96.96
Robust 97.11± 0.07 97.06± 0.02 89.60

CIFAR-10
(ε = 0.1)

Clean 72.41± 0.22 62.60± 0.39 53.04
Robust 62.97± 0.30 53.67± 0.29 46.40

Table 4: Comparison of our convolutional networks against the provable robust model from Croce
and Hein [9]. The numbers for MMR-Universal are directly obtained from Table 1 in their paper [9].

Dataset BCOP-Large FC-3 QW-3 QW-4

MNIST
(ε = 1.58)

Clean 98.77± 0.05 98.71± 0.02 98.65 98.23
Robust 56.66± 0.23 54.46± 0.30 42.13 27.59
PGD 86.86± 0.25 81.96± 0.16 86.86 86.25

FGSM 86.93± 0.20 83.64± 0.10 85.83 84.17

CIFAR-10
(ε = 36/255)

Clean 72.41± 0.22 62.60± 0.39 79.15 77.15
Robust 58.72± 0.23 49.97± 0.35 44.46 31.41
PGD 64.39± 0.26 50.05± 0.36 72.07 71.89

FGSM 64.53± 0.25 50.21± 0.34 72.11 71.92

Table 5: Comparison of our convolutional networks against the provable robust models (QW-3 for
Model-3 and QW-4 for Model-4) from Qian and Wegman [20]. The model weights are directly
downloaded from their official website.

J Comparison to Other Baselines for Provable Adversarial Robustness on
MNIST and CIFAR-10

We also compare the performance of the GNP networks with another baseline (MMR-Universal)
from Croce and Hein [9]. The provable robustness results are summarized in Table 4. Both our
“Small” and “Large” model outperform the “Small” model from Croce and Hein [9] in terms of clean
accuracy and robust accuracy. The fully connected Lipschitz constrained network baseline from Anil
et al. [2] achieves slightly better performance than convolutional networks we use for MNIST, but
does much worse for CIFAR-10.

In addition, we also compare against the models from Qian and Wegman [20]. To encourage
robustness against adversary, they proposed to use (norm) non-expansive operation only, which
equivalently enforces the Lipschitz constant of the network to be at most 1. Instead of using a single
network to predict the logits for all the classes, Qian and Wegman [20] uses a separate 1-Lipschitz
network to predict the logit for each of the 10 classes in both MNIST and CIFAR-10 datasets. It can

8

be shown that we can at best certify x is robustly classified if

Mf (x) > 2ε. (4)

We report the provably robust accuracy (using the certification criterion presented in Equation 4) and
the robust accuracy against two gradient-based attacks in Table 5. It is important to note that the
QW models are designed to be robust under empirical attacks instead of obtaining certification of
robustness. Also, the perturbation sizes used in their original paper are much larger than the ones that
we are focusing on.

K Topology of of 1-D Orthogonal Convolution Kernel

In this section, we introduce the following theorem:
Theorem 1 (Connected Components of 1-D Orthogonal Convolution). The 1-D orthogonal convolu-
tion space is compact and has 2(K − 1)n+ 2 connected components, where K is the kernel size and
n is the number of channels.

To prove this theorem, we first discuss important properties of symmetric projectors which is of
central importance of the proof in Appendix K.1. Followed by the discussion, we focus on finding the
connected components of a subset of orthogonal convolution kernels – special orthogonal convolution
kernels (SOCK) – in Appendix K.2. Finally, we show how the connected components of SOCK can
be trivially extended to the connected components of orthogonal convolution kernel.

K.1 Background: Symmetric Projector

Before we discuss the topology of orthogonal convolution kernels, we first review some basic
properties of symmetric projectors.
Definition 1. P(n) is the space of all n× n symmetric projectors. Formally,

P(n) = {P |P 2 = PT = P, P ∈ Rn×n}

We also denote the space of rank-k symmetric projectors as P(n, k):

P(n, k) = {P | rank(P) = k, P ∈ P(n)}

Remark 1.1. Followed from the definition of symmetric projectors, we can make a few observations:

1. Each symmetric projector can be identified with an orthogonal projection onto a linear
subspace.

2. The range operator of matrix is a bijection map between P(n) and all linear subspaces
of Rn. In particular, the map bijectively sends P(n, k) to Gr(k,Rn) (or Grassmannian
manifold), which is defined as the set of all k-dimensional subspaces of Rn [19].

Theorem 4 (Symmetric Projectors and Grassmannian Manifold). P(n, k) and Gr(k,Rn) are home-
omorphic.

Remark 4.1. The homeomorphism allows us to inherit properties from Grassmannian manifold:

1. P(n, k) is compact and path connected

2. P(n, k) is disjoint from P(n, k′) for k 6= k′

3. By compactness and disjointness above, P(n, k) ∪ P(n, k′) for k 6= k′ is path disconnected.

4. The dimensionality of P(n, k) is k(n− k), which is maximized when k = dn2 e, b
n
2 c.

K.2 Connected Components of 1-D Special Orthogonal Convolution Kernels (SOCK)

We will be using the results discussed in the previous section to identify the connected components
of orthogonal convolution kernel (OCK) submanifold. In the rest of this section, we put our focus on

9

the case of special orthogonal convolution kernel (SOCK) where the convolution operator belongs to
the special orthogonal group. Because of the symmetry between the orthogonal transformation with
det = 1 and det = −1, we can trivially determine all the connected components of OCK from the
connected components of SOCK as there is no intersection between the components of OCK with
det(H) = −1 and det(H) = 1. For the rest of this section, we put our focus on a representation of
SOCK:
Definition 2. A 1-D special orthogonal convolution kernel (SOCK) submanifold, denoted by
C(r1, r2, · · · , rK−1), is a submanifold of Rn×nK that can be represented by

A = H� [P1 I − P1]� · · ·� [PK−1 I − PK−1] (5)
where

• “�” is the block convolution operator that convolves one block matrix with another:

[X1 X2 · · · Xp]� [Y1 Y2 · · · Yq] = [Z1 Z2 · · · Zp+q−1]

with Zi =
∑
j XjYi−j , where the out-of-range elements being all zero (e.g., X<1 =

0, X>p = 0, Y<1 = 0, Y>q = 0).

• Pi ∈ P(n, ri),∀i. We refer r = (r1, r2, · · · , rK−1) as the rank tuple of the SOCK submani-
fold C(r1, r2, · · · , rK−1), or C(r) in short.

• H ∈ SO(n).

We shorthand the representation described above as A = A(P1, · · · , PK−1, H). Formally,

C(r) = C(r1, r2, · · · , rK−1) = {A|A = A(P1, · · · , PK−1, H), Pi ∈ P(n, ri), H ∈ SO(n)}.
We can also define

C = {A|A = A(P1, · · · , PK−1, H), Pi ∈ P(n), H ∈ SO(n)}.
Theorem 5 (Completeness (Theorem 2 of Kautsky and Turcajová [15])). C is the space of 1-D
special orthogonal convolution kernels.
Definition 3. The canonical rank tuple of special orthogonal convolution is defined as

r(k) =
(
r

(k)
1 , r

(k)
2 , · · · , r(k)

K−1

)
with the following conditions:

1.
∑
i r

(k)
i = k

2.
∣∣∣r(k)
i − r

(k)
i′

∣∣∣ ≤ 1,∀i, i′

3. r(k)
i ≤ r(k)

i+1,∀i

Intuitively, these conditions enforce the ranks to be most balanced while having their sum equal to k.
The last condition makes r(k) unique for each k. Since each rank tuple defines a SOCK submanifold,
we can define the canonical SOCK submanifold as follows:

Ck = C
(
r(k)

)
= C

(
r

(k)
1 , r

(k)
2 , · · · , r(k)

K−1

)
.

Theorem 6 (Space of 1-D Convolution Kernel). 1-D special orthogonal convolution space is compact
and it consists of (K − 1)n+ 1 distinct canonical SOCK submanifolds as its connected components:
C0, C1, · · · , C(K−1)n.

The main idea of proving this theorem is to show that any SOCK with the sum of its rank tuple
equal to k is a subset of Ck. Our proof of the theorem is divided into the following three steps:

1. Equivalent SOCK Construction: We identify the changes that we can make to the rank of
the symmetric projectors in the representation (Equation 5) without changing the kernel that
they represent, and find pairs of SOCK submanifolds in which one fully contains another
(Appendix K.2.1).

10

2. Dominance of Canonical SOCK Submanifold: We prove that the canonical SOCK sub-
manifolds fully contain all other SOCK submanifolds using the relationship between SOCK
submanifolds identified above. A consequence of this result is that the union of the canonical
SOCK submanifolds Ck is complete (Appendix K.2.2).

3. Connected Components of C are Canonical SOCK submanifolds: Given the result in
Step 2, we complete the proof of Theorem 6 by showing that the canonical SOCK submani-
folds Ck are compact and disjoint, and hence the number of connected components of C is
(K − 1)n+ 1, which is the number of distinct canonical SOCK submanifolds. (Appendix
K.2.3).

K.2.1 Equivalent SOCK Construction

Now, we introduce one important property of symmetric projectors that guide the construction of
equivalent representations with changes in the symmetric projectors.

Lemma 6.1 (Symmetric Projector Pair Equivalence under Product and Sum). For all P ′1 ∈ P(n, k1−
1) and P ′2 ∈ P(n, k2 +1) with 1 ≤ k1 ≤ k2 +1, there always exists P1 ∈ P(n, k1) and P2 ∈ P(n, k2)
such that P ′1 + P ′2 = P1 + P2, P

′
1P
′
2 = P1P2, P

′
2P
′
1 = P2P1.

Proof. (Lemma 6.1) Let Q′1 be the range of P ′1 and Q′2 be the range of P ′2. We observe that
dim(Q′1 +Q

′⊥
2) ≤ dim(Q′1) + dim(Q

′⊥
2) = k1 − 1 + n− k2 − 1 ≤ n− 1. Therefore, there always

exists a unit vector x in Q′2 ∩Q
′⊥
1 . Then, we can find a orthonormal basis decomposition of Q′2 that

contains x: Q′2 = span({x1,x2, · · · ,xk2 ,x}). Then, we can construct the linear subspaces Q1 and
Q2 as follows:

Q1 = Q′1 + span({x}) (6)
Q2 = span({x1,x2, · · · ,xk2}) (7)

Now, we can define P1 and P2 to be the symmetric projectors whose range areQ1 andQ2 respectively.
By the construction of x, it is clear that Q1 has one more dimension than Q′1 and Q2 has one less
dimension than Q′2, which makes rank(P1) = k1 and rank(P2) = k2. We are then only left to prove
that P1 + P2 = P ′1 + P ′2, P ′1P

′
2 = P1P2, and P ′2P

′
1 = P2P1.

We first observe that the orthogonal projection P1 can be decomposed into the sum of two orthogonal
projections onto two orthogonal subspaces: P1 = P ′1 +xxT where the first projection is onto Q′1 and
the second projection is onto span({x}) with Q′1 ⊥ span({x}). Similarily, Q2 and span({x}) are
orthogonal subspaces and Q′2 = Q2 +x from Equation 7. Decomposing P ′2 leads to P2 = P ′2−xxT .

From here it is clear that

P1 + P2 = P ′1 + xxT + P ′2 − xxT = P ′1 + P ′2

Since x ∈ Q′⊥1 and x ∈ Q′2, we have P ′1x = 0, P ′2x = x. This allows us to complete the the proof:

P1P2 = (P ′1 + xxT)(P ′2 − xxT) = P ′1P
′
2 + x(P ′2x)T − xxT = P ′1P

′
2,

P2P1 = (P ′2 − xxT)(P ′1 + xxT) = P ′2P
′
1 + xxT − x(P ′1x)T − xxT = P ′2P

′
1

Lemma 6.2 (Equivalent SOCK Construction). A(P1, · · · , Pi, Pi+1, · · · , PK−1, H) =
A(P1, · · · , P ′i , P ′i+1, · · · , PK−1, H

′) iff Pi + Pi+1 = P ′i + P ′i+1, PiPi+1 = P ′iP
′
i+1, and

H = H ′.

The proof of Lemma 6.2 is in Appendix L.

Now, we can find pairs of SOCK submanifold where one fully contains another.

Lemma 6.3 (Balanced Rank Dominates). C(r1, r2, · · · , ri − 1, ri+1 + 1, · · · rK−1) ⊆
C(r1, r2, · · · rK−1) when ri ≤ ri+1 + 1 and C(r1, r2, · · · , ri + 1, ri+1 − 1, · · · rK−1) ⊆
C(r1, r2, · · · rK−1) when ri+1 ≤ ri + 1.

11

Proof. In the case where ri ≤ ri+1 + 1, suppose Pi ∈ P(n, ri − 1) and Pi+1 ∈ P(n, ri+1 + 1). By
Lemma 6.1, there exists P ′i ∈ P(n, ri) and P ′i+1 ∈ P(n, ri+1) such that Pi + Pi+1 = P ′i + P ′i+1,
PiPi+1 = P ′iP

′
i+1. By Lemma 6.2, A(P1, · · · , PK−1, H) = A(P1, · · · , P ′i , P ′i+1, · · ·PK−1, H).

Since this holds regardless of the choice of P ’s, we can conclude C(r1, r2, · · · , ri − 1, ri+1 +
1, · · · rK−1) ⊆ C(r1, r2, · · · rK−1).

In the case where ri+1 ≤ ri + 1, the same proof holds by symmetry.

Lemma 6.4 (Rank Balancing). C(r1, r2, · · · , ri − δ, · · · , rj + δ, · · · , rK−1) ⊆
C(r1, r2, · · · , ri, · · · , rj , · · · , rK−1) if ri = rp = rj for i < p < j and δ ∈ {−1, 1}.

Proof. The Lemma can be proven by induction on i facilitated by Lemma 6.3.

K.2.2 Dominance of Canonical SOCK Submanifold

Using all the subspace relations that we identify above (Lemma 6.3 and 6.4) repeatedly from any
SOCK submanifold, we can find another SOCK submanifold with a more balanced rank tuple that
fully contains the former submanifold. To formalize the notion of “balanced rank tuple”, we introduce
imbalance score function:
Definition 4. The imbalance score for an special orthogonal convolution subspace C(r) is

f(r) =
∑
i

(ri)
2 (8)

For any rank tuple that has the minimum imbalance score under the constraint that the sum of them is
k, we call it a balanced rank tuple with sum k. It is clear that the condition of having the minimum
imbalance score is also equivalent to having the following condition:

|ri − rj | ≤ 1,∀i, j

Lemma 6.5 (SOCKs with Balanced Rank Tuple are Equiavlent). Let r be a balanced rank tuple.
Then, C(r) = Ck with k =

∑
i ri.

Proof. Any balanced rank tuple has a rank difference of at most 1. Then, we can use Lemma 6.3 to
swap any two adjacent ranks such that

C(r1, · · · , ci+1, ci, · · · , rK−1) ⊆ C(r1, · · · , ci, ci+1, · · · , rK−1).

Now, if we apply the swap again, we will get
C(r1, · · · , ci+1, ci, · · · , rK−1) ⊇ C(r1, · · · , ci, ci+1, · · · , rK−1),

which means
C(r1, · · · , ci+1, ci, · · · , rK−1) = C(r1, · · · , ci, ci+1, · · · , rK−1).

From here, it is obvious that we can propagate the equivalance relationship from any balanced rank
tuple to a canonical rank tuple by performing bubble sort while the sum of the ranks remains the
same. Therefore, any SOCK submanifold with its sum of ranks equals to k would be equivalent to
Ck.

Since a SOCK with balanced rank tuple is equiavlent to its corresponding canonical SOCK, we are
only left to show that the imbalance score function can always be decreased until the rank is most
balanced.
Lemma 6.6 (Balancing Subspace Dominates). Given a rank tuple r, if there exists i, j such that
|ri − rj | ≥ 2, then there exists C(r′) ⊇ C(r) with

∑
i r
′
i =

∑
i ri such that f(r) > f(r′).

Proof. (Lemma 6.6) Let i < j be the closest pair of points such that |ri − rj | ≥ 2. Without loss of
generality, we assume ri < rj since the same proof below would hold for the case with ri > rj by
symmetry. Now, consider the following rank tuple

r′ = (r1, · · · , ri + 1, · · · , rj − 1, · · · , rK−1).

It is clear that
f(r′)− f(r) = 2(ri − rj) < 0.

Now, we are left to show that C(r′) ⊇ C(r).

12

Case 1 Assume the two ranks are adjacent, or i+ 1 = j. By Lemma 6.3, C(r) ⊆ C(r′).

Case 2 Assume the two ranks are not adjacent, or i+ 1 < j. We must have rp = ri + 1 = rj − 1
for i < p < j. Otherwise, the i and j would no longer be the closest pair such that |ri − rj | ≥ 2. We
can then apply Lemma 6.4 to get C(r) ⊆ C(r′).

Lemma 6.7 (Canonical Submanifold Dominates). C(r′) ⊆ Ck if
∑
p r
′
p = k.

Proof. (Lemma 6.7) We prove this Lemma by dividing it up into the following two cases:

Case 1 Assume there is no i, j such that |r′i − r′j | ≥ 2, the rank tuple r′ is balanced by Definition 4.
Then, by Lemma 6.5, C(r′) = Ck.

Case 2 Assume there exists i, j such that |r′i − r′j | ≥ 2. Then by Lemma 6.6, we can always find a
special orthogonal convolution subspace that contains the current subspace C(r′) without changing
the sum of the ranks and with the strictly decreased imbalance score. Since the imbalance score
takes on natural numbers, iteratively applying the Lemma to decrease the imbalance score must
eventually terminate. When it does, it will yield the subspace C(r∗) which contains the C(r′) and has
|r∗i − r∗j | < 2 for all i, j. We are left to show that C(r∗) ⊆ Ck, which is shown in the first case.

Corollary 6.7.1 (The union of all canonical subspaces is complete). C = C0 ∪ C1 ∪ · · · ∪ C(K−1)n.

Proof. (Corollary 6.7.1) C is the union of all SOCK submanifolds, where each of them belong to at
least one of Ck by Lemma 6.7. From here, it is clear that the Corollary holds.

K.2.3 Connected Components of C are Canonical SOCK Submanifolds

To fill in the final piece of proving Theorem 6, we need to prove that Ck are disjoint and compact.
We first prove the disjointness by expressing the sum of symmetric projectors used to construct the
kernel as a linear combination of kernel elements {A1, A2, · · · , AK} below. The proof of Lemma
6.8 is in Appendix L.
Lemma 6.8 (Kernel Element Decomposition). If A = A(P1, · · · , PK−1, H), then Aj =∑j
i=0 aK,j,iBi, where aK,j,i = (−1)j−i

(
(K−1)−i
j−i

)
for i ≤ j ≤ K − 1 and 0 otherwise, and

Bk =
∑
δ′1,δ

′
2,··· ,δ′K−1|

∑
i δ
′
i=k

H
∏

1≤i≤K−1 [(1− δ′i)Pi + δ′iI]

Corollary 6.8.1 (Triangular Map between A and B). Bj = Aj −
∑j−1
k=0(−1)j−k

(
(K−1)−k
j−k

)
Bk.

Proof. (Corollary 6.8.1) The expression can be obtained by simply rearrange the expression of Aj
from Lemma 6.8.

Proof. (Theorem 6) From Corollary 6.8.1, we can recursively expand out the terms on the
right to express Bj as a linear combination of {HTA1, H

TA2, · · · , HTAK−1}. Formally,
Bj =

∑
k(wjkH

TAk) for some wji. We can then define a continuous function g, g(A) =
Tr
∑
k(wiH

TAi) = TrHTBK−2 =
∑
i Tr(HTHPi) =

∑
i TrPi =

∑
i ri = r. Therefore

g(Cr) = {r} and g(Cr′) = {r′}, so Cr, Cr′ must be disjoint if r 6= r′.

Next, we prove compactness of each C(r). We first observe that symmetric projector submanifold,
P(n, k), is compact and path connected for any k (Remark 4.1). C(r) is the image of A under these
K − 1 sets of Pi’s and the set of special orthogonal matrices H’s. All of these sets are compact and
path-connected and A is continuous; therefore C(r) is path connected and compact.

Finally, since Cr and Cr′ are compact and disjoint, Cr∪Cr′ is path-disconnected for r 6= r′. Combining
this with the connectedness of each individual Cr as well as completeness of the {Cr} (Corollary
6.7.1), we can conclude that the Cr’s are the connected components of C, so there are (K − 1)n+ 1
total disconnected components.

Theorem 1 (Connected Components of 1-D Orthogonal Convolution). The 1-D orthogonal convolu-
tion space is compact and has 2(K − 1)n+ 2 connected components, where K is the kernel size and
n is the number of channels.

13

Proof. From Theorem 6, C is the union of all SOCK submanifolds which contain (K − 1)n + 1
connected components. The other subset of orthogonal convolution kernels that we omitted when
considering SOCK can be simply obtained by negating one row of the orthogonal matrix in the SOCK
representation (Equation 5). Because there exists no continuous path from the components with
determinants of −1 to the components with determinants of 1. The number of connected components
in orthogonal convolution kernels is therefore doubled, which is 2(K − 1)n+ 2.

L Additional Proofs

Lemma 6.2 (Equivalent SOCK Construction). A(P1, · · · , Pi, Pi+1, · · · , PK−1, H) =
A(P1, · · · , P ′i , P ′i+1, · · · , PK−1, H

′) iff Pi + Pi+1 = P ′i + P ′i+1, PiPi+1 = P ′iP
′
i+1, and

H = H ′.

Proof. (Lemma 6.2) Let

• A = A(P1, · · · , Pi, Pi+1, · · · , PK−1, H)

• A′ = A(P1, · · · , P ′i , P ′i+1, · · · , PK−1, H
′)

• Q be a function of a set of binary variables (δj) that control which factor (Pj or I − Pj)
appears in the product of matrices in the function output:

Q(δ1, δ2, · · · , δK−1) = H
∏

1≤j≤K−1

[(1− δj)Pj + δj(1− Pj)] ,

where δj ∈ {0, 1}.

• Q′ be the function in similar form as Q, but the summation elements are constructed with
respect to the new kernel A′.

Using the Q function above, we can represent A in an alternate form

Aj =
∑

δ1,δ2,···δK−1|
∑

k δk=j−1

Q(δ1, δ2, · · · , δK−1)

where 1 ≤ j ≤ K − 1. This form will make our proof below more convenient.

The proof is divided into the following two steps (forward direction and backward direction):

“⇒” Direction
A = A′ ⇒ Pi + Pi+1 = P ′i + P ′i+1, PiPi+1 = P ′iP

′
i+1, H = H ′

We start by summing all the elements of A and A′ to show H = H ′:∑
j

Aj =
∑
j

∑
δ1,δ2,··· ,δK−1|

∑
k δk=j−1

Q(δ1, δ2, · · · , δK−1)

=
∑

δ1,δ2,··· ,δK−1

Q(δ1, δ2, · · · , δK−1)

=
∑

δ1,δ2,··· ,δK−1

H
∏

1≤j≤K−1

[(1− δj)Pj + δj(I − Pj)]

= H
∏

1≤j≤K−1

[Pj + (I − Pj)]

= H

The same process for A′ will show
∑
j A
′
j = H ′. Thus, H = H ′. We are still left to show

Pi + Pi+1 = P ′i + P ′i+1 and PiPi+1 = P ′iP
′
i+1. Now, we will consider A and A′ in their alternate

form,
A = H� [P1 I − P1]� · · ·� [PK−1 I − PK−1]

A′ = H ′� [P1 I − P1]� · · · [P ′i I − P ′i]� [P ′i+1 I − P ′i+1]� · · ·� [PK−1 I − PK−1]

14

First, we do a left block convolution by HT to obtain

HT�A = HT�H� [P1 I − P1]� · · ·� [PK−1 I − PK−1]

= [P1 I − P1]� · · ·� [PK−1 I − PK−1]

HT�A′ = HT�H ′� [P1 I − P1]� · · ·� [P ′i I − P ′i]� [P ′i+1 I − P ′i+1]� · · ·� [PK−1 I − PK−1]

= [P1 I − P1]� · · ·� [P ′i I − P ′i]� [P ′i+1 I − P ′i+1]� · · ·� [PK−1 I − PK−1]

Now, since only the ith and (i+ 1)th convolutions differ between these sequences, we can iteratively
convolve away every other convolution by left/right-convolving with the inverse of the left/right-
most element. On the left, we would begin by convolving with [I − P1 P1] and on the right by
[I − PK−1 PK−1]. We can then continue performing the left/right convolution to repeatedly cancel
out the left/right-most element until we are left with the two terms with index of i and i+1 as follows:

[Pi I − Pi]� [Pi+1 I − Pi+1] = [P ′i I − P ′i]� [P ′i+1 I − P ′i+1]

Expanding out the convolution and re-arranging the equation gives Pi + Pi+1 = P ′i + P ′i+1 and
PiPi+1 = P ′iP

′
i+1.

“⇐” Direction

Pi + Pi+1 = P ′i + P ′i+1, PiPi+1 = P ′iP
′
i+1, H = H ′ ⇒ A = A′

To prove the backward direction, we can simply invert the proof in the forward direction:

Pi + Pi+1 = P ′i + P ′i+1 and PiPi+1 = P ′iP
′
i+1 implies that

[Pi I − Pi]� [Pi+1 I − Pi+1] = [P ′i I − P ′i]� [P ′i+1 I − P ′i+1]

Then, it is clear that

H� [P1 I − P1]� · · ·� [Pi I − Pi]� [Pi+1 I − Pi+1]� · · ·� [PK−1 I − PK−1]

= H ′� [P1 I − P1]� · · ·� [P ′i I − P ′i]� [P ′i+1 I − P ′i+1]� · · ·� [PK−1 I − PK−1] ,

which yields A = A′ as what we needed.

Lemma 6.8 (Kernel Element Decomposition). If A = A(P1, · · · , PK−1, H), then Aj =∑j
i=0 aK,j,iBi, where aK,j,i = (−1)j−i

(
(K−1)−i
j−i

)
for i ≤ j ≤ K − 1 and 0 otherwise, and

Bk =
∑
δ′1,δ

′
2,··· ,δ′K−1|

∑
i δ
′
i=k

H
∏

1≤i≤K−1 [(1− δ′i)Pi + δ′iI]

Proof. (Lemma 6.8)

We will show this result by considering the following form of Aj ,

Aj =
∑

δ1,δ2,··· ,δK−1|
∑

i δi=j

Q(δ1, δ2, · · · , δK−1)

where Q is given by

Q(δ1, δ2, · · · , δK−1) = H
∏

1≤i≤K−1

[(1− δi)Pi + δi(I − Pi)]

and δi ∈ {0, 1}.
Every summand of Aj can be expanded into the form

Q(δ1, δ2, · · · , δK−1) =
∑

δ′1,δ
′
2,··· ,δ′K−1|

∑
i δ
′
i≤j

aδ′1,··· ,δ′K−1
H

∏
1≤i≤K−1

[(1− δ′i)Pi + δ′iI]

for some coefficients {aδ′1,··· ,δ′K−1
}, and we will provide a closed form for these coefficients.

When δi = 0, the ith factor of Q(δ1, δ2, · · · , δK−1) is just Pi, and this term does not expand. This
means that all summands in the expansion must contain Pi. Therefore, aδ′1,··· ,δ′K−1

= 0 whenever

15

δ′i = 1. When δi = 1, the ith factor is instead I − Pi, which would generate two parts in the
expansion, one with I , and the other with −Pi. Therefore, if δi = 1, for a given aδ′1,··· ,δ′K−1

, the ith

factor provides a factor of -1 to the coefficient if δ′i = 0, and provides a factor of 1 otherwise. This
means that the final coefficient will be (−1)n, where n is the number of positions i where δi = 1 but
δ′i = 0. Thus the closed form is

aδ′1,··· ,δ′K−1
=

{
0, if ∃ i such that δi = 0, δ′i = 1

(−1)
∑

i δi−δ
′
i , otherwise

Notice that
∑
i δi is constant for all summands of Aj , so aδ′1,··· ,δ′K−1

is constant over all summands
in which it is non-zero. Therefore, we can find how many summands in which this coefficient is
non-zero, and that will give us the total coefficient for H

∏
1≤i≤K−1 [(1− δ′i)Pi + δ′iI] in Aj .

To find this for a given {δ′i}, we simply need to find which {δi} satisfying
∑
i δi = j also satisfy

“∀i, δ′i = 1⇒ δi = 1.” (which is just the negation of the property that leads to the coefficient being
0). We first start by letting k =

∑
i δ
′
i. All valid {δi} satisfy δ′i = 1⇒ δi = 1, so the i where δ′i = 1

forces δi = 1. The final condition to satisfy is the sum. The forced positions sum to k, so it remains
that the of the free positions, their total must sum to j − k. That is, out of the (K − 1) − k free
positions, exactly j − k of them must be 1. Clearly, this means there are

(
(K−1)−k
j−k

)
{δi}’s with a

non-zero aδ′1,··· ,δ′K−1
. Furthermore, aδ′1,··· ,δ′K−1

= (−1)j−k for each. Therefore, we can combine all
of these together to get

Aj =
∑

δ′1,δ
′
2,··· ,δ′K−1|

∑
i δ
′
i≤j

(−1)j−
∑

i δ
′
i

(
n−

∑
i δ
′
i

j −
∑
i δ
′
i

)
H

∏
1≤i≤K−1

[(1− δ′i)Pi + δ′iI]

=

j∑
k=0

∑
δ′1,δ

′
2,··· ,δ′K−1|

∑
i δ
′
i=k

(−1)j−k
(

(K − 1)− k
j − k

)
H

∏
1≤i≤K−1

[(1− δ′i)Pi + δ′iI]

=

j∑
k=0

(−1)j−k
(

(K − 1)− k
j − k

) ∑
δ′1,δ

′
2,··· ,δ′K−1|

∑
i δ
′
i=k

H
∏

1≤i≤K−1

[(1− δ′i)Pi + δ′iI]

=

j∑
k=0

(−1)j−k
(

(K − 1)− k
j − k

)
Bk

M Disconnectedness of 2-D Orthogonal Convolutions

Theorem 2 (Connected Components of 2-D Orthogonal Convolution with K = 2). 2-D orthogonal
convolution space with a kernel size of 2× 2 has at least 2(n+ 1)2 connected components, where n
is the number of channels.

Proof. Consider a 2-D convolutional kernel A:

A =

(
A1 A2

A3 A4

)
.

The orthogonality constraint implies that

A1A
T
4 = 0

A2A
T
3 = 0

A1A
T
2 +A3A

T
4 = 0

A1A
T
3 +A2A

T
4 = 0∑

i

AiA
T
i = I,

16

which yields

(A1 +A2)(A3 +A4)T = 0

(A1 +A3)(A2 +A4)T = 0

(A1 +A2 +A3 +A4)(A1 +A2 +A3 +A4)T = I

It is clear to see that A1 + A2 + A3 + A4 is orthogonal; hence, we can always find an orthogonal
matrix H = (A1 +A2 +A3 +A4)T such that

H(A1 +A2 +A3 +A4) = I

We can apply the orthogonal matrix to each Ai with the same set of constraints:

Ãi = HAi

Then, we have
(Ã1 + Ã2)(Ã3 + Ã4)T = 0

(Ã1 + Ã3)(Ã2 + Ã4)T = 0

Ã1 + Ã2 + Ã3 + Ã4 = I

Let P = Ã1 + Ã2, Q = Ã1 + Ã3. We then have
P (I − P)T = 0

Q(I −Q)T = 0

which is equivalent of saying that P,Q ∈ P(n).

We first prove that there always exists an orthogonal convolution with arbitrary symmetric projectors
P and Q by carefully choosing Ai’s:

Let P and Q be the symmetric projectors and H be the orthogonal matrix in BCOP algorithm for
2× 2 orthogonal convolution, then we have

A = H�

(
Ã1 Ã2

Ã3 Ã4

)
= H�

(
PQ P (I −Q)

(I − P)Q (I − P)(I −Q)

)
with all the conditions above satisfied P = Ã1 + Ã2, Q = Ã1 + Ã3. Thus, we can always obtain an
orthogonal convolution with arbitrary P and Q.

Since the space of symmetric projectors is separated by rank, we can conclude that the space of
Ã1 + Ã2 is disconnected and have n + 1 connected components (n is the size of the matrices).
We denote the space of special orthogonal convolution that has rank(Ã1 + Ã2) = p, Xp. Due to
disconnectedness of symmetric projector, Xp ∪ Xp′ is path-disconnected for any p 6= p′. Similarly,
we can denote the space of orthogonal convolution that has rank(Ã1 + Ã3) = q, Yq . Yq has similar
disconnectedness condition. We can define the intersection of Xp and Yq as Sp,q = Xp ∩ Yq for all
p, q. Previously, we proved that there exists orthogonal convolution for any P or Q, so Sp,q 6= ∅ for
all p, q. From the disconnectedness of each of X ’s and Y’s, we can conclude that Sp,q is disconnected
from Sp′,q′ for any p, q, p′, q′ if (p, q) 6= (p′, q′).

Up to this point, we have identified (n + 1)2 disjoint components of
(
Ã1 Ã2

Ã3 Ã4

)
(the number is

induced by the combintorial selection of p and q from {0, 1, · · · , n}). Combining this result with the
two connected components in orthogonal matrix H , we can conclude that the 2-D 2× 2 orthogonal
convolution has at least 2(n+ 1)2 connected components.

N Doubling the Channel Size Addresses BCOP Disconnectedness Issues

Theorem 3 (BCOP Construction with Auxiliary Dimension). For any convolution C =
W(H,P1:K−1, Q1:K−1) with input and output channels n and Pi, Qi ∈ P(n), there exists a con-
volution C ′ = W(H ′, P ′1:K−1, Q

′
1:K−1) with input and output channels 2n constructed from only

n-rank projectors (P ′i , Q
′
i ∈ P(2n, n)) such that C ′(x)1:n = C(x1:n). That is, the first n channels

of the output is the same with respect to the first n channels of the input under both convolutions.

17

Proof. (Theorem 3) We will start by defining two functions f, f ′ to be "effectively equivalent" if
f ′(x)1:n = f(x1:n). Notice that the input and output are image tensors and 1 : n is across the
channel dimension. It is clear to see that if f, f ′ are effectively equivalent and so are g, g′, the g ◦ f
is effectively equivalent to g′ ◦ f ′. The same holds for f + g and f ′ + g′.

Now we will construct the parameters of C ′ from the parameters of C. For any n× n projector P
used as a parameter for C, define P ′ as,

P ′ =

(
P 0
0 Sk

)

where k is the rank of P and Sk is a diagonal matrix with the first n− k entries as 1, and the rest as 0.
Notice that rank(P ′) = rank(P) + rank(Sk) = k+ (n− k) = n, which independent of the rank of
P . Finally, replace the orthogonal parameter H for C with

H ′ =

(
H 0
0 I

)

This covers all the parameters in BCOP, so we can now construct C ′ from C using only n-rank
projectors. It is easy to see that each projector P ′ and H ′ were constructed such that they are
effectively equivalent to their counterpart in C. Now notice the convolution C ′ is computed as

C ′ = H ′� [P ′1 I − P ′1]�

[
Q′1

I −Q′1

]
� · · ·�

[
P ′K−1 I − P ′K−1

]
�

[
Q′K−1

I −Q′K−1

]
and by the properties of block convolution, this equivalent to applying each of these functions from
right to left to an input image tensor. Thus, by the composition rule for effective equivalence, if all of
these functions are equivalent to their n channel counterpart, then C ′ is effectively equivalent to C.
Each of these size 2 convolutions computes each output position as a function of two input positions,
By first applying a projector to each (P ′ is applied to one and I − P ′ is applied to another) and then
summing. By the properties of effective equivalence, this means that the application of each size
2 convolution is effectively equivalent to its corresponding convolution in C. Multiplying by the
orthogonal matrix H ′ is also effectively equivalent to H . Therefore, each function comprising C ′ is
effectively equivalent to its counterpart in C, so C ′ is is effectively equivalent to C.

The theorem above shows that we can represent any n-dimensional BCOP convolution with a 2n-
dimensional BCOP convolution that only has rank n projectors, which is a connected space. This
allows us to circumvent the disconnectedness issues that arise in our analysis in Appendix M by
doubling the size of all symmetric projectors by a factor of 2, and set them to be exactly half of the
full rank.

However, in order to use this, the input would need n “dummy” dimensions so that it can pass
through a 2n-dimensional convolution. This can simply be set up in the initial convolution of a
BCOP-parameterized network. The initial convolution would initially have an orthogonal n ×m
matrix H to upsample from the network input’s m channel size to the desired n channel size (m is
typically significantly less than n). If we expand H by simply adding n rows of zeros underneath,
then we will have a 2n ×m matrix which preserves the first n channels of the output while also
maintaining orthogonality of H . The projectors in this upsampling layer are n× n, so we can simply
enlarge these in the same way as in the above theorem to get the desired result from this layer. Finally,
we need to address the transition from the convolution layers to the fully-connected layer. This
is also straightforward as we can add n columns of 0s to the first fully-connected layer’s weight
matrix. In this way, the dummy dimensions will have no impact on the network’s output. Thus, any
network using BCOP convolutions can be equivalently represented in a single connected component
of networks using BCOP convolutions with double the channel size. Therefore, this presents a way to
circumvent the disconnectedness issue.

18

O Incompleteness of 2-D Convolution Parameterization

Xiao et al. [24] extends the 1-D orthogonal convolution construction algorithm presented in Kautsky
and Turcajová [15] to construct 2-D orthogonal kernel as follows:

A = H�

[
P1

I − P1

]
� [Q1 I −Q1]� · · ·

· · ·�
[

PK−1

I − PK−1

]
� [QK−1 I −QK−1]

(9)

where X�Y =
[∑

i′,j′ Xi′,j′Yi−i′,j−j′
]
i,j

with the out-of-range matrices all zero, H is an orthogo-

nal matrix, and P1, · · ·PK−1 andQ1, · · ·QK−1 are symmetric projectors. However, unlike in the 1-D
case, the 2-D orthogonal kernels constructed from this algorithm doesn’t cover the entire orthogonal
kernel space.

To illustrate this, we first consider a 2 × 2 convolution kernel A =

[
A1 A2

A3 A4

]
with its equivalent

transformation matrix over a 3× 3:

A1 A2 0 A3 A4 0 0 0 0
0 A1 A2 0 A3 A4 0 0 0
A2 0 A1 A4 0 A3 0 0 0
0 0 0 A1 A2 0 A3 A4 0
0 0 0 0 A1 A2 0 A3 A4

0 0 0 A2 0 A1 A4 0 A3

A3 A4 0 0 0 0 A1 A2 0
0 A3 A4 0 0 0 0 A1 A2

A4 0 A3 0 0 0 A2 0 A1

The equivalent conditions for the convolution kernel to be orthogonal can be summarized as follows
(inner products of any pairs of distinct rows need to be 0):

A1A
T
4 = 0 (Inner product of Row 1 and Row 9)

A2A
T
3 = 0 (Inner product of Row 1 and Row 8)

A1A
T
2 +A3A

T
4 = 0 (Inner product of Row 1 and Row 2)

A1A
T
3 +A2A

T
4 = 0 (Inner product of Row 1 and Row 7)∑

i

AiA
T
i = I (Self inner product of any row)

However, notice that since BCOP 2× 2 convolution is of the form,

A = H�

[
P

I − P

]
� [Q I −Q] = �

[
HPQ HP (I −Q)

H(I − P)Q H(I − P)(I −Q)

]
It is clear we will always have an additional constraint of A1A

T
2 = (HPQ)(HP (I − Q))T = 0.

However, we can find an orthogonal matrix that does not satisfy this condition by defining the A1 to
A4 as:

A1 =
1

2

[
1 0
−1 0

]
A2 =

1

2

[
1 0
1 0

]
A3 =

1

2

[
0 −1
0 1

]
A4 =

1

2

[
0 1
0 1

]

19

However, while this does show that BCOP is incomplete, the counterexample is fairly uninteresting.
In fact, it can be represented as

A = [P I − P]�

[
Q

I −Q

]
, where P =

[
1 0
0 0

]
, Q =

1

2

[
1 −1
−1 1

]
which is simply a re-ordering of the 1-D convolutions in the BCOP definition. Furthermore, it can
even be trivially represented by composing two BCOP convolutions together. It is still an open
question as to whether or not allowing re-ordering of the 1-D convolution components of BCOP
will be able to represent all 2-D orthogonal convolutions (while re-ordering 1-D convolutions is
not something easily achievable in neural network architectures, composing arbitrarily many BCOP
convolutions can represent any re-ordering of 1-D convolutions).

P Certifying Provable Robustness for Lipschitz Network

To certify provable robustness of a Lipschitz network, we first define the margin of a prediction for a
data point x,

Mf (x) = max(0, yt −max
i6=t

yi)

where y = [y1, y2, · · ·] is the predicted logits from the model on data point x and yt is the correct
logit (x belongs to tth class). Following the results from Anil et al. [2], Tsuzuku et al. [23], we
derive the sufficient condition for a data point to be provably robust to perturbation-based adversarial
examples in the general case:

Theorem 7 (Adversarial Perturbation Robustness Condition under Lp Norm). If 2
p−1
p lε <Mf (x),

where f is an l-Lipschitz under the Lp norm, then x is robust to any input perturbation ∆x with
||∆x||p ≤ ε.

Proof. (Theorem 7)
Let the function that represents the network to be f , x be some data point, and y = f(x).

We see that it is enough to consider when x is correctly classified. If it were misclassified,Mf (x) = 0,
so 2

p−1
p lε <Mf (x) can never hold. Since x is correctly classified,Mf (x) ≤ yt − yi for all i 6= t

where t is the correct class.

Now suppose there is a ∆x such that ||∆x||p ≤ ε and x′ = x + ∆x is incorrectly classified. Then,
y′t ≤ y′w for some w where y′ = f(x′). We also denote the perturbation in the ith dimension to be
∆yi = y′i − yi.
Since f is L-Lipschitz, we can bound the norm of the change of output as follows:(∑

i

|∆yi|p
) 1

p

= ||f(x + ∆x)− f(x)||p ≤ l||∆x||p ≤ lε

Then we have
|∆yt|p + |∆yw|p ≤

∑
i

|∆yi|p ≤ (lε)p

Now consider a polynomial g(r) = rp + (∆yw −∆yt − r)p. By analyzing derivatives, this has a
global minimum at r = ∆yw−∆yt

2 using the fact that ∆yw ≥ ∆yt. This yields,
|∆yw −∆yt|p

2p−1
= g

(
∆yw −∆yt

2

)
≤ g(−∆yt) = (−∆yt)

p+(∆yw)p ≤ |∆yw|p+|∆yt|p ≤ (lε)p

This means that
|∆yw −∆yt| ≤ 2

p−1
p lε⇒ −2

p−1
p lε ≤ ∆yt −∆yw

Substituting this bound along with the inequality yt − yw ≥Mf (x) yields

0 ≥ y′t − y′w = yt − yw + (∆yt −∆yw) ≥Mf (x)− 2
p−1
p (lε).

Therefore,Mf (x) ≤ 2
p−1
p (lε).

Thus, by contrapositiveMf (x) > 2
p−1
p (Lε) implies y′t − y′w > 0.

20

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 308–318. ACM, 2016.

[2] Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function approximation. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 291–301, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http://
proceedings.mlr.press/v97/anil19a.html.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017.

[4] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48
(3):334–334, 1997.

[5] Åke Björck and Clazett Bowie. An iterative algorithm for computing the best estimate of an
orthogonal matrix. SIAM Journal on Numerical Analysis, 8(2):358–364, 1971.

[6] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in neural information processing systems, pages 2172–2180, 2016.

[7] Artem Chernodub and Dimitri Nowicki. Norm-preserving orthogonal permutation linear unit
activation functions (oplu). arXiv preprint arXiv:1604.02313, 2016.

[8] David Cox and Nicolas Pinto. Beyond simple features: A large-scale feature search approach to
unconstrained face recognition. In Face and Gesture 2011, pages 8–15. IEEE, 2011.

[9] Francesco Croce and Matthias Hein. Provable robustness against all adversarial lp-perturbations
for p ≥ 1. arXiv preprint arXiv:1905.11213, 2019.

[10] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael Cree. Regularisation of neural
networks by enforcing Lipschitz continuity. arXiv preprint arXiv:1804.04368, 2018.

[11] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In Advances in neural information processing systems,
pages 5767–5777, 2017.

[12] Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha. Limitations of the Lipschitz constant as
a defense against adversarial examples. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 16–29. Springer, 2018.

[13] Jörn-Henrik Jacobsen, Arnold W.M. Smeulders, and Edouard Oyallon. i-RevNet: Deep in-
vertible networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=HJsjkMb0Z.

[14] Hyeonwoo Kang. pytorch-generative-model-collections, 2016. URL https://github.com/
znxlwm/pytorch-generative-model-collections.

[15] Jaroslav Kautsky and Radka Turcajová. A matrix approach to discrete wavelets. In Wavelet
Analysis and Its Applications, volume 5, pages 117–135. Elsevier, 1994.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[17] Stamatios Lefkimmiatis, John Paul Ward, and Michael Unser. Hessian schatten-norm regular-
ization for linear inverse problems. IEEE transactions on image processing, 22(5):1873–1888,
2013.

21

http://proceedings.mlr.press/v97/anil19a.html
http://proceedings.mlr.press/v97/anil19a.html
https://openreview.net/forum?id=HJsjkMb0Z
https://github.com/znxlwm/pytorch-generative-model-collections
https://github.com/znxlwm/pytorch-generative-model-collections

[18] Mario Lezcano-Casado and David Martínez-Rubio. Cheap orthogonal constraints in neu-
ral networks: A simple parametrization of the orthogonal and unitary group. In Kama-
lika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Re-
search, pages 3794–3803, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL
http://proceedings.mlr.press/v97/lezcano-casado19a.html.

[19] John Milnor and James D Stasheff. Characteristic Classes. (AM-76), volume 76, pages 55–57.
Princeton University Press, 1974.

[20] Haifeng Qian and Mark N. Wegman. L2-nonexpansive neural networks. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=ByxGSsR9FQ.

[21] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[22] Hanie Sedghi, Vineet Gupta, and Philip M. Long. The singular values of convolutional layers.
In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJevYoA9Fm.

[23] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable
certification of perturbation invariance for deep neural networks. In Advances in Neural
Information Processing Systems, pages 6541–6550, 2018.

[24] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Penning-
ton. Dynamical isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla
convolutional neural networks. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 5393–5402, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR. URL http://proceedings.mlr.press/v80/xiao18a.html.

22

http://proceedings.mlr.press/v97/lezcano-casado19a.html
https://openreview.net/forum?id=ByxGSsR9FQ
https://openreview.net/forum?id=ByxGSsR9FQ
https://openreview.net/forum?id=rJevYoA9Fm
https://openreview.net/forum?id=rJevYoA9Fm
http://proceedings.mlr.press/v80/xiao18a.html

	Optimizing under spectral normalization
	Examples of Lipschitz Functions
	Algorithm Complexity of Different Approaches to Enforce Lipschitz Convolution
	Architectural Detail Considerations for GNP Convolutional Networks
	Residual Connections
	Zero-Padded Orthogonal Convolutions
	Invertible Downsampling
	Other Components

	Network Architectures
	Training Details
	Orthogonalization Procedure
	BCOP Implementation
	Additional Ablation Experiments
	Comparison to Other Baselines for Provable Adversarial Robustness on MNIST and CIFAR-10
	Topology of of 1-D Orthogonal Convolution Kernel
	Background: Symmetric Projector
	Connected Components of 1-D Special Orthogonal Convolution Kernels (SOCK)
	Equivalent SOCK Construction
	Dominance of Canonical SOCK Submanifold
	Connected Components of C are Canonical SOCK Submanifolds

	Additional Proofs
	Disconnectedness of 2-D Orthogonal Convolutions
	Doubling the Channel Size Addresses BCOP Disconnectedness Issues
	Incompleteness of 2-D Convolution Parameterization
	Certifying Provable Robustness for Lipschitz Network

