
A Notation

We introduce some additional notation to keep the following discussion concise.

Let U be a compact metric space and V be a Hilbert space. In this paper we only consider U = [0, 1]
and U = ∆m. By C(U, V ) we denote the space of continuous functions f : U → V .

For 1 ≤ p <∞, Lp(U, µ;V ) is the space of (equivalence classes of) measurable functions f : U → V

such that ‖f‖p is µ-integrable, equipped with norm ‖f‖µ,p = (
∫
U
‖f(x)‖p µ(dx))

1/p; for p =∞,
L∞(U, µ;V ) is the space of µ-essentially bounded measurable functions f : U → V with norm
‖f‖µ,∞ = µ- ess supx∈X ‖f(x)‖. We denote the closed unit ball of the space Lp(U, µ;V ) by
Kp(U, µ;V ) := {f ∈ Lp(U, µ;V ) : ‖f‖µ,p ≤ 1}.
If the norm ‖.‖V on V is not clear from the context we indicate it by writing Lp(U, µ;V, ‖.‖V ),
Kp(U, µ;V, ‖.‖V ), and ‖.‖µ,p;‖.‖V . If V ⊂ Rd, all possible norms ‖.‖V are equivalent and hence we
choose ‖.‖p on V to simplify our calculations, if not stated otherwise. Moreover, if V ⊂ Rd and
‖.‖V = ‖.‖q for some 1 ≤ q ≤ ∞, for convenience we write ‖.‖µ,p;q = ‖.‖µ,p;‖.‖V .

Let W be another Hilbert space. Then L(V,W ) denotes the space of bounded linear operators
T : V → W ; if W = V , we write L(V ) := L(V, V ). The induced operator norm on L(V,W ) is
defined by

‖T‖‖.‖V ;‖.‖W = inf{c ≥ 0: ‖Tv‖W ≤ c‖v‖V for all v ∈ V }
= sup
v∈V : ‖v‖V ≤1

‖Tv‖W .

If W = V , we write ‖.‖‖.‖V = ‖.‖‖.‖V ;‖.‖V . Moreover, for convenience if V ⊂ Rd and ‖.‖V = ‖.‖p
for some 1 ≤ p ≤ ∞, we use the notation ‖.‖p;‖.‖W = ‖.‖‖.‖V ;‖.‖W . In the same way, if W ⊂ Rd
and ‖.‖W = ‖.‖q for some 1 ≤ q ≤ ∞, we write ‖.‖‖.‖V ;q = ‖.‖‖.‖V ;‖.‖W .

By B(T ) we denote the Borel σ-algebra of a topological space T .

We write µA for the distribution of a random variable A, i.e., the pushforward measure it induces, if
A is defined on a probability space with probability measure µ.

B Probabilistic setting

Let (Ω,A, µ) be a probability space. Let m ∈ N and define the random variables X : (Ω,A) →
(X ,ΣX) and Y : (Ω,A)→ ({1, . . . ,m}, 2{1,...,m}), such that ΣX contains all singletons. We denote
a version of the regular conditional distribution of Y given X by µY |X(·|x) for all x ∈ X .

We consider the problem of learning a measurable function g : (X ,ΣX) → (∆m,B(∆m)) that
returns the prediction gy(x) of µY |X({y}|x) for all x ∈ X and y ∈ {1, . . . ,m}. We define the
random variable G : (Ω,A)→ (∆m,B(∆m)) as G := g(X).

In the same way as above, we denote a version of the regular conditional distribution of Y given G
by µY |G(·|t) for all t ∈ ∆m. The function δ : (∆m,B(∆m))→ (Rm,B(Rm)), given by

δ(t) :=

 µY |G(1|t)− t
...

µY |G(m|t)− t


for all t ∈ ∆m, gives rise to another random variable ∆: (Ω,A)→ (Rm,B(Rm)) that is defined by
∆ := δ(G).

Using the newly introduced mathematical notation, we can reformulate strong calibration in a compact
way. A model g is calibrated in the strong sense if µY |G(·|G) = G almost surely, or equivalently if
∆ = 0 almost surely.
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C Calibration error

Definition C.1 (Calibration error). Let F ⊂ L1(∆m, µG;Rm) be non-empty. Then the calibration
error CE of model g with respect to class F is

CE[F , g] := sup
f∈F

E [〈∆, f(G)〉Rm ] .

Remark C.1. Note that ‖∆‖∞ ≤ 1 almost surely, and thus ‖δ‖µG,∞ ≤ 1. Hence by Hölder’s
inequality for all f ∈ F we have

|E[〈∆, f(G)〉Rm ]| ≤ E[|〈∆, f(G)〉Rm |] ≤ ‖δ‖µG,∞‖f‖µG,1 ≤ ‖f‖µG,1 <∞.
However, it is still possible that CE[F , g] =∞.

Remark C.2. If F is symmetric in the sense that f ∈ F implies −f ∈ F , then CE[F , g] ≥ 0.

The measure highly depends on the choice of F but strong calibration always implies a calibration
error of zero.

Theorem C.1 (Strong calibration implies zero error). Let F ⊂ L1(∆m, µG;R). If model g is
calibrated in the strong sense, then CE[F , g] = 0.

Proof. If model g is calibrated in the strong sense, then ∆ = 0 almost surely. Hence for all f ∈ F
we have E[〈∆, f(G)〉R] = 0, which implies CE[F , g] = 0.

Of course, the converse statement is not true in general. A similar result as above shows that the class
of continuous functions, albeit too large and impractical, allows to identify calibrated models.

Theorem C.2. Let F = C(∆m,Rm). Then CE[F , g] = 0 if and only if model g is calibrated in the
strong sense.

Proof. Note that F is well defined since F ⊂ L1(∆m, µG;Rm).

If model g is calibrated in the strong sense, then CE[F , g] = 0 by Theorem C.1.

If model g is not calibrated in the strong sense, then ∆ = 0 does not hold almost surely. In particular,
there exists s ∈ {−1, 1}m such that 〈∆, s〉Rm ≤ 0 does not hold almost surely. Define the function
fs : ∆m → Rm by fs := 〈δ(·), s〉Rm and let As := f−1

s ((0,∞)). Then As ∈ B(∆m) since fs is
Borel measurable, and µG(As) > 0. Hence we know that

αs := E[〈∆, s1As
(G)〉Rm ] > 0.

Since µG is a Borel probability measure on a compact metric space, it is regular and hence there
exist a compact set K and an open set U such that K ⊂ As ⊂ U and µG(U \K) < αs/4 (Rudin,
1986, Theorem 2.17). Thus by Urysohn’s lemma applied to the closed sets K and U c, there exists
a continuous function h ∈ C(∆m,R) such that 1K ≤ h ≤ 1U . By defining f = sh ∈ C(∆m,Rm)
and applying Hölder’s inequality we obtain

E[〈∆, f(G)〉Rm ] = E[〈∆, s1As
(G)〉Rm ]

+ E[〈∆, f(G)− s1As
(G)〉Rm ]

≥ αs − |E[(h(G)− 1As
(G))〈∆, s〉Rm ]|

≥ αs − E[|h(G)− 1As(G)||〈∆, s〉Rm |]
≥ αs − E[1U\K(G)‖∆‖1‖s‖∞] ≥ αs − 2µG(U \K)

> αs − αs/2 = αs/2 > 0.

This implies CE[F , g] > 0.

D Reproducing kernel Hilbert spaces of vector-valued functions on the
probability simplex

Definition D.1 (Micchelli and Pontil (2005, Definition 1)). Let H be a Hilbert space of vector-
valued functions f : ∆m → Rm with inner product 〈., .〉H. We callH a reproducing kernel Hilbert
space (RKHS), if for all t ∈ ∆m and u ∈ Rm the functional Et,u : H → R, Et,uf := 〈u, f(t)〉Rm ,
is a bounded (or equivalently continuous) linear operator.
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Riesz’s representation theorem ensures that there exists a unique function k : ∆m ×∆m → Rm×m
such that for all t ∈ ∆m the function k(·, t) is a linear map from ∆m to H and for all u ∈ Rm it
satisfies the so-called reproducing property

〈u, f(t)〉Rm = Et,uf = 〈k(·, t)u, f〉H. (D.1)

It can be shown that function k is self-adjoint5 and positive semi-definite, and hence a kernel
according to Definition 1 (Micchelli and Pontil, 2005, Proposition 1). Similar to the scalar-valued
case, conversely by the Moore-Aronszaijn theorem (Aronszajn, 1950) to every kernel k : ∆m×∆m →
L(Rm) there exists a unique RKHS H ⊂ (Rm)

∆m

with k as reproducing kernel (Micchelli and
Pontil, 2005, Theorem 1).

Other useful properties are summarized in Lemma D.1. Micchelli and Pontil (2005) considered only
the Euclidean norm on Rm, corresponding to p = q = 2 in our statement. For convenience we use
the notation ‖.‖p;H = ‖.‖‖.‖p;‖.‖H .

Lemma D.1 (Micchelli and Pontil (2005, Proposition 1)). Let H ⊂ (Rm)
∆m

be a RKHS with
kernel k : ∆m ×∆m → L(Rm). Let 1 ≤ p, q ≤ ∞ with Hölder conjugates p′ and q′, respectively.

1. For all t ∈ ∆m

‖k(·, t)‖p;H = ‖k(t, t)‖1/2p;p′ . (D.2)

2. For all s, t ∈ ∆m

‖k(s, t)‖p;q ≤ ‖k(s, s)‖1/2q′;q‖k(t, t)‖1/2p;p′ . (D.3)

3. For all f ∈ H and t ∈ ∆m

‖f(t)‖p ≤ ‖f‖H‖k(·, t)‖p′;H = ‖f‖H‖k(t, t)‖1/2p′;p. (D.4)

Proof. Let t ∈ ∆m. From the reproducing property, Hölder’s inequality, and the definition of the
operator norm, we obtain for all u ∈ Rm

‖k(·, t)u‖2H = 〈k(·, t)u, k(·, t)u〉H = 〈u, k(t, t)u〉Rm ≤ ‖u‖p‖k(t, t)u‖p′ ≤ ‖u‖2p‖k(t, t)‖p;p′ ,
which implies that

‖k(·, t)‖p;H = sup
u∈Rm\{0}

‖k(·, t)u‖H
‖u‖p

≤ ‖k(t, t)‖1/2p;p′ . (D.5)

On the other hand, for all u, v ∈ Rm it follows from the reproducing property, the Cauchy-Schwarz
inequality, and the definition of the operator norm that

〈u, k(t, t)v〉Rm = 〈k(·, t)u, k(·, t)v〉H ≤ ‖k(·, t)u‖H‖k(·, t)v‖H ≤ ‖u‖p‖v‖p‖k(·, t)‖2p;H.
Since the `p-norm is the dual norm of the `p′ -norm, it follows that

‖k(t, t)v‖p′ = sup
u∈Rm : ‖u‖p≤1

〈u, k(t, t)v〉Rm ≤ ‖v‖p‖k(·, t)‖2p;H,

which implies that

‖k(t, t)‖p;p′ = sup
v∈Rm\{0}

‖k(t, t)v‖p′
‖v‖p

≤ ‖k(·, t)‖2p;H. (D.6)

Equation (D.2) follows from Eqs. (D.5) and (D.6).

Let s, t ∈ ∆m. From the reproducing property, the Cauchy-Schwarz inequality, and the definition of
the operator norm, we get for all u, v ∈ Rm

〈u, k(s, t)v〉Rm ≤ 〈k(·, s)u, k(·, t)v〉H ≤ ‖k(·, s)u‖H‖k(·, t)v‖H
≤ ‖u‖q′‖v‖p‖k(·, s)‖q′;H‖k(·, t)‖p;H.

5Let U , V be two Hilbert spaces. Then the adjoint of a linear operator T ∈ L(U, V ) is the linear operator
T ∗ ∈ L(V,U) such that for all u ∈ U , v ∈ V 〈Tu, v〉V = 〈u, T ∗v〉U .
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Thus we obtain

‖k(s, t)v‖q = sup
u∈Rm : ‖u‖q′≤1

〈u, k(s, t)v〉Rm ≤ ‖v‖p‖k(·, s)‖q′;H‖k(·, t)‖p;H,

which implies

‖k(s, t)‖p;q = sup
v∈Rm\{0}

‖k(s, t)v‖q
‖v‖p

≤ ‖k(·, s)‖q′;H‖k(·, t)‖p;H.

Hence from Eq. (D.2) we obtain Eq. (D.3).

For the third statement, let f ∈ H and t ∈ ∆m. From the reproducing property, the Cauchy-Schwarz
inequality, and the definition of the operator norm, we obtain for all u ∈ Rm

〈u, f(t)〉Rm = 〈k(·, t)u, f〉H ≤ ‖k(·, t)u‖H‖f‖H ≤ ‖u‖p′‖k(·, t)‖p′;H‖f‖H.
Thus the duality of the `p- and the `p′ -norm implies

‖f(t)‖p = sup
u∈Rm : ‖u‖p′≤1

〈u, f(t)〉Rm ≤ ‖k(·, t)‖p′;H‖f‖H,

which together with Eq. (D.2) yields Eq. (D.4).

If µ is a measure on ∆m, we define for 1 ≤ p, q ≤ ∞ ‖k‖µ,p;q := ‖k̃q‖µ,p where k̃q : ∆m → R is
given by k̃(t) := ‖k(·, t)‖q;H = ‖k(t, t)‖1/2q;q′ . We omit the value of q if it is clear from the context or
does not matter, since all norms on Rm are equivalent.

It is possible to construct certain classes of matrix-valued kernels from scalar-valued kernels, as the
following example shows.

Example D.1 (Micchelli and Pontil (2005); Caponnetto et al. (2008, Example 1))
For all i ∈ {1, . . . , n}, let ki : ∆m × ∆m → R be a scalar-valued kernel and Ai ∈ Rm×m be a
positive semi-definite matrix. Then the function

k : ∆m ×∆m → Rm×m, k(s, t) :=

n∑
i=1

ki(s, t)Ai, (D.7)

is a matrix-valued kernel.

We state a simple result about measurability of functions in the considered RKHSs. The result can be
formulated in a much more general fashion and is similar to a result by Christmann and Steinwart
(2008, Lemma 4.24).

Lemma D.2 (Measurable RKHS). Let H ⊂ (Rm)
∆m

be a RKHS with kernel k : ∆m × ∆m →
L(Rm). Then all f ∈ H are measurable if and only if k(·, t)u ∈ (Rm)

∆m

is measurable for all
t ∈ ∆m and u ∈ Rm.

Proof. If all f ∈ H are measurable, then k(·, t)u ∈ H is measurable for all t ∈ ∆m and u ∈ Rm.

If k(·, t)u is measurable for all t ∈ ∆m and u ∈ Rm, then all functions in H0 :=
span {k(·, t)u : t ∈ ∆m, u ∈ Rm} ⊂ H are measurable.

Let f ∈ H. SinceH = H0 (see, e.g., Carmeli et al., 2010), there exists a sequence (fn)n∈N ⊂ H0

such that limn→∞ ‖f − fn‖H = 0. For all t ∈ ∆m, since the operator k∗(·, t) is continuous, by the
reproducing property we obtain limn→∞ fn(t) = f(t). Thus f is measurable.

By definition (see, e.g., Carmeli et al., 2010, Definition 1), a RKHS with a continuous kernel is a
subspace of the space of continuous functions. The following equivalent formulation is an immediate
consequence of the result by Carmeli et al. (2010).

Corollary D.1 (Carmeli et al. (2010, Proposition 1)). A kernel k : ∆m ×∆m → Rm is continuous
if for all t ∈ ∆m t 7→ ‖k(t, t)‖ is bounded and for all t ∈ ∆m and u ∈ Rm k(·, t)u is a continuous
function from ∆m to Rm.
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An important class of continuous kernels are so-called universal kernels, for which the corresponding
RKHS is a dense subset of the space of continuous functions with respect to the uniform norm. A
result by Caponnetto et al. (2008) shows under what assumptions matrix-valued kernels of the form
in Example D.1 are universal.

Lemma D.3 (Caponnetto et al. (2008, Theorem 14)). For all i ∈ {1, . . . , n}, let ki : ∆m×∆m →
R be a universal scalar-valued kernel and Ai ∈ Rm×m be a positive semi-definite matrix. Then the
matrix-valued kernel defined in Eq. (D.7) is universal if and only if

∑n
i=1Ai is positive definite.

E Kernel calibration error

The one-to-one correspondence between matrix-valued kernels and RKHSs of vector-valued functions
motivates the introduction of the kernel calibration error (KCE) in Definition 3. For certain kernels
we are able to identify strongly calibrated models.

Theorem E.1. Let k : ∆m ×∆m → L(Rm) be a universal continuous kernel. Then KCE[k, g] = 0
if and only if model g is calibrated in the strong sense.

Proof. Let F be the unit ball in the RKHSH ⊂ (Rm)
∆m

corresponding to kernel k. Since kernel k
is continuous, by definition H ⊂ C(∆m,Rm) (Carmeli et al., 2010, Definition 1). Thus F is well
defined since F ⊂ C(∆m,Rm) ⊂ L1(∆m, µG;Rm).

If g is calibrated in the strong sense, it follows from Theorem C.1 that KCE[k, g] = CE[F , g] = 0.

Assume that KCE[k, g] = CE[F , g] = 0. This implies E[〈∆, f(G)〉Rm ] = 0 for all f ∈ F . Let
f ∈ C(∆m,Rm). SinceH is dense in C(∆m,Rm) (Carmeli et al., 2010, Theorem 1), for all ε > 0

there exists a function h ∈ H with ‖f − h‖∞ < ε/2. Define h̃ ∈ F by h̃ := h/‖h‖H if ‖h‖H 6= 0

and h̃ := h otherwise. Since

E[〈∆, h(G)〉Rm ] = ‖h‖H E[〈∆, h̃(G)〉Rm ] = 0,

by Hölder’s inequality we obtain

|E[〈∆, f(G)〉Rm ]| = |E[〈∆, f(G)− h(G)〉Rm ]|
≤ E[|〈∆, f(G)− h(G)〉Rm |]
≤ ‖δ‖µG,1‖f − h‖µG,∞
≤ 2‖f − h‖∞ < ε.

Thus CE[C(∆m,Rm), g] = 0, and hence g is calibrated in the strong sense by Theorem C.2.

Similar to the maximum mean discrepancy (Gretton et al., 2012), if we consider functions in a RKHS,
we can rewrite the expectation E[〈∆, f(G)〉Rm ] as an inner product in the Hilbert space.

Lemma E.1 (Existence and uniqueness of embedding). LetH ⊂ (Rm)
∆m

be a RKHS with kernel
k : ∆m ×∆m → L(Rm), and assume that k(·, t)u is measurable for all t ∈ ∆m and u ∈ Rm, and
‖k‖µG,1 <∞.

Then there exists a unique embedding µg ∈ H such that for all f ∈ H
E[〈∆, f(G)〉Rm ] = 〈f, µg〉H.

The embedding µg satisfies for all t ∈ ∆m and y ∈ Rm

〈y, µg(t)〉Rm = E[〈∆, k(G, t)y〉Rm ].

Proof. By Lemma D.2 all f ∈ H are measurable. Moreover, by Eq. (D.4) for all f ∈ H we have∫
∆m

‖f(t)‖1µG(dt) ≤ ‖f‖H
∫

∆m

‖k(t, t)‖1/2∞;1 µG(dt)

= ‖f‖H‖k‖µG,1;∞ <∞,
and thusH ⊂ L1(∆m, µG;Rm). Hence from Remark C.1 (with F = H) we know that for all f ∈ H
the expectation E[〈∆, f(G)〉Rm ] exists and is finite.
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Define the linear operator Tg : H → R by Tgf := E[〈∆, f(G)〉Rm ] for all f ∈ H. In the same way
as above, for all functions f ∈ H Hölder’s inequality and Eq. (D.4) imply

|Tgf | = |E[〈∆, f(G)〉Rm ] ≤ E[|〈∆, f(G)〉Rm |]
≤ ‖δ‖µG,∞‖f‖µG,1

≤ ‖f‖µG,1 ≤ ‖f‖H‖k‖µG,1;∞ <∞.
Thus Tg is a continuous linear operator, and therefore it follows from Riesz’s representation theorem
that there exists a unique function µg ∈ H such that

E[〈∆, f(G)〉Rm ] = Tgf = 〈f, µg〉H
for all f ∈ H. This implies that for all t ∈ ∆m and y ∈ Rm

〈y, µg(t)〉Rm = 〈k(·, t)y, µg〉H = E[〈∆, k(G, t)y〉Rm ].

Lemma E.1 allows us to rewrite KCE[k, g] in a more explicit way.

Lemma E.2 (Explicit formulation). Let H ⊂ (Rm)
∆m

be a RKHS with kernel k : ∆m ×∆m →
L(Rm), and assume that k(·, t)u is measurable for all t ∈ ∆m and u ∈ Rm and ‖k‖µG,1 < ∞.
Then

KCE[k, g] = ‖µg‖H,
where µg is the embedding defined in Lemma E.1. Moreover,

SKCE[k, g] := KCE2[k, g] = E[〈eY − g(X), k(g(X), g(X ′))(eY ′ − g(X ′))〉Rm ],

where (X ′, Y ′) is an independent copy of (X,Y ) and ei denotes the ith unit vector.

Proof. Let F be the unit ball in the RKHS H. From Lemma E.1 we know that for all f ∈ F the
expectation E[〈∆, f(G)〉Rm ] exists and is given by

E[〈∆, f(G)〉Rm ] = 〈f, µg〉H,
where µg is the embedding defined in Lemma E.1. Thus the definition of the dual norm yields

KCE[k, g] = CE[F , g] = sup
f∈F

E[〈∆, f(G)〉Rm ] = sup
f∈F
〈f, µg〉H = ‖µg‖H.

Thus from the reproducing property and Lemma E.1 we obtain

SKCE[k, g] = KCE2[k, g] = 〈µg, µg〉H = E[〈∆, µg(G)〉Rm ]

= E[E[〈∆′, k(G′, G)∆〉Rm |G]]

= E[〈∆, k(G,G′)∆′〉Rm ],

where G′ is an independent copy of G and ∆′ := δ(G′).

By rewriting
∆ = E[eY |G]−G = E[eY −G|G]

and ∆′ in the same way, we get

SKCE[k, g] = E[〈eY −G, k(G,G′)(eY ′ −G′)〉Rm ].

Plugging in the definitions of G and G′ yields

SKCE[k, g] = E[〈eY − g(X), k(g(X), g(X ′))(eY ′ − g(X ′))〉Rm ].

F Estimators

Let D = {(Xi, Yi)}ni=1 be a set of random variables that are i.i.d. as (X,Y ). Regardless of the space
F the plug-in estimator of CE[F , g] is

ĈE[F , g,D] := sup
f∈F

1

n

n∑
i=1

〈δ(Xi, Yi), f(g(Xi))〉Rm .

If F is the unit ball in a RKHS, i.e., for the kernel calibration error, we can calculate this estimator
explicitly.
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Lemma F.1 (Biased estimator). Let F be the unit ball in a RKHS H ⊂ (Rm)
∆m

with kernel
k : ∆m ×∆m → L(Rm). Then

ĈE[F , g,D] =
1

n

 n∑
i,j=1

〈δ(Xi, Yi), k(g(Xi), g(Xj))δ(Xj , Yj)〉Rm

1/2

.

Proof. From the reproducing property and the definition of the dual norm it follows that

ĈE[F , g,D] = sup
f∈F

〈
1

n

n∑
i=1

k(·, g(Xi))δ(Xi, Yi), f

〉
H

=
1

n

∥∥∥∥∥
n∑
i=1

k(·, g(Xi))δ(Xi, Yi)

∥∥∥∥∥
H
.

Applying the reproducing property yields the result.

Since we can uniquely identify the unit ball F with the matrix-valued kernel k and the plug-in
estimator in Lemma F.1 does not depend on F explicitly, we introduce the notation

K̂CE[k, g,D] := ĈE[F , g,D] and ŜKCEb[k, g,D] := K̂CE
2
[k, g,D],

where F is the unit ball in the RKHS H ⊂ (Rm)
∆m

corresponding to kernel k. By removing the
terms involving the same random variables we obtain an unbiased estimator.

Lemma F.2 (Unbiased estimator). Let k : ∆m × ∆m → L(Rm) be a kernel, and assume that
k(·, t)u is measurable for all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,1 <∞. Then

ŜKCEuq[k, g,D] :=
1

n(n− 1)

n∑
i,j=1,
i 6=j

〈δ(Xi, Yi), k(g(Xi), g(Xj))δ(Xj , Yj)〉Rm

is an unbiased estimator of SKCE[k, g].

Proof. The assumptions of Lemma E.2 are satisfied, and hence we know that

SKCE[k, g] = E[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ],

where (X ′, Y ′) is an independent copy of (X,Y ). Since (X,Y ), (X ′, Y ′), and (Xi, Yi) are i.i.d.,
we have

E[ŜKCEuq[k, g,D]] =
1

n(n− 1)

n∑
i=1,
i 6=j

E[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ]

= E[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ]

= SKCE[k, g],

which shows that ŜKCEuq[k, g,D] is an unbiased estimator of SKCE[k, g].

There exists an unbiased estimator with higher variance that scales not quadratically but only linearly
with the number of samples.

Lemma F.3 (Linear estimator). Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u
is measurable for all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,1 <∞. Then

ŜKCEul[k, g,D] :=
1

bn/2c

bn/2c∑
i=1

〈δ(X2i−1, Y2i−1), k(g(X2i−1), g(X2i))δ(X2i, Y2i)〉Rm

is an unbiased estimator of SKCE[k, g].
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Proof. The assumptions of Lemma E.2 are satisfied, and hence we know that

SKCE[k, g] = E[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ],

where (X ′, Y ′) is an independent copy of (X,Y ). Since (X,Y ), (X ′, Y ′), and (Xi, Yi) are i.i.d.,
we have

E[ŜKCEul[k, g,D]] =
1

bn/2c

bn/2c∑
i=1

E[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ]

= E[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ]

= SKCE[k, g],

which shows that ŜKCEul[k, g,D] is an unbiased estimator of SKCE[k, g].

G Asymptotic distributions

In this section we investigate the asymptotic behaviour of the proposed estimators. We start with a
simple but very useful statement.

Lemma G.1. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,2 <∞.

Then Var[〈∆, k(G,G′)∆′〉Rm ] <∞, where G′ is an independent copy of G and ∆′ := δ(G′).

Proof. From the Cauchy-Schwarz inequality and the definition of the operator norm we obtain

E[〈∆, k(G,G′)∆′〉2Rm ] ≤ E[‖∆‖22‖k(G,G′)‖22;2‖∆‖22] ≤ 4E[‖k(G,G′)‖22;2].

Hence by Eq. (D.3)

E[〈∆′, k(G,G′)∆′〉2Rm ] ≤ 4E[‖k(G,G)‖2;2‖k(G′, G′)‖2;2]

= 4E[‖k(G,G)‖2;2]E[‖k(G′, G′)‖2;2] = 4(E[‖k(G,G)‖2;2])
2
,

which implies
E[〈∆, k(G,G′)∆′〉2Rm ] <∞

since by assumption ‖k‖µG,2;2 <∞.

Since the unbiased estimator ŜKCEuq is a U-statistic, we know that the random variable√
n(ŜKCEuq−SKCE) is asymptotically normally distributed under certain conditions.

Theorem G.1. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,1 <∞.

If Var[〈∆, k(G,G′)∆′〉Rm ] <∞, then

√
n
(

ŜKCEuq[k, g,D]− SKCE[k, g]
)

d−→ N (0, 4ζ1),

where
ζ1 := E[〈∆, k(G,G′)∆′〉Rm〈∆, k(G,G′′)∆′′〉Rm ]− SKCE2[k, g],

where G′ and G′′ are independent copies of G and ∆′ := δ(G′) and ∆′′ := δ(G′′).

Proof. The statement follows immediately from van der Vaart (Theorem 12.3 1998).

If model g is strongly calibrated, then ζ1 = 0, and hence ŜKCEuq is a so-called degenerate U-statistic
(see, e.g., Section 12.3 van der Vaart, 1998).
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Theorem G.2. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,2 <∞.

If g is strongly calibrated, then

n ŜKCEuq[k, g,D]
d−→
∞∑
i=1

λi(Z
2
i − 1),

whereZi are independent standard normally distributed random variables and λi with
∑∞
i=1 λ

2
i <∞

are eigenvalues of the integral operator

Kf(ξ, y) :=

∫
〈ey − ξ, k(ξ, ξ′)(ey′ − ξ′)〉Rmf(ξ′, y′)µG×Y (d(ξ′, y′))

on the space L2(∆m × {1, . . . ,m}, µG×Y ).

Proof. From Lemma G.1 we know that

Var[〈∆, k(G,G′)∆′〉Rm ] <∞.
Moreover, since g is strongly calibrated, ∆ = 0 almost surely and by Theorem C.1 KCE[k, g] = 0.
Thus we obtain

E[〈∆, k(G,G′)∆′〉Rm〈∆, k(G,G′′)∆′′〉Rm ]− SKCE2[k, g] = 0.

The statement follows from Serfling (Theorem in Section 5.5.2 1980).

As discussed by Gretton et al. (2012) in the case of two-sample tests, a natural idea is to find a
threshold c such that P[n ŜKCEuq[k, g,D] > c |H0] ≤ α, where H0 is the null hypothesis that the
model is strongly calibrated. The desired quantile can be estimated by fitting Pearson curves to the
empirical distribution by moment matching (Gretton et al., 2012), or alternatively by bootstrapping
(Arcones and Giné, 1992), both computed and performed under the assumption that the model is
strongly calibrated.

If model g is strongly calibrated we know E[ŜKCEuq[k, g,D]] = 0. Moreover, it follows from
Hoeffding (p. 299 1948) that

E
[
ŜKCEuq

2
[k, g,D]

]
=

2

n(n− 1)
E
[
(〈eY − g(X), k(g(X), g(X ′))(eY ′ − g(X ′))〉Rm)

2
]
,

where (X ′, Y ′) is an independent copy of (X,Y ). By some tedious calculations we can retrieve
higher-order moments as well. If model g is strongly calibrated, we know from Serfling (1980,
Lemma B, Section 5.2.2) that for r ≥ 2

E
[
ŜKCEuq

r
[k, g,D]

]
= O(n−r)

as the number of samples n goes to infinity, provided that

E
[
|〈eY − g(X), k(g(X), g(X ′))(eY ′ − g(X ′))〉Rm |r

]
<∞.

Alternatively, as discussed by Arcones and Giné (Section 5 1992), we can estimate c by using
quantiles of the bootstrap statistic

T = 2n−1
∑

1≤i<j≤n

[
h((X∗,i, Y∗,i), (X∗,j , Y∗,j))− n−1

n∑
k=1

h((X∗,i, Y∗,i), (Xk, Yk))

−n−1
n∑
k=1

h((Xk, Yk), (X∗,j , Y∗,j)) + n−2
n∑

k,l=1

h((Xk, Yk), (Xl, Yl))

 ,
where

h((x, y), (x′, y′)) := 〈δ(x, y), k(g(x), g(x′))δ(x′, y′)〉Rm
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and (X∗,1, Y∗,1), . . . , (X∗,n, Y∗,n) are sampled with replacement from the data set D. Then asymp-
totically

P
[
n ŜKCEuq[k, g,D] > c |H0

]
≈ P[T > c | D].

For the linear estimator, the asymptotical behaviour follows from the central limit theorem (e.g.,
Theorem A in Section 1.9 Serfling, 1980).

Corollary G.1. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,1 <∞.

If σ2 := Var[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ] <∞, where (X ′, Y ′) is an independent copy
of (X,Y ), then √

bn/2c
(

ŜKCEul[k, g,D]− SKCE[k, g]
)

d−→ N (0, σ2).

As noted in the following statement, the variance σ2 is finite if t 7→ ‖k(t, t)‖ is L2-integrable with
respect to measure µG.

Corollary G.2. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,2 <∞.

Then σ2 := Var[〈δ(X,Y ), k(G,G′)δ(X ′, Y ′)〉Rm ] <∞, where (X ′, Y ′) is an independent copy of
(X,Y ) with G′ = g(X ′), and√

bn/2c
(

ŜKCEul[k, g,D]− SKCE[k, g]
)

d−→ N (0, σ2).

Proof. The statement follows from Corollary G.1.

The weak convergence of ŜKCEul yields the following asymptotic test.

Corollary G.3. Let the assumptions of Corollary G.1 be satisfied.

A one-sided statistical test with test statistic ŜKCEul[k, g,D] and asymptotic significance level α has
the acceptance region √

bn/2c ŜKCEul[k, g,D] < z1−ασ̂,

where z1−α is the (1−α)-quantile of the standard normal distribution and σ̂ is a consistent estimator
of the standard deviation of 〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm .

H Distribution-free bounds

First we prove a helpful bound.

Lemma H.1. Let k : ∆m × ∆m → L(Rm) be a kernel, and assume that Kp;q :=
sups,t∈∆m ‖k(s, t)‖p;q <∞ for some 1 ≤ p, q ≤ ∞. Then

sup
x,x′∈X ,y,y′∈{1,...,m}

|〈δ(x, y), k(g(x), g(x′))δ(x′, y′)〉Rm | ≤ 21+1/p−1/qKp;q =: Bp;q.

Proof. By Hölder’s inequality and the definition of the operator norm for all s, t ∈ ∆m and u, v ∈ Rm

|〈u, k(s, t)v〉Rm | ≤ ‖u‖q′‖k(s, t)v‖q ≤ ‖u‖q′‖v‖p‖k(s, t)‖p;q ≤ Kp;q‖u‖q′‖v‖p.

The result follows from the fact that maxs,t∈∆m ‖s − t‖p = 21/p and maxs,t∈∆m ‖s − t‖q′ =

21/q′ = 21−1/q .

Unfortunately, the tightness of the bound in Lemma H.1 depends on the choice of p and q, as the
following example shows.
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Example H.1
Let k = φIm, where φ : ∆m ×∆m → R is a scalar-valued kernel and Im ∈ Rm×m is the identity
matrix. Assume that Φ := sups,t∈∆m |φ(s, t)| <∞. One can show that for all s, t ∈ ∆m

‖k(s, t)‖p;q =

{
φ(s, t) if p ≤ q,
m1/q−1/pφ(s, t) if p > q,

which implies that

Kp;q =

{
Φ if p ≤ q,
m1/q−1/pΦ if p > q.

Thus the bound Bp;q in Lemma H.1 is

Bp;q =

{
21+1/p−1/qΦ if p ≤ q,
21+1/p−1/qm1/q−1/pΦ if p > q,

which attains its smallest value min1≤p,q≤∞Bp;q = 2Φ if and only if p = q or m = 2 and p > q.
Thus for any other choice of p and q Lemma H.1 provides a non-optimal bound.

Theorem H.1. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and Kp;q := sups,t∈∆m ‖k(s, t)‖p;q < ∞ for some 1 ≤ p, q ≤ ∞. Then
for all ε > 0

P
[∣∣∣K̂CE[k, g,D]−KCE[k, g]

∣∣∣ ≥ 2(Bp;q/n)
1/2

+ ε
]
≤ exp

(
− ε2n

2Bp;q

)
.

Proof. Let F be the unit ball in the RKHS H ⊂ (Rm)
∆m

corresponding to kernel k. We consider
the random variable

F :=
∣∣∣K̂CE[k, g,D]−KCE[k, g]

∣∣∣ .
The randomness of F is due to the randomness of the data points (Xi, Yi), and by Lemmas E.2
and F.1 we can rewrite F as

F = n−1

∣∣∣∣∣
∥∥∥∥∥
n∑
i=1

k(·, g(Xi))δ(Xi, Yi)

∥∥∥∥∥
H
− n ‖µg‖H

∣∣∣∣∣ =: f((X1, Y1), . . . , (Xn, Yn)),

where µg is the embedding defined in Lemma E.1. The triangle inequality implies that for all
zi = (xi, yi) ∈ X × {1, . . . ,m}

f(z1, . . . , zn) = n−1

∣∣∣∣∣
∥∥∥∥∥
n∑
i=1

k(·, g(xi))δ(xi, yi)

∥∥∥∥∥
H
− n‖µg‖H

∣∣∣∣∣
≤ n−1

∥∥∥∥∥
n∑
i=1

(k(·, g(xi))δ(xi, yi)− µg)
∥∥∥∥∥
H

=: h(z1, . . . , zn),

(H.1)

where h : (X × {1, . . . ,m})n → R is measurable and hence induces a random variable H :=
h((X1, Y1), . . . , (Xn, Yn)).

By the reproducing property and Lemma H.1, for all x, x′ ∈ X and y, y′ ∈ {1, . . . ,m} we have

‖k(·, g(x))δ(x, y)− k(·, g(x′))δ(x′, y′)‖2H = 〈δ(x, y), k(g(x), g(x))δ(x, y)〉Rm

− 〈δ(x, y), k(g(x), g(x′))δ(x′, y′)〉Rm

− 〈δ(x′, y′), k(g(x′), g(x))δ(x, y)〉Rm

+ 〈δ(x′, y′), k(g(x′), g(x′))δ(x′, y′)〉Rm

≤ 4Bp;q.

Thus for all i ∈ {1, . . . ,m} the triangle inequality implies

sup
z,z′,zj(j 6=i)

|h(z1, . . . , zi−1, z, zi+1, . . . , zn)− h(z1, . . . , zi−1, z
′, zi+1, . . . , zn)|

≤ sup
x,x,y,y′

n−1 ‖k(·, g(x))δ(x, y)− k(·, g(x′))δ(x′, y′)‖H ≤
2B

1/2
p;q

n
.

22



Hence we can apply McDiarmid’s inequality to the random variable H , which yields for all ε > 0

P [H ≥ E[H] + ε] ≤ exp

(
− ε2n

2Bp;q

)
. (H.2)

In the final parts of the proof we bound the expectation E[H]. By Lemmas E.1 and F.1, we know that

H = h((X1, Y1), . . . , (Xn, Yn))

= sup
f∈F

n−1

∣∣∣∣∣
n∑
i=1

(
〈δ(Xi, Yi), f(g(Xi))〉Rm − E [〈δ(X,Y ), f(g(X))〉Rm ]

)∣∣∣∣∣
= sup
f∈F0

n−1

∣∣∣∣∣
n∑
i=1

f(Xi, Yi)− E[f(X,Y )]

∣∣∣∣∣ ,
where F0 := {f : X × {1, . . . ,m} → R, (x, y) 7→ 〈δ(x, y), f̃(g(x))〉Rm : f̃ ∈ F} is a class of
measurable functions. As Gretton et al. (2012), we make use of symmetrization ideas (van der Vaart
and Wellner, 1996, p. 108). From van der Vaart and Wellner (1996, Lemma 2.3.1) it follows that

E[H] = E

[
sup
f∈F0

n−1

∣∣∣∣∣
n∑
i=1

f(Xi, Yi)− E[f(X,Y )]

∣∣∣∣∣
]
≤ 2E

[
sup
f∈F0

∣∣∣∣∣n−1
n∑
i=1

εif(Xi, Yi)

∣∣∣∣∣
]
,

where ε1, . . . , εn are independent Rademacher random variables. Similar to Bartlett and Mendelson
(2002, Lemma 22), we obtain

E[H] ≤ 2n−1 E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εi〈δ(Xi, Yi), f(g(Xi))〉Rm

∣∣∣∣∣
]

= 2n−1 E

[
sup
f∈F

∣∣∣∣∣
〈

n∑
i=1

εik(·, g(Xi))δ(Xi, Yi), f

〉
H

∣∣∣∣∣
]

= 2n−1 E

[∥∥∥∥∥
n∑
i=1

εik(·, g(Xi))δ(Xi, Yi)

∥∥∥∥∥
H

]

= 2n−1 E


 n∑
i,j=1

εiεj〈k(·, g(Xi))δ(Xi, Yi), k(·, g(Xj))δ(Xj , Yj)〉H

1/2
 .

By Jensen’s inequality we get

E[H] ≤ 2n−1

 n∑
i,j=1

E [εiεj〈k(·, g(Xi))δ(Xi, Yi), k(·, g(Xj))δ(Xj , Yj)〉H]

1/2

= 2n−1/2
(
E [〈k(·, g(X))δ(X,Y ), k(·, g(X))δ(X,Y )〉H]

)1/2

≤ 2(Bp;q/n)
1/2
.

(H.3)

All in all, from Eqs. (H.1) to (H.3) we obtain for all ε > 0

P
[∣∣∣K̂CE[k, g,D]−KCE[k, g]

∣∣∣ ≥ 2(Bp;q/n)
1/2

+ ε
]

= P[F ≥ 2(Bp;q/n)
1/2

+ ε]

≤ P[H ≥ 2(Bp;q/n)
1/2

+ ε]

≤ P[H ≥ E[H] + ε]

≤ exp

(
− ε2n

2Bp;q

)
,

which concludes our proof.
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If model g is calibrated in the strong sense, we can improve the bound.

Theorem H.2. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and Kp;q := sups,t∈∆m ‖k(s, t)‖p;q <∞ for some 1 ≤ p, q ≤ ∞. Define

B1 := n−1/2 [E [〈δ(X,Y ), k(g(X), g(X))δ(X,Y )〉Rm ]]
1/2

, and

B2 := (Bp;q/n)
1/2
.

Then B1 ≤ B2, and for all ε > 0 and i ∈ {1, 2}

P
[
K̂CE[k, g,D] ≥ Bi + ε

]
≤ exp

(
− ε2n

2Bp;q

)
,

if g is calibrated in the strong sense.

Proof. Let F be the unit ball in the RKHS H ⊂ (Rm)
∆m

corresponding to kernel k. Lemma H.1
implies

B1 = n−1/2 [E [〈δ(X,Y ), k(g(X), g(X))δ(X,Y )〉Rm ]]
1/2

≤ n−1/2 [E[Bp;q]]
1/2

= (Bp;q/n)
1/2

= B2.
(H.4)

Let H be defined as in the proof of Theorem H.1. Since g is strongly calibrated, it follows from
Theorem C.1 and Lemma E.2 that µg = 0, and thus by Lemma F.1

H = n−1

∥∥∥∥∥
n∑
i=1

k(·, g(xi))δ(xi, yi)

∥∥∥∥∥
H

= K̂CE[k, g,D].

Thus Eq. (H.2) implies

P
[
K̂CE[k, g,D] ≥ E[K̂CE[k, g,D] + ε

]
≤ exp

(
− ε2n

2Bp;q

)
. (H.5)

Next we bound E[K̂CE[k, g,D]]. From Lemma F.1 we get

E[K̂CE[k, g,D]] =
1

n
E


 n∑
i,j=1

〈δ(Xi, Yi), k(g(Xi), g(Xj))δ(Xj , Yj)〉Rm

1/2
 ,

and hence by Jensen’s inequality we obtain

E[K̂CE[k, g,D]] ≤ 1

n

E

 n∑
i,j=1

〈δ(Xi, Yi), k(g(Xi), g(Xj))δ(Xj , Yj)〉Rm

1/2

=
1

n

(
nE [〈δ(X,Y ), k(g(X), g(X))δ(X,Y )〉Rm ]

+ n(n− 1)E [〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ]

)1/2

,

where (X ′, Y ′) denotes an independent copy of (X,Y ). From Lemma E.2 it follows that

E[K̂CE[k, g,D] ≤
(

1

n
E [〈δ(X,Y ), k(g(X), g(X))δ(X,Y )〉Rm ] +

(
1− 1

n

)
SKCE[k, g]

)1/2

.

If model g is calibrated in the strong sense, we know from Theorem C.1 that SKCE[k, g] = 0. Thus
we obtain

E[K̂CE[k, g,D]] ≤ B1. (H.6)
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All in all, from Eqs. (H.4) to (H.6) it follows that for all ε > 0 and i ∈ {1, 2}
P
[
K̂CE[k, g,D] ≥ Bi + ε

]
≤ P

[
K̂CE[k, g,D] ≥ B1 + ε

]
≤ P

[
K̂CE[k, g,D] ≥ E[K̂CE[k, g,D] + ε

]
≤ exp

(
−−ε

2n

2Bp;q

)
,

if g is calibrated in the strong sense.

Thus we obtain the following distribution-free hypothesis test.

Corollary H.1. Let the assumptions of Theorem H.2 be satisfied.

A statistical test with test statistic K̂CE[k, g,D] and significance level α for the null hypothesis of
model g being calibrated in the strong sense has the acceptance region

K̂CE[k, g,D] < (Bp;q/n)
1/2

(1 +
√
−2 logα).

A distribution-free bound for the deviation of the unbiased estimator can be obtained from the theory
of U-statistics.

Theorem H.3. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and Kp;q := sups,t∈∆m ‖k(s, t)‖p;q for some 1 ≤ p, q ≤ ∞. Then for all
t > 0

P
[
ŜKCEuq[k, g,D]− SKCE[k, g] ≥ t

]
≤ exp

(
−bn/2ct

2

2B2
p;q

)
.

The same bound holds for P
[
ŜKCEuq[k, g,D]− SKCE[k, g] ≤ −t

]
.

Proof. By Lemma F.2, E[ŜKCEuq[k, g,D]] = SKCE[k, g]. Moreover, by Lemma H.1 we know that
sup

x,x′∈X ,y,y′∈{1,...,m}
|〈δ(x, y), k(g(x), g(x′))δ(x′, y′)〉Rm | ≤ Bp;q.

Thus the result follows from the bound on U-statistics by Hoeffding (1963, p. 25).

We can derive a hypothesis test using the unbiased estimator.

Corollary H.2. Let the assumptions of Theorem H.3 be satisfied.

A one-sided statistical test with test statistic ŜKCEuq[k, g,D] and significance level α for the null
hypothesis of model g being calibrated in the strong sense has the acceptance region

ŜKCEuq[k, g,D] <
Bp;q√
bn/2c

√
−2 logα.

Analogously we can obtain a bound for the linear estimator.

Theorem H.4. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and Kp;q := sups,t∈∆m ‖k(s, t)‖p;q for some 1 ≤ p, q ≤ ∞. Then for all
t > 0

P
[
ŜKCEul[k, g,D]− SKCE[k, g] ≥ t

]
≤ exp

(
−bn/2ct

2

2B2
p;q

)
.

The same bound holds for P
[
ŜKCEul[k, g,D]− SKCE[k, g] ≤ −t

]
.

Proof. By Lemma F.3, E[ŜKCEul[k, g,D]] = SKCE[k, g]. Moreover, by Lemma H.1 we know that
sup

x,x′∈X ,y,y′∈{1,...,m}
|〈δ(x, y), k(g(x), g(x′))δ(x′, y′)〉Rm | ≤ Bp;q.

Thus by Hoeffding’s inequality (Hoeffding, 1963, Theorem 2) for all t > 0

P
[
ŜKCEul[k, g,D]− SKCE[k, g] ≥ t

]
≤ exp

(
−bn/2ct

2

2B2
p;q

)
.
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Obviously this results yields another distribution-free hypothesis test.

Corollary H.3. Let the assumptions of Theorem H.4 be satisfied.

A one-sided statistical test with test statistic ŜKCEul[k, g,D] and significance level α for the null
hypothesis of model g being calibrated in the strong sense has the acceptance region

ŜKCEul[k, g,D] <
Bp;q√
bn/2c

√
−2 logα.

I Comparisons

I.1 Expected calibration error and maximum calibration error

For certain spaces of bounded functions the calibration error CE turns out to be a form of the ECE.
In particular, the ECE with respect to the cityblock distance, the total variation distance, and the
squared Euclidean distance are special cases of CE. Choosing p = 1 in the following statement
corresponds to the special case of the MCE.

Lemma I.1 (ECE and MCE as special cases). Let 1 ≤ p ≤ ∞ with Hölder conjugate p′. If
F = Kp(∆m, µG;Rm), then CE[F , g] = ‖δ‖µG,p′ .

Proof. Note that F is well defined since F ⊂ L1(∆m, µG;Rm).

The statement follows from the extremal case of Hölder’s inequality. More explicitly, let ν denote the
counting measure on {1, . . . ,m}. Since both µG and ν are σ-finite measures, the product measure
µG ⊗ ν on the product space B := ∆m × {1, . . . ,m} is uniquely defined and σ-finite. Define
δ̃(t, k) := δk(t) for all (t, k) ∈ B. Then we can rewrite

CE[F , g] = sup
f∈Kp(∆m,µG;Rm)

∫
∆m

〈δ(x), f(x)〉Rm µG(dx)

= sup
f∈Kp(B,µG⊗ν;Rm)

∫
B

|δ̃(x, k)f(x, k)| (µG × ν)(d(x, k))

= ‖δ̃‖µG⊗ν,p′ = ‖δ‖µG,p′ ,

to make the reasoning more apparent. Since µG⊗ν is σ-finite the statement holds even for p = 1.

I.2 Maximum mean calibration error

The so-called “correctness score” (Kumar et al. (2018)) c(x, y) of an input x and a class y is defined
as c(x, y) = 1{arg maxy′ gy′ (x)}(y). It is 1 if class y is equal to the class that is most likely for input x
according to model g, and 0 otherwise. Let k : [0, 1]× [0, 1]→ R be a scalar-valued kernel. Then the
maximum mean calibration error MMCE[k, g] of a model g with respect to kernel k is defined6 as

MMCE[k, g]

=

(
E[(c(X,Y )− gmax(X))(c(X ′, Y ′)− gmax(X ′))k(gmax(X), gmax(X ′))]

)1/2

,

where (X ′, Y ′) is an independent copy of (X,Y ).

Example I.1 shows that the KCE allows exactly the same analysis of the common notion of calibration
as the MMCE proposed by Kumar et al. (2018) by applying it to a model that is reduced to the most
confident predictions.

Example I.1 (MMCE as special case)
Reduce model g to its most confident predictions by defining a new model g̃ with g̃(x) :=
(gmax(x), 1 − gmax(x)). The predictions g̃(x) of this new model can be viewed as a model of

6For illustrative purposes we present a variation of the original definition of the MMCE by Kumar et al.
(2018).
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the conditional probabilities (P[Ỹ = 1 |X = x],P[Ỹ = 2 |X = x]) in a classification problem with
inputs X and classes Ỹ := 2− c(X,Y ).7

Let k : [0, 1]× [0, 1]→ R be a scalar-valued kernel. Define a matrix-valued function k̃ : ∆2 ×∆2 →
R2×2 by

k̃((p1, p2), (q1, q2)) =
k(p1, q1)

2
I2.

Then by Caponnetto et al. (2008, Example 1 and Theorem 14) k̃ is a matrix-valued kernel and,
if it is continuous, it is universal if and only if k is universal. By construction eỸ − g̃(X) =
(c(X,Y )− gmax(X))(1,−1), and hence

SKCE[k̃, g̃] = E[(eỸ − g̃(X))
ᵀ
k̃(g̃(X), g̃(X ′))(eỸ − g̃(X ′))]

= E[(c(X,Y )− gmax(X))(c(X ′, Y ′)− gmax(X ′))k(gmax(X), gmax(X ′))]

= MMCE2[k, g],

where (X ′, Ỹ ′) and (X ′, Y ′) are independent copies of (X, Ỹ ) and (X,Y ), respectively.

7In the words of Vaicenavicius et al. (2019), g̃ is induced by the maximum calibration lens.
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J Experiments

The Julia implementation for all experiments is available online at https://github.com/
devmotion/CalibrationPaper. The code is written and documented with the literate program-
ming tool Weave.jl Pastell (2017) and exported to HTML files that include results and figures.

J.1 Calibration errors

In our experiments we evaluate the proposed estimators of the SKCE and compare them with two
estimators of the ECE.

J.1.1 Expected calibration error

As commonly done (Bröcker and Smith, 2007; Guo et al., 2017; Vaicenavicius et al., 2019), we study
the ECE with respect to the total variation distance.

The standard histogram-regression estimator of the ECE is based on a partitioning of the probability
simplex (Guo et al., 2017; Vaicenavicius et al., 2019). In our experiments we use two different
partitioning schemes. The first scheme is the commonly used partitioning into bins of uniform size,
based on splitting the predictions of each class into 10 bins. The other partitioning is data-dependent:
the data set is split iteratively along the median of the class predictions with the highest variance as
long as the number of samples in a bin is at least 10.

J.1.2 Kernel calibration error

We consider the matrix-valued kernel k(x, y) = exp (−‖x− y‖/ν)Im with kernel bandwidth ν > 0.
Analogously to the ECE, we take the total variation distance as distance measure. Moreover, we
choose the bandwidth adaptively with the so-called median heuristic. The median heuristic is a
common heuristic that proposes to set the bandwidth to the median of the pairwise distances of
samples in a, not necessarily separate, validation data set (see, e.g., Gretton et al., 2012).

J.2 Generative models

Since the considered calibration errors depend only on the predictions and labels, we specify genera-
tive models of labeled predictions (g(X), Y ) without considering X . Instead we only specify the
distribution of the predictions g(X) and the conditional distribution of Y given g(X) = g(x). This
setup allows us to design calibrated and uncalibrated models in a straightforward way, which enables
clean numerical evaluations with known calibration errors.

We study the generative model

g(X) ∼ Dir(α),

Z ∼ Ber(π),

Y |Z = 1, g(X) = γ ∼ Cat(β),

Y |Z = 0, g(X) = γ ∼ Cat(γ),

with parameters α ∈ Rm>0, β ∈ ∆m, and π ∈ [0, 1]. The model is calibrated if and only if π = 0,
since for all labels y ∈ {1, . . . ,m} we obtain

P[Y = y | g(X)] = πβy + (1− π)gy(X),

and hence ∆ = π(β − g(X)) = 0 almost surely if and only if π = 0.

By setting α = (1, . . . , 1) we can model uniformly distributed predictions, and by decreasing the
magnitude of α we can push the predictions towards the edges of the probability simplex, mimicking
the predictions of a trained model (cf., e.g., Vaicenavicius et al., 2019).
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J.2.1 Theoretical expected calibration error

For the considered model, the ECE with respect to the total variation distance is

ECE[‖.‖TV, g] = E[‖∆‖TV] = π E[‖β − g(X)‖TV] = π/2

m∑
i=1

E[|βi − gi(X)|]

=
π

2

m∑
i=1

((
αi
α0
− βi

)(
1− 2B(βi;αi, α0 − αi)

B(αi, α0 − αi)

)
+

2βαi
i (1− βi)α0−αi

α0B(αi, α0 − αi)

)
,

where α0 :=
∑m
i=1 αi and B(x; a, b) denotes the incomplete Beta function

∫ x
0
ta−1(1− t)b−1

dt.
By exploiting

∑m
i=1 βi = 1, we get

ECE[‖.‖TV, g] =
π

α0

m∑
i=1

(α0βi − αi)B(βi;αi, α0 − αi) + βαi
i (1− βi)α0−αi

B(αi, α0 − αi)
.

Let I(x; a, b) := B(x; a, b)/B(a, b) denote the regularized incomplete Beta function. Due to the
identity xa(1− x)b/B(a, b) = a(I(x; a, b)− I(x; a+ 1, b), we obtain

ECE[‖.‖TV, g] = π
m∑
i=1

(
βiI(βi;αi, α0 − αi)−

αi
α0
I(βi;αi + 1, α0 − αi)

)
.

If α = (a, . . . , a) for some a > 0, then

ECE[‖.‖TV, g] = π

m∑
i=1

(
βiI(βi; a, (m− 1)a)−m−1I(βi; a+ 1, (m− 1)a)

)
.

If β = ej for some j ∈ {1, . . . ,m} we get

ECE[‖.‖TV, g] = π
(
I(1; a, (m− 1)a)−m−1I(1; a+ 1, (m− 1)a)

)
= π(1−m−1) =

π(m− 1)

m
,

whereas if β = (1/m, . . . , 1/m) we obtain

ECE[‖.‖TV, g] = π
(
I(m−1; a, (m− 1)a)− I(m−1; a+ 1, (m− 1)a)

)
= π

m−a(1−m−1)
(m−1)a

aB(a, (m− 1)a)
=

π

aB(a, (m− 1)a)

(
(m− 1)

m−1

mm

)a
.

We see that, as the number of classes goes to infinity, the ECE with respect to the total variation
distance tends to π and π exp (−a)aa−1/Γ(a), respectively.

J.2.2 Mean total variation distance

For the considered generative models, we can compute the mean total variation distance E[‖X −
X ′‖TV], which does not depend on the number of available samples (but, of course, is usually not
available). If X and X ′ are i.i.d. according to Dir(α) with parameter α ∈ Rm>0, then their mean total
variation distance is

E[‖X −X ′‖TV] = 1/2

m∑
i=1

E[|Xi −X ′i|]

=

m∑
i=1

E[Xi −X ′i |Xi > X ′i]

=
2B(α0, α0)

α0

m∑
i=1

[B(αi, αi)B(α0 − αi, α0 − αi)]−1
,

where α0 :=
∑m
i=1 αi. We conduct additional experiments in which we set the kernel bandwidth to

the mean total variation distance.
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J.2.3 Distribution of estimates: Additional figures
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Figure 3: Distribution of ÊCE with bins of uniform size, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (1, . . . , 1) and β =
(1/m, . . . , 1/m).
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Figure 4: Distribution of ÊCE with bins of uniform size, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and β =
(1/m, . . . , 1/m).
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Figure 5: Distribution of ÊCE with bins of uniform size, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (1, . . . , 1) and β =
(1, 0, . . . , 0).
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Figure 6: Distribution of ÊCE with bins of uniform size, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and β =
(1, 0, . . . , 0).
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Figure 7: Distribution of ÊCE with data-dependent bins, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (1, . . . , 1) and β =
(1/m, . . . , 1/m).
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Figure 8: Distribution of ÊCE with data-dependent bins, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and β =
(1/m, . . . , 1/m).
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Figure 9: Distribution of ÊCE with data-dependent bins, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (1, . . . , 1) and β =
(1, 0, . . . , 0).
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Figure 10: Distribution of ÊCE with data-dependent bins, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and β =
(1, 0, . . . , 0).
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Figure 11: Distribution of ŜKCEb with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1) and
β = (1/m, . . . , 1/m).

0 1 2 3
·10−30

2,000

4,000

m
=

2

π = 0.0

0 1 2 3
·10−20

1,000

2,000

π = 0.25

0 2 4 6 8
·10−20

1,000

2,000

π = 0.5

0.05 0.1 0.15

0

1,000

2,000

π = 0.75

0.10.150.20.25

0

1,000

2,000

3,000

π = 1.0

0 2 4
·10−30

2,000

4,000

m
=

1
0

2 4 6 8
·10−30

1,000

2,000

0.5 1
·10−20

1,000

2,000

3,000

1 1.5 2
·10−20

1,000

2,000

1.5 2 2.5 3
·10−20

1,000

2,000

0 2 4
·10−30

1,000

2,000

m
=

1
0
0

0 2 4
·10−30

500

1,000

1,500

2,000

0 2 4
·10−30

1,000

2,000

3,000

0 2 4 6
·10−30

1,000

2,000

3,000

0 2 4 6
·10−30

1,000

2,000

3,000

0 2 4
·10−30

1,000

2,000

3,000

m
=

1
0
0
0

0 2 4
·10−30

1,000

2,000

3,000

0 2 4
·10−30

1,000

2,000

3,000

0 2 4
·10−30

1,000

2,000

3,000

0 2 4
·10−30

1,000

2,000

3,000

calibration error estimate

#
ru

ns

Figure 12: Distribution of ŜKCEb with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and
β = (1/m, . . . , 1/m).
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Figure 13: Distribution of ŜKCEb with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1) and
β = (1, 0, . . . , 0).
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Figure 14: Distribution of ŜKCEb with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and
β = (1, 0, . . . , 0).
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Figure 15: Distribution of ŜKCEb with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1)
and β = (1/m, . . . , 1/m).
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Figure 16: Distribution of ŜKCEb with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1)
and β = (1/m, . . . , 1/m).
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Figure 17: Distribution of ŜKCEb with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1)
and β = (1, 0, . . . , 0).
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Figure 18: Distribution of ŜKCEb with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1)
and β = (1, 0, . . . , 0).
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Figure 19: Distribution of ŜKCEuq with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1) and
β = (1/m, . . . , 1/m).
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Figure 20: Distribution of ŜKCEuq with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and
β = (1/m, . . . , 1/m).
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Figure 21: Distribution of ŜKCEuq with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1) and
β = (1, 0, . . . , 0).
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Figure 22: Distribution of ŜKCEuq with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and
β = (1, 0, . . . , 0).
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Figure 23: Distribution of ŜKCEuq with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1)
and β = (1/m, . . . , 1/m).
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Figure 24: Distribution of ŜKCEuq with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1)
and β = (1/m, . . . , 1/m).
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Figure 25: Distribution of ŜKCEuq with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1)
and β = (1, 0, . . . , 0).
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Figure 26: Distribution of ŜKCEuq with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1)
and β = (1, 0, . . . , 0).
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Figure 27: Distribution of ŜKCEul with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1) and
β = (1/m, . . . , 1/m).
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Figure 28: Distribution of ŜKCEul with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and
β = (1/m, . . . , 1/m).
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Figure 29: Distribution of ŜKCEul with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1) and
β = (1, 0, . . . , 0).
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Figure 30: Distribution of ŜKCEul with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and
β = (1, 0, . . . , 0).
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Figure 31: Distribution of ŜKCEul with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1)
and β = (1/m, . . . , 1/m).
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Figure 32: Distribution of ŜKCEul with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1)
and β = (1/m, . . . , 1/m).
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Figure 33: Distribution of ŜKCEul with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1)
and β = (1, 0, . . . , 0).
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Figure 34: Distribution of ŜKCEul with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1)
and β = (1, 0, . . . , 0).
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J.3 Modern neural networks

In the main experiments of our paper discussed in Appendix J.2 we focus on an experimental
confirmation of the derived theoretical properties of the kernel-based estimators and their comparison
with the commonly used ECE. In contrast to Guo et al. (2017), neither the study of the calibration of
different neural network architectures nor the re-calibration of uncalibrated models are the main goal
of our paper. The calibration measures that we consider only depend on the predictions and the true
labels, not on how these predictions are computed. We therefore believe that directly specifying the
predictions in a “controlled way” results in a cleaner and more informative numerical evaluation.

That being said, we recognize that this approach might result in an unnecessary disconnect between
the results of the paper and a practical use case. We therefore conduct additional evaluations with
different modern neural networks as well. We consider pretrained ResNet, DenseNet, VGGNet,
GoogLeNet, MobileNet, and Inception neural networks Phan (2019) for the classification of the
CIFAR-10 image data set Krizhevsky (2009). The CIFAR-10 data set is a labeled data set of 32× 32
colour images and consists of 50000 training and 10000 test images in 10 classes. The calibration of
the neural network models is estimated from their predictions on the CIFAR-10 test data set. We use
the same calibration error estimators and p-value approximations as for the generative models above;
however, the minimum number of samples per bin in the data-dependent binning scheme of the ECE
estimator is increased to 100 to account for the increased number of data samples.
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ŜKCEuq
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Figure 35: Calibration error estimates of modern neural networks for classification of the CIFAR-10
image data set.

The computed calibration error estimates are shown in Fig. 35. As we argue in our paper, the raw
calibration estimates are not interpretable and can be misleading. The results in Fig. 35 endorse this
opinion. The estimators rank the models in different order (also the two estimators of the ECE), and
it is completely unclear if the observed calibration error estimates (in the order of 10−2 and 10−4!)
actually indicate that the neural network models are not calibrated.

Hence to obtain an interpretable measure, we consider different bounds and approximations of the
p-value for the calibration error estimators, assuming the models are calibrated. More concretely, we
estimate the p-value by consistency resampling of the standard (Cuniform) and the data-dependent
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Figure 36: Bounds and approximations of the p-value of modern neural networks for classification
of the CIFAR-10 image data set for different calibration error estimators, assuming the models are
calibrated.

(Cdata−dependent) estimator of the ECE, evaluate the distribution-free bounds of the p-value for the
estimators ŜKCEb (Db), ŜKCEuq (Duq), and ŜKCEul (Dl) of the SKCE, and approximate the
p-value using the asymptotic distribution of the estimators ŜKCEuq (Auq) and ŜKCEul (Al). The
results are shown in Fig. 36.

The approximations obtained by consistency resampling are almost always zero, apart from
GoogLeNet for the ECE estimator with partitions of uniform size. However, since our controlled
experiments with the generative models showed that consistency resampling might underestimate the
p-value of calibrated models on average, these approximations could be misleading. On the contrary,
the bounds and approximations of the p-value for the estimators of the SKCE are theoretically
well-founded. In our experiments with the generative models, the asymptotic distribution of the
estimator ŜKCEuq seemed to allow to approximate the p-value quite accurately on average and
yielded very powerful tests. For all studied neural network models these p-value approximations
are zero, and hence for all models we would always reject the null hypothesis of calibration. The
p-value approximations based on the asymptotic distribution of the estimator ŜKCEul vary between
around 0.18 for the ResNet18 and 0.91 for the GoogLeNet model. The higher p-value approximations
correspond to the increased empirical test errors with the uncalibrated generative models compared
to the tests based on the asymptotic distribution of the estimator ŜKCEuq. Most distribution-free
bounds of the p-value are between 0.99 and 1, indicating again that these bounds are quite loose.

All in all, the evaluations of the modern neural networks seem to match the theoretical expectations
and are consistent with the results we obtained in the experiments with the generative models.
Moreover, the p-value approximations of zero are consistent with Guo et al. (2017)’s finding that
modern neural networks are often not calibrated.

J.4 Computational time

The computational time, although dependent on our Julia implementation and the hardware used,
might provide some insights to the interested reader in addition to the algorithmic complexity.
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However, in our opinion, a fair comparison of the proposed calibration error estimators should take
into account the error of the calibration error estimation, similar to work precision diagrams for
numerical differential equation solvers.

A simple comparison of the computational time for the calibration error estimators used in the
experiments with the generative models in Appendix J.2 on our computer (3.6 GHz) shows the
expected scaling of the computational time with increasing number of samples. As Fig. 37 shows,
even for 1000 samples and 1000 classes the estimators ŜKCEb and ŜKCEuq with the median
heuristic can be evaluated in around 0.1 seconds. Moreover, the simple benchmark indicates that the
evaluation of the estimator of the ECE with data-dependent bins is much slower than of the one with
partitions of uniform size.
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Figure 37: Computational time for the evaluation of calibration error estimators on data sets with
different number of classes versus number of data samples.
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