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1 The correlation structure of hierarchical mem-
ory patterns

For the hierarchical memory patterns defined in the main text, the following
relationships hold:

• The correlation between grandparent patterns, 1/N
∑
i ξ
α
i ξ

α′

i = 0, for
α 6= α′;

• The correlation between grandparent and its descending parent patterns,
1/N

∑
i ξ
α
i ξ

α,β
i = b2;

• The correlation between parent patterns from the same grandparent,

1/N
∑
i ξ
α,β
i ξα,β

′

i = b22, for β 6= β′;

• The correlation between parent patterns from different grandparents,

1/N
∑
i ξ
α,β
i ξα

′,β′

i = 0, for α 6= α′;

• The correlation between parent pattern and its descending child patterns,
1/N

∑
i ξ
α,β
i ξα,β,γi = b1;

• The correlation between child patterns from the same parent pattern,

1/N
∑
i ξ
α,β,γ
i ξαβγ

′

i = b21, for γ 6= γ′;

• The correlation between child patterns from different parents,

1/N
∑
i ξ
α,β,γ
i ξα,β

′,γ′

i = b22b
2
1, for β 6= β′.

Moreover, it can be checked that when the number of parent patterns Pβ is
sufficiently large, the average of parent patterns approaches to their ascending

grandparent pattern, i.e., 1/Pβ
∑Pβ
β=1 ξ

α,β
i ≈ b2ξαi .

Similarly, when the number of child patterns Pγ is sufficiently large, the
average of child patterns approaches to their ascending parent pattern, i.e.,

1/Pγ
∑Pγ
γ=1 ξ

α,β,γ
i ≈ b1ξα,βi .
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2 Memory retrieval without feedback

2.1 The neuronal input at layer 1 without feedback

According to Eq.(2) in the main text, without feedback, we have

h1i (0) =
1

N

∑
j

W 1
ijx

1
j (0),

=
1

N

∑
α,β,γ

ξα,β,γi

∑
j

ξα,β,γj ξα0,β0,γ0
j ,

= ξα0,β0γ0
i +Ai + Ãi +

˜̃
Ai, (1)

where

Ai =
1

N

∑
γ 6=γ0

ξα0,β0,γ
i

∑
j

ξα0,β0,γ
j ξα0,β0,γ0

j ,

= b21
∑
γ 6=γ0

ξα0,β0,γ
i , (2)

Ãi =
1

N

∑
β 6=β0

∑
γ

ξα0,β,γ
i

∑
j

ξα0,β,γ
j ξα0,β0,γ0

j ,

= b21b
2
2

∑
β 6=β0,γ

ξα0,β,γ
i , (3)

and ˜̃
Ai =

1

N

∑
α6=α0

∑
β,γ

ξα,β,γi

∑
j

ξα,β,γj ξα0,β0,γ0
j ,

= 0. (4)

Thus, according to Eq.(7,8) in the main text, we have

Ci = b21ξ
α0,β0,γ0
i

∑
γ 6=γ0

ξα0,β0,γ
i , (5)

C̃i = b21b
2
2ξ
α0,β0,γ0
i

∑
β 6=β0

∑
γ

ξα0,β,γ
i , (6)

˜̃
Ci = 0. (7)

2.2 The distribution of the intra-class noise Ci

Define the sets C+ ≡ {γ | ξα0,β0,γ
i = ξα0,β0

i , γ 6= γ0}, and C− ≡ {γ | ξα0,β0,γ
i =

−ξα0,β0

i , γ 6= γ0}, and their numbers are denoted as card(C+) and card(C−),
respectively. Note card(C−) = Pγ − 1− card(C+).
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According to Eq.(5) in the main text,

P (ξα,β,γi ) = (
1 + b1

2
)δ(ξα,β,γi − ξα,βi ) + (

1− b1
2

)δ(ξα,β,γi + ξα,βi ).

Since the generalizations of memory patterns are independent to each other,
card(C+) follows a binomial distribution, card(C+) ∼ B(Pγ − 1, P+), with P+ =

P (ξα0,β0,γ
i = ξα0,β0

i ) = (1 + b1)/2. Here, B(n, P ) denotes a binomial distribution,
with n the total number of experiments and P the probability of each experiment
yielding a successful result.

In the large Pγ limit, a binomial distribution can be approximated as a
normal one, which is written as

card(C+) ∼ N ((Pγ − 1)P+, (Pγ − 1)P+(1− P+)) . (8)

Thus, we have∑
γ 6=γ0

ξα0,β0,γ
i = card(C+)ξα0,β0

i − card(C−)ξα0,β0

i ,

= 2card(C+)ξα0,β0

i − (Pγ − 1)ξα0,β0

i , (9)

and hence
Ci = b21 [2card(C+)− (Pγ − 1)] ξα0,β0,γ0

i ξα0,β0

i . (10)

Since the product ξα0,β0,γ0
i ξα0,β0

i = 1 with the probability (1 + b1)/2 and

ξα0,β0,γ0
i ξα0,β0

i = −1 with the probability (1 − b1)/2, the distribution of Ci
can be written as superposition of two normal distributions, i.e.,

P (Ci) =
1 + b1

2
N (EC , VC) +

1− b1
2
N (−EC , VC), (11)

where EC = b31(Pγ − 1) and VC = b41(Pγ − 1)(1− b21).

2.3 The distribution of the inter-class noise C̃i

Similarly, it can be checked that in the large Pγ , Pβ limit, C̃i satisfies
superposition of two normal distributions,

P (C̃i) =
1 + b1b2

2
N (EC̃ , VC̃) +

1− b1b2
2

N (−EC̃ , VC̃), (12)

where EC̃ = b31b
3
2Pγ(Pβ − 1) and VC̃ = b41b

4
2Pγ(Pβ − 1)(1− b21)(1− b22).

2.4 Retrieval error without feedback

We first calculate retrieval error without the pull-feedback. The probabilities
P (Ci) and P (C̃i) can be calculated under four different conditions, which are
summarized below:
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• When ξα0,β0,γ0
i = ξα0,β0

i = ξα0
i , which has the probability P = (1 + b1)(1 +

b2)/4, P (Ci) = N (EC , VC) and P (C̃i) = N (EC̃ , VC̃).

• When ξα0,β0,γ0
i = ξα0,β0

i = −ξα0
i , which has the probability P = (1 +

b1)(1− b2)/4, P (Ci) = N (EC , VC) and P (C̃i) = N (−EC̃ , VC̃).

• When ξα0,β0,γ0
i = −ξα0,β0

i = ξα0
i , which has the probability P = (1 −

b1)(1 + b2)/4, P (Ci) = N (−EC , VC) and P (C̃i) = N (−EC̃ , VC̃).

• When ξα0,β0,γ0
i = −ξα0,β0

i = −ξα0
i , which has the probability P = (1 −

b1)(1− b2)/4, P (Ci) = N (−EC , VC) and P (C̃i) = N (EC̃ , VC̃).

The above four conditions can be described by two auxiliary variables, which
are s1 ≡ ξα0,β0,γ0

i ξα0,β0

i = ±1 and s2 ≡ ξα0,β0,γ0
i ξα0

i = ±1.
The probability of retrieval error without the pull-feedback is calculated to

be,

p(Ci + C̃i < −1) =

∫ +∞

−∞
p(Ci = x)p(C̃i < −1− x)dx

=
∑

s1,s2=±1

1

4
(1 + s1b1)(1 + s1s2b2)

∫ +∞

−∞

dx√
2πVC

exp(−x− s1EC
2VC

)

∫ −1−x−s2EC̃√
2V
C̃

−∞

dy√
2π
exp(−y

2

2
),

=
∑

s1,s2=±1

1

4
(1 + s1b1)(1 + s1s2b2)

∫ +∞

−∞

dx√
2π
exp(−xσc − s1EC

2
)

∫ −1−xσ
C̃
−s2EC̃

σ
C̃

−∞

dy√
2π
exp(−y

2

2
),

(σC =
√
Vc;σC̃ =

√
VC̃),

=
∑

s1,s2=±1

1

4
(1 + s1b1)(1 + s1s2b2)

∫ +∞

−∞

dx√
2π
exp(−x

2

2
)

∫ +∞

−∞

dy√
2π
exp(−y

2

2
),

(σCx+ σC̃y < −1− s1EC − s2EC̃)

=
∑

s1,s2=±1

1

8
(1 + s1b1)(1 + s1s2b2)

1 + erf(
−1− s1EC − s2EC̃√

2(σ2
C + σ2

C̃
)

)

 . (13)
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3 The effect of pull-feedback

3.1 The distribution of the noise C∗
i after applying the

pull-feedback

According to the definition, C∗i = Ci−b1ξα0,β0,γ0
i ξα0,β0

i . It can be checked that

for ξα0,β0,γ0
i ξα0,β0

i = 1, the mean E(C∗i ) = EC − b1, and for ξα0,β0,γ0
i ξα0,β0

i = −1,
the mean E(C∗i ) = −EC + b1. Therefore, we have

P (C∗i ) =
1 + b1

2
N (EC − b1, V ∗C) +

1− b1
2
N (−EC + b1, V

∗
C), (14)

where EC = b31(Pγ − 1) and VC∗ = VC = b41(Pγ − 1)(1− b21).

3.2 The retrieval error with the pull-feedback

We now calculate retrieval error with the pull-feedback. Given W 1,2
ij = −b1δij

and that layer 2 is at the parent pattern x2(0) = ξα0,β0 , the alignment between
the neuronal input and the child pattern at layer 1 is written as,

ξα0,β0,γ0h1i (0) = 1 + Ci + C̃i − b1ξα0,β0ξα0,β0,γ0 . (15)

We obtain

mα0,β0,γ0(1) =
1

N

N∑
i=1

sign[1 + Ci + C̃i − b1ξα0,β0,γ0
i ξα0,β0

i ],

=
1

N

N∑
i=1

sign
[
1 + C∗i + C̃i

]
(16)

where C∗i = Ci − b1ξα0,β0,γ0
i ξα0,β0

i .
The probability P (C∗i ) can be calculated under four different conditions,

which are,

• When ξα0,β0,γ0
i = ξα0,β0

i = ξα0
i , which has the probability P = (1+b1)(1+b2)

4 ,
P (C∗i ) = N [((EC − b1), VC ];

• When ξα0,β0,γ0
i = ξα0,β0

i = −ξα0
i , which has the probability P = (1+b1)(1−b2)

4 ,
P (C∗i ) = N [(EC − b1), VC ];

• When ξα0,β0,γ0
i = −ξα0,β0

i = ξα0
i , which has the probability P = (1−b1)(1+b2)

4 ,
P (C∗i ) = N [−(EC − b1), VC ];

• When ξα0,β0,γ0
i = −ξα0,β0

i = −ξα0
i , which has the probability P = (1−b1)(1−b2)

4 ,
P (C∗i ) = N [−(EC − b1), VC ].
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Analogous to Eq.(13), the probability of retrieval error with the pull-feedback is
calculated to be,

p(C∗i + C̃i < −1) =
∑

s1,s2=±1

1

8
(1 + s1b1)(1 + s1s2b2)×1 + erf(
−1− s1(EC − b1)− s2EC̃√

2(σ2
C + σ2

C̃
)

)

 . (17)

4 The effects of push-pull feedback

4.1 Dynamics of the continuous Hopfield model

The dynamics of the continuous Hopfield model are given by

τ
dh1i
dt

= −h1i +
∑
j

W 1
ijx

1
j +

∑
k

W 1,2
ik (t)x2k + Iexti , (18)

τ
dh2i
dt

= −h2i +
∑
j

W 2
ijx

2
j +

∑
k

W 2,1
ik (t)x1k + Iexti , (19)

xni =
2

π
arctan(8πhni ), for n = 1, 2, (20)

where hni and xni denote the synaptic input and the firing rate of neuron i in
layer n. τ is the time constant, Iexti the external input to layer 1, and arctan(x)
is the inverse of the tangent function.

In the continuous model, each element of a memory pattern (e.g., ξα,β,γi )
takes a value of 0 or 1. The recurrent connections between neurons in the same
layer are constructed by the Hebbian covariance learning rule, which are given
by

W̃ 1
ij =

1

N

∑
α,β,γ

(
ξα,β,γi − 〈ξ〉

)(
ξα,β,γj − 〈ξ〉

)
, (21)

W̃ 2
ij =

1

N

∑
α,β

(
ξα,βi − 〈ξ〉

)(
ξα,βj − 〈ξ〉

)
, (22)

Wn
ij = anr

W̃n
ij

|Wn|
, for n = 1, 2, (23)

where 〈ξ〉 is the mean activity of all neurons averaged over all memory patterns

in the same layer, |W̃n| =
√∑

ij(W̃
n
ij)

2/N2, and anr are positive constants.

We consider the feedback connections from layers 2 to 1, which vary over
time. At the early phase, the feedback is positive, which is written as

W 1,2
ik =

a+
NPγ

∑
α,β,γ

(ξα,β,γi − 〈ξ〉)(ξα,β,γj − 〈ξ〉), (24)
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where a+ is a positive number.
At the later phase, the feedback is negative which is written

W 1,2
ik = −a−b1δik, (25)

where δik = 1 for i = k and δik = 0 otherwise, and a− is a positive number.
Let us consider the memory pattern to be retrieved at layer 1 is ξα0,β0,γ0 . The

external input to the first layer, which conveys the memory pattern information,
is set to be

Iexti = aextξ̃
α0,β0,γ0
i + σηi, (26)

where ηi is a random number uniformly distributed in the range of (−1, 1),
representing the memory-independent noise, and σ controls the noise strength.
aext is a positive number. The pattern ξ̃α0,β0,γ0 is the noise-corrupted signal,
which is constructed as follows: starting from the clean memory pattern ξα0,β0,γ0 ,
we first randomly select λ1N number of neurons, with 0 < λ1 < 1, and change
their values to match the pattern ξα0,β0,γ

′
, with γ′ 6= γ0, which represents

the intra-class noise. We then randomly select λ2N number of neurons, with
0 < λ2 < 1, and change their values to match the pattern ξα0,β

′,γ0 , with β′ 6= β0,
which represents the inter-class noise.

4.2 Comparing network performances with varying corre-
lation amplitudes

Fig.S1 shows how the retrieval improvement due to the push-pull feedback
varies with the correlation b1 between child patterns. We see that the push-pull
feedback works very well for a wide range of correlation amplitudes. We also
note that it has little effect when the correlation b1 is very small, and may worsen
retrieval when b1 is too large. This is understandable, since for a very large b1,
the strong negative feedback may shut-down the neural activity at layer 1 (see
Eq.(10) in the main text).

5 Pre-processing real images with a deep neural
network

The dataset, chosen from ImageNet, consists of two types (cat and dog), and
each type is made up of 9 sub-types. They are: 1) sub-types of cat: Abyssinian
Cat, Angora Cat, Burmese Cat, Egyptian Cat, Manx Cat, Persian Cat, Siamese
Cat, Tiger Cat, Tortoiseshell; 2) sub-types of dog: Saint Bernard, Beagle Dog,
Border Collie, Cirn terrier, Cardigan Dog, Eskimo Dog, Mastiff Dog, Pug Dog.
We chose 100 images per sub-type. We re-scaled each image, with its width and
height to be (256, 256), and pixel values in the range of [0, 255]. After that, we
presented each image as an input to the VGG16(the VGG16 itself was pre-trained
by ImageNet) and took the neural activity before the reading-out lay as the
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Figure S1: The retrieval improvement due to the push-pull feedback vs. the
correlation strength b1 between child patterns. Both the retrieval accuracies with
and without feedback are taken at the moment of 5τ . The results are obtained
by averaging over 20 trials. The child pattern is ξ1,1,1. Other parameters are
the same as in Fig.3 in the main text.

neural representation of the image, referred to as x̂ hereafter. Subsequently, we
normalized neural activities, i.e.,

x̃i = log(1 + x̂i), (27)

xi = ReLu(
x̃i− < x̃i >

σx̃i
), (28)

where ReLU(·) = max(0, ·) is the rectified linear function, and < x̃ > and σx̃
are the mean and standard deviation of neural activities over all neurons for
each image.

Finally, we generated memory patterns for the hierarchical network. For a
child pattern, it is given by

ξβ0,γ0
i = sign(< xi >β0,γ0), (29)

where the average is over all the images belonging to the same sub-type of
animal.

The corresponding parent patterns are constructed to be

ξβ0

i =< ξβ0,γ
i >γ , (30)

where the average is over all child patterns belonging to the same parent.
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