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Abstract

We examine the question of when and how parametric models are most useful in
reinforcement learning. In particular, we look at commonalities and differences
between parametric models and experience replay. Replay-based learning algo-
rithms share important traits with model-based approaches, including the ability
to plan: to use more computation without additional data to improve predictions
and behaviour. We discuss when to expect benefits from either approach, and
interpret prior work in this context. We hypothesise that, under suitable conditions,
replay-based algorithms should be competitive to or better than model-based al-
gorithms if the model is used only to generate fictional transitions from observed
states for an update rule that is otherwise model-free. We validated this hypothesis
on Atari 2600 video games. The replay-based algorithm attained state-of-the-art
data efficiency, improving over prior results with parametric models. Additionally,
we discuss different ways to use models. We show that it can be better to plan
backward than to plan forward when using models to perform credit assignment
(e.g., to directly learn a value or policy), even though the latter seems more com-
mon. Finally, we argue and demonstrate that it can be beneficial to plan forward
for immediate behaviour, rather than for credit assignment.

The general setting we consider is learning to make decisions from finite interactions with an
environment. Although the distinction is not fully unambiguous, there exist two prototypical families
of algorithms: those that learn without an explicit model of the environment (model free), and those
that first learn a model and then use it to plan a solution (model based).

There are good reasons for building the capability to learn some sort of model of the world into
artificial agents. Models may allow transfer of knowledge in ways that policies and scalar value pre-
dictions do not, and may allow agents to acquire rich knowledge about the world before knowing how
this knowledge is best used. In addition, models can be used to plan: to use additional computation,
without requiring additional experience, to improve the agent’s predictions and decisions.

In this paper, we discuss commonalities and differences between parametric models and experience
replay [Lin, 1992]. Although replay-based agents are not always thought of as model-based, replay
shares many characteristics that we often associate with parametric models. In particular, we can
‘plan’ with the experience stored in the replay memory in the sense that we can use additional
computation to improve the agent’s predictions and policies in between interactions with the real
environment.

Our work was partially inspired by recent work by Kaiser et al. [2019], who showed that planning
with a parametric model allows for data-efficient learning on several Atari video games. A main
comparison was to Rainbow DQN [Hessel et al., 2018a], which uses replay. We explain why their
results may perhaps be considered surprising, and show that in a like-for-like comparison Rainbow
DQN outperformed the scores of the model-based agent, with less experience and computation.
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Algorithm 1 Model-based reinforcement learning
1: Input: state sample procedure d
2: Input: model m
3: Input: policy π
4: Input: predictions v
5: Input: environment E
6: Get initial state s← E
7: for iteration ∈ {1, 2, . . . ,K} do
8: for interaction ∈ {1, 2, . . . ,M} do
9: Generate action: a← π(s)

10: Generate reward, next state: r, s′ ← E(a)
11: m, d← UPDATEMODEL(s, a, r, s′)
12: π, v ← UPDATEAGENT(s, a, r, s′)
13: Update current state: s← s′

14: end for
15: for planning step ∈ {1, 2, . . . , P} do
16: Generate state, action s̃, ã← d
17: Generate reward, next state: r̃, s̃′ ← m(s̃, ã)
18: π, v ← UPDATEAGENT(s̃, ã, r̃, s̃′)
19: end for
20: end for

We discuss this in the context of a broad discussion of parametric models and experience replay. We
examine equivalences between them, potential failure modes of planning with parametric models,
and how to exploit parametric models in addition to, or instead of, using them to provide imagined
experiences to an otherwise model-free algorithm.

In particular, we will discuss three different ways to use a learnt, imperfect, model. First, we can plan
forward for credit assignment. This means we roll the model forward from real states, for instance
stored in a replay buffer, and use the resulting modelled transitions to learn predictions or policies.
We argue that this can be worse than planning backward from real states, because the former will
involve updating real states with fictional experiences, whereas the latter only involves updating
fictional states, which seems safer. This hypothesis is validated empirically. Finally, a third use of a
model is to plan forward from the current state, to help determine the immediate behaviour.

We believe that planning backward for credit assignment or planning forward for behaviour may be
more beneficial than planning forward for credit assignment. To see why, consider an inaccurate
model that for instance predicts a transition to some magical world that is not truly there, thereby
providing a fictional path to high rewards. Planning forward for credit assignment may then result in
incorrect predictions and policies that assume this fiction is real. Instead, planning backward when
the model is inaccurate may lead to updates to fictional states that are unreachable, which may or
may not be useful, but is less likely to be harmful than updating real states with fictional transitions.
However, if we do plan forward but only use the inaccurate model to inform our behaviour rather
than trusting its transitions as if they are real, then we might expect an agent to go and see whether
there is in fact a magical world around the corner. This may result in useful data, and perhaps even
useful exploration, regardless of whether the modelled transition in fact exists or not.

1 Model-based reinforcement learning

We now define the terminology that we use in the paper, and present a generic algorithm that
encompasses both model-based and replay-based algorithms.

We consider the reinforcement learning setting [Sutton and Barto, 2018] in which an agent interacts
with an environment, in the sense that the agent outputs actions and then obtains observations and
rewards from the environment. We consider the control setting, in which the goal is to optimise the
accumulation of the rewards over time by picking appropriate sequences of actions. The action an
agent outputs typically depends on its state. This state is a function of past observations; in some
cases it is sufficient to just use the immediate observation as state, in other cases a more sophisticated
agent state is required to yield suitable decisions. The state of the agent should not be confused with
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the state of the environment, which is typically not fully observable to the agent, and is also typically
much too large to reason about directly.

We use the word planning to refer to any algorithm that uses additional computation to improve
its predictions or behaviour without consuming additional data. Conversely, we reserve the term
learning for updates that depend on newly observed experience.

The term model will refer to functions that take a state and action as input, and that output a
reward and next state. Sometimes we may have a perfect model, as in board games (e.g., chess and
go); sometimes the model needs to be learnt before it can be used. Models can be stochastic, to
approximate inherently stochastic transition dynamics, or to model the agent’s uncertainty about
the future. Expectation models are deterministic, and output (an approximation of) the expected
reward and state. If the true dynamics are stochastic, iterating expectation models multiple steps
may be unhelpful, as an expected state may itself not be a valid state; the output of a model may not
have useful semantics when using an expected state as input rather than a real state [cf. Wan et al.,
2019]. Planning is associated with models, because a common way to use computation to improve
predictions and policies is to search using a model. For instance, in Dyna [Sutton, 1990], learning and
planning are combined by using new experience to learn both the model and the agent’s predictions,
and then planning to further improve the predictions.

Experience replay [Lin, 1992] refers to storing previously observed transitions to replay later for
additional updates to the predictions and policy. Replay may be used for planning and, when queried
at state-action pairs we have observed, experience replay may be indistinguishable from an accurate
model. Sometimes, there may be no practical differences between replay and models, depending on
how they are used. On the other hand, a replay memory is less flexible than a model, since we cannot
query it at arbitrary states that are not present in the replay memory.

1.1 A generic algorithm

Algorithm 1 is a generic model-based learning algorithm. It runs for K iterations, in each of which
M interactions with the environment occur. The total number of interactions is thus T ≡ K ×M .
The experience is used to update a model (line 11) and the policy or predictions of the agent (line
12). Then, P steps of planning are performed, where transitions sampled from the model are used to
update the agent (line 18). For P = 0, the model is not used, hence the algorithm is model-free (we
could then also skip line 11). If P > 0, and the agent update in line 12 does not do anything, we have
a purely model-based algorithm. The agent updates in lines 12 and 18 could differ, or they could treat
real and modelled transitions equivalently.

Many known algorithms from the model-based literature are instances of algorithm 1. If lines 12 and
18 both update the agent’s predictions in the same way, the resulting algorithm is known as Dyna
[Sutton, 1990] – for instance, if predictions v include action values (normally denoted with q) and we
update using Q-learning [Watkins, 1989, Watkins and Dayan, 1992], we obtain Dyna-Q [Sutton and
Barto, 2018]. One can extend Algorithm 1 further, for instance by allowing planning and model-free
learning to happen simultaneously. Such extensions are orthogonal to our discussion and we do not
discuss them further.

Some algorithms typically thought of as being model-free also fit into this framework. For instance,
DQN [Mnih et al., 2013, 2015] and neural-fitted Q-iteration [Riedmiller, 2005] match Algorithm 1, if
we stretch the definitions of ‘model’ to include the more limited replay buffers. DQN learns from
transitions sampled from a replay buffer by using Q-learning with neural networks. In Algorithm 1,
this corresponds to updating a non-parametric model, in line 11, by storing observed transitions in the
buffer (perhaps overwriting old transitions); line 17 then retrieves a transition from this buffer. The
policy is only updated with transitions sampled from the replay buffer (i.e., line 12 has no effect).

2 Model properties

A main advantage of using models is the ability to plan: to use additional computation, but no new
data, to improve the agent’s policy or predictions. Sutton and Barto [2018] illustrate the benefits
of planning in a simple grid world (Figure 1, on the left), where the agent must learn to navigate
along the shortest path to a fixed goal location. On the right of Figure 1 we use this domain to
show how the performance of a replay-based Q-learning agent (blue) and that of a Dyna-Q agent

3



0.1 0.3 1.0 3.0

Updates per real step

3e3

1e4

3e4

T
o
ta

l 
st

e
p

s 
(l

o
g

. 
sc

a
le

)

Forward Dyna

Replay

Scalability

Figure 1: Left: the layout of the grid world [Sutton and Barto, 2018], ‘S’ and ‘G’ denote the start and
goal state, respectively. Right: Q-learning with replay (blue) or Dyna-Q with a parametric model
(red); y-axis: the total number of steps to complete 25 episodes of experience, x-axis: the number of
updates per step in the environment. Both axes are on a logarithmic scale.

(red) scale similarly with the amount of planning (measured in terms of the number of updates per
real environment step). Both agents use a multi-layer perceptron to approximate action values, but
Dyna-Q also used identical networks to model transitions, terminations and rewards. The algorithm is
called ‘forward Dyna’ in the figure, because it samples states from the replay and then steps forward
one step using the model. Later we will consider a variant that, instead, steps backward with an
inverse model. The appendix contains further details on the experiments.

2.1 Computational properties

There are clear computational differences between using parametric models and replay. For instance,
Kaiser et al. [2019] use a fairly large deep neural network to model the pixel dynamics in Atari,
which means predicting a single transition can require non-trivial computation. In general, parametric
models typically require more computations than it takes to sample from a replay buffer.

On the other hand, replay tightly couples model capacity and memory requirements: each transition
that is stored takes up a certain amount of memory. If we do not remove any transitions, the memory
can grow unbounded. If we limit the memory usage, then this implies that the effective capacity of
the replay is limited as any transitions we replace are forgotten completely. In contrast, parametric
models may be able to achieve good accuracy with a fixed and comparatively small memory footprint.

2.2 Equivalences

Suppose we manage to learn a model that perfectly matches the transitions observed thus far. If
we would then use such a perfect model to generate experiences only from states that were actually
observed, the resulting updates would be indistinguishable from doing experience replay. In that
sense, replay matches a perfect model, albeit only from the states we have observed.1 Therefore,
all else being equal, we would expect that using an imperfect (e.g., parametric) model to generate
fictional experiences from truly observed states should probably not result in better learning.

There are some subtleties to this argument. First, the argument can be made even stronger in some
cases. When making linear predictions with least-squares temporal-difference learning [LSTD,
Bradtke and Barto, 1996, Boyan, 1999], the model-free algorithm on the original data does not
require (or indeed benefit from) planning: the solution will already be a best fit (in a least squares
sense) even with a single pass through the data. In fact, if we fit a linear model to the data and then
fully solve this model, the solution is equal to the LSTD solution [Parr et al., 2008]. One can also
show that exhaustive replay with linear TD(λ) [Sutton, 1988] is equivalent to a one-time pass through
the data with LSTD(λ) [van Seijen and Sutton, 2015], because replay similarly allows us to solve the
empirical ‘model’ that is implicitly defined by the observed data.

These full equivalences are however limited to linear prediction, and do not extend straightforwardly
to non-linear functions, or to the control setting. This leaves open the question of when to use a
parametric model rather than replay, or vice versa.

1One could go one step further and extend replay full non-parametric models. For instance Pan et al. [2018]
use kernel methods to allow querying the replay-based model at states that are not stored in the buffer.
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Figure 2: Left: four rooms grid world [Sutton et al., 1998]. Center-left: planning forward from
the current state to update the current behaviour (0 steps corresponds to Q-learning); y-axis: total
number of steps required to complete 100 episodes, x-axis: search depth. Center-right: comparing
replay (blue), forward Dyna (red), and backward Dyna (black); y-axis: episode length (logarithmic
scale), x-axis: number of episodes. Right: adding stochasticity to the transition dynamics (in the
form of a 20% probability of transitioning to a random adjacent cell irrespectively of the action), then
comparing again replay (blue), forward Dyna (red), and backward Dyna (black); y-axis: episode
length (logarithmic scale), x-axis: number of episodes

2.3 When do parametric models help learning?

When should we expect benefits from learning and using a parametric model, rather than using the
actual data? We discussed important computational differences above. Here we focus on learning
efficiency: when do parametric models help learning?

First, parametric models may be useful to plan into the future to help determine our policy of
behaviour. The ability to generalise to unseen or counter-factual transitions can be used to plan from
the current state into the future (sometimes called planning ‘in the now’ [Kaelbling and Lozano-Pérez,
2010]), even if this exact state has never before been observed. This is commonly and successfully
employed in model-predictive control [Richalet et al., 1978, Morari and Lee, 1999, Mayne, 2014,
Wagener et al., 2019]. Classically, the model is constructed by hand rather than learnt directly from
experience, but the principle of planning forward to find suitable behaviour is the same. It is not
possible to replicate this with standard replay, because in interesting rich domains the current state
will typically not exactly appear in the replay. Even if it would, replay does not allow easy generation
of possible next states, in addition to the one trajectory that actually happened.

If we use a model to select actions, rather than trusting its imagined transitions to update the policy
or predictions, it may be less essential to have a highly accurate model. For instance, the model may
predict a shortcut that does not actually exist; using this to then steer behaviour results in experience
that is both suitable to correct the error in the model, and that yields the kind of directed, temporally
consistent behaviour typically sought for exploration purposes [Lowrey et al., 2019].

We illustrate this with an experiment on a classic four room grid-world [Sutton et al., 1998]. We
learnt a tabular forward model that generates transitions (s, a)→ (r, γ, s′), where s and s′ are states,
a is an action, r is a reward, and γ ∈ [0, 1] is a discount factor. We then used this model to plan via a
simple breadth-first search up to a fixed depth, bootstrapping from a value function q(s, a) learnt via
standard Q-learning. We then use the resulting planned values of the actions at the current state to
behave. This process can be interpreted as using a multi-step greedy policy [Efroni et al., 2018] to
determine behaviour, instead of the more standard one-step greedy policy. The results are illustrated
in the second plot in Figure 2: more planning was beneficial.

In addition to planning forward to improve behaviour, models may be useful for credit assignment
through backward planning. Consider an algorithm where, as before, we sample real visited states
from a replay buffer, but instead of planning one step into the future from these states we plan one step
backward. One motivation is that if the model is poor then planning a step forward will update the
real sampled state with a misleading imagined transition. This will potentially cause harmful updates
to the value at these real states. Conversely, if we plan backwards we update an imagined state. If the
model is poor this imagined state perhaps does not resemble any real state. Updating such fictional
states seems less harmful. When the model becomes very accurate, forward and backward planning
both start to be equally useful. For a purely data-driven (partial) model, such as a replay buffer, there
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is no meaningful distinction. But with a learnt model that is at times inaccurate, backward planning
may be less error-prone than forward planning for credit assignment.

We illustrate potential benefits of backward planning with a simple experiment on the four-room
environment. In the two right-most plots of Figure 2, we compare the performance of applying tabular
Q-learning to transitions generated by a forward model (red), a backward model (black), or replay
(blue). The forward model learns distributions over states, rewards, and terminations Pr(r, γ, s′|s, a).
The backward model learns the inverse Pr(s, a|r, γ, s′). Both use a Dirichlet(1) prior. We evaluated
the algorithms in the deterministic four-room environment, as well as in a stochastic variant where
on each step there is a 20% probability of transitioning to a random adjacent cell irrespective of the
action. In both cases, backward planning resulted in faster learning than forward planning. In the
deterministic case, the forward model catches up later in learning, reaching the same performance of
replay after 2000 episodes; instead, planning with a backward model is competitive with replay in
early learning but performs slightly worse later in training. We conjecture that the slower convergence
in later stages of training may be due to the fact that predicting the source state and action in a
transition is a non-stationary problem (as it depends on the agent’s policy), and given that early
episodes include many more transitions than later ones, it can take many episodes for a Bayesian
model to forget policies observed early in training. The lack of convergence to the optimal policy for
the forward planning algorithm in the stochastic setting may be due to the independent sampling of
the successor state and reward, which may result in inconsistent transitions. Both these issues may be
addressed by a suitable choice of the model. More detailed investigations are out of scope for this
paper, but it is good to recognise that such modelling choices have measurable effects on learning.

3 A failure to learn

We now describe how planning in a Dyna-style learning algorithm can, perhaps surprisingly easily,
lead to catastrophic learning updates.

Algorithms that combine function approximation (e.g., neural networks), bootstrapping (as in temporal
difference methods [Sutton, 1988]), and off-policy learning [Sutton and Barto, 2018, Precup et al.,
2000] can be unstable [Williams and Baird III, 1993, Baird, 1995, Sutton, 1995, Tsitsiklis and Van
Roy, 1997, Sutton et al., 2009, 2016] — this is sometimes called the deadly triad [Sutton and Barto,
2018, van Hasselt et al., 2018].

This has implications for Dyna-style learning, as well as for replay methods [cf. van Hasselt et al.,
2018]. When using replay it is sometimes relatively straightforward to determine how off-policy the
state sampling distribution is, and the sampled transitions will always be real transitions under that
distribution (assuming the transition dynamics are stationary). In contrast, the projected states given
by a parametric model may differ from the states that would occur under the real dynamics, due to
modelling error. The update rule will then be solving a predictive question for the MDP induced by
the model, but with a state distribution that does not match the on-policy distribution in that MDP.

To understand this issue better, consider using Algorithm 1 to estimate expected cumulative discounted
rewards vπ(s) = E [Rt+1 + γRt+2 + . . . | St = s, π] for a policy π by updating vw(s) ≈ vπ(s) with
temporal difference (TD) learning [Sutton, 1988]:

w← w + αδt∇wvw(St) , with δt ≡ Rt+1 + γt+1vw(St+1)− vw(St) , (1)

where Rt+1 ∈ R and γt+1 ∈ [0, 1] are the reward and discount on the transition from St to St+1,
and α > 0 is a small step size. Consider linear predictions vw(St) = w>xt ≈ vπ(St), where
xt ≡ x(St) is a feature vector for state St. The expected TD update is then w← (I− αA)w + αb,
with b = E [Rt+1xt] and A = E

[
xtx
>
t − γxtxt+1

]
= X>D(I− γP>)X, where the expectation

is over the transition dynamics and over the sampling distribution d of the states. The transition
dynamics can be written as a matrix P, that contains the probabilities [P]ij = p(St+1 = i | St = j, π)
of transitioning from any state j to any state i under policy π. The diagonal matrix D contains the
probabilities [D]ii = d(i) = P (St = i | π) of sampling each state i on its diagonal. The matrix X
contains the feature vectors x(s) of all states on its rows, and maps between state and feature space.
Note that both P and D are linear operators in state space, not feature space.

These updates are guaranteed to be stable (i.e., converge) if A = X>D(I − γP>)X is positive
semi-definite [Sutton et al., 2016], with spectral radius ρ(A) smaller than 1/α. The deadly triad
occurs when D and P do not match: then A can be negative definite, the spectral radius ρ(I− αA)

6



can be larger than one, and the weights can diverge. This can happen when D does not correspond to
the steady-state distribution of the policy that conditions P — that is, if we update off-policy.
Proposition 1. Consider uniformly replaying transitions from a buffer containing full episodes
(e.g., add new full episodes on termination, potentially remove an old full episode), and using these
transitions in the TD algorithm defined by update (1). This algorithm is stable.

Proof. The replay buffer defines an empirical model, where the induced policy is the empirical
distribution of actions: π̃(a|s) = n(s, a)/n(s), where n(s) and n(s, a) are the number of times s and
the pair (s, a) show up in the replay. (The behaviour policy can change while filling the replay, the
resulting empirical policy is then a sample of a mixture of these policies). The empirical transitions
[P̃]ij = n(i, j)/n(i) and state distributions [D̃]ii = n(s)/N , where N is the total size of the replay
buffer, then both correspond to the same empirical policy. Therefore, ρ(X̃>D̃(I − γP̃>)X̃) > 0,
and TD will be stable and will not diverge.

This proposition can be extended to the case where transitions are added to the replay one at the time,
rather then in full episodes. If, however, we sample states according to a non-uniform distribution
(e.g., using prioritised replay) this can make replay-based algorithms less stable and potentially
divergent [cf. van Hasselt et al., 2018].

We now show that a very similar algorithm that uses models in place of replay can diverge.
Proposition 2. Consider uniformly replaying states from a replay buffer, then generating transitions
with a learnt model p̂m, and using these transitions in a TD update (1). This algorithm can diverge.

Proof. The learnt dynamics P̂m ≈ P do not necessarily match the empirical dynamics of the replay,
which means that the empirical replay distribution d, used in the updates, does not necessarily
correspond to the steady-state distribution of these dynamics. Then the model error could lead to
a negative definite Â ≡ X>D̃(I − γP̂>m)X, resulting in a spectral radius ρ(I − αÂ) > 1, and
divergence of the parameters w.

Intuitively, the issue is that the model m can lead to states that are uncommon, or impossible, under
the sampling distribution d. Those states are not sampled to be updated directly, but do change through
generalisation when sampled states are updated. This can lead to divergent learning dynamics.

There are ways to mitigate the failure described above. First, we could repeatedly iterate the model,
and sample transitions from the states the model generates as well as to those states, to induce a state
distribution that is consistent with the model. This is not fully satisfactory, as states typically become
ever-more unrealistic when iterating a learnt model, although there is some indication this may be
helpful [Holland et al., 2018]. Second, we could rely less on bootstrapping by using multi-step
returns [Sutton, 1988, van Hasselt and Sutton, 2015, Sutton and Barto, 2018]. This mitigates the
instability [cf. van Hasselt et al., 2018]. In the extreme, full Monte-Carlo updates do not diverge,
though they would have high variance. Third, we could employ algorithms specifically for stable
off-policy learning, although these are often specific to the linear setting [Sutton et al., 2008, 2009,
van Hasselt et al., 2014] or assume the sampling is done on trajectory [Sutton et al., 2016]. Note that
several algorithms exist that correct the return towards a desired policy [Harutyunyan et al., 2016,
Munos et al., 2016], which is a separate issue from off-policy sampling of states. Although off-policy
learning algorithms may be part of the long-term answer, we do not yet have a definitive solution. To
quote Sutton and Barto [2018]: The potential for off-policy learning remains tantalising, the best
way to achieve it still a mystery.

Understanding such failures to learn is important to understand and improve our algorithms. However,
just because divergence can occur does not mean it does occur [cf. van Hasselt et al., 2018]. Indeed,
in the next section we compare a replay-based algorithm to a model-based algorithm which was
stable enough to achieve impressive sample-efficiency on the Atari benchmark.

4 Model-based algorithms at scale

We now discuss two algorithms in more detail: first SimPLe [Kaiser et al., 2019], which uses a
parametric model, then Rainbow DQN [Hessel et al., 2018a], which uses experience replay (and was
used as baseline by Kaiser et al.).
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SimPLe Kaiser et al. [2019] showed data-efficient learning is possible in Atari 2600 videos games
from the arcade learning environment [Bellemare et al., 2013] with a purely model-based approach:
only updating the policy with data sampled from a learnt parametric model m. The resulting “simu-
lated policy learning” (SimPLe) algorithm performed relatively well after just 102,400 interactions
(409,600 frames — two hours of simulated play) within each game. In Algorithm 1, this corresponds
to setting K ×M = 16 × 6400 = 102,400. Although SimPLe used limited data, it used a large
number of samples from the model, similar to using P = 800,000.2

Rainbow DQN One of the main results by Kaiser et al. [2019] was to compare SimPLe to Rainbow
DQN [Hessel et al., 2018a], which combines the DQN algorithm [Mnih et al., 2013, 2015] with
double Q-learning [van Hasselt, 2010, van Hasselt et al., 2016], dueling network architectures [Wang
et al., 2016], prioritised experience replay [Schaul et al., 2016], noisy networks for exploration
[Fortunato et al., 2017], and distributional reinforcement learning [Bellemare et al., 2017]. Like
DQN, Rainbow DQN uses mini-batches of transitions sampled from experience replay [Lin, 1992]
and uses Q-learning [Watkins, 1989] to learn the action-value estimates which determine the policy.
Rainbow DQN uses multi-step returns [cf. Sutton, 1988, Sutton and Barto, 2018] rather than the
one-step return used in the original DQN algorithm.

4.1 A data efficient Rainbow DQN

In the notation of Algorithm 1, the total number of transitions sampled from replay during learning
will beK×P , while the total number of interactions with the environment will beK×M . Originally,
in both DQN and Rainbow DQN, a batch of 32 transitions was sampled every 4 real interactions. So
M = 4 and P = 32. The total number of interactions was 50M (200 million frames), which means
K = 50M/4 = 12.5M.

In our experiments below, we trained Rainbow DQN for a total number of real interactions comparable
to that of SimPLe, by setting K = 100,000, M = 1 and P = 32. The total number of replayed
samples (3.2 million) is then still less than the total number of model samples used in SimPLe (15.2
million). Rainbow DQN is also more efficient computation-wise, since sampling from a replay buffer
is faster than generating a transition with a learnt model.

The other changes we made to make Rainbow DQN more data efficient were to increase the number
of steps in the multi-step returns from 3 to 20, and to reduce the number of steps before we start
sampling from replay from 20, 000 to 1600. We used the fairly standard convolutional Q network
from Hessel et al. [2018b]. We have not tried to exhaustively tune the algorithm and we do not doubt
that the algorithm can be made even more data efficient by futher tuning its hyper-parameters.

4.2 Empirical results

We ran Rainbow DQN on the same 26 Atari games reported by Kaiser et al. [2019]. In Figure 3, we
plotted the performance of our version of Rainbow DQN as a function of the number of interactions
with the environment. Performance was measured in terms of episode returns, normalised using
human and random scores [van Hasselt et al., 2016], and then aggregated across the 26 games by
taking their median. Error bars are shown as computed over the 5 independent replicas of each
experiment. The final performance of SimPLe, according to the same metric, is shown in Figure 3 as
a dashed horizontal line.

As expected, the hyper-parameters proposed by Hessel et al. [2018a] for the larger-data regime of
50 million interactions are not well suited to a regime of extreme data-efficiency (purple line in
Figure 3). Performance was better for our slightly-tweaked data-efficient version of Rainbow DQN
(red), that matched the performance of SimPLe after just 70,000 interactions with the environment,
reaching roughly 25% higher performance by 100,000 interactions. The performance of our agent
was superior to that of SimPLe in 17 out of 26 games. More detailed results are included in the
appendix, including ablations and per-game performance.

2The actual number of reported model samples was 19× 800, 000 = 15.2 million, because P was varied
depending on the iteration.
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Figure 3: Median human-normalised episode returns of a tuned Rainbow, as a function of environment
interactions (=frames/action repeats). The horizontal dashed line corresponds to the performance of
SimPLe [Kaiser et al., 2019]. Error bars are computed over 5 seeds.

5 Conclusions

We discussed commonalities and differences between replay and model-based methods. In particular,
we discussed how model errors may cause issues when we use a parametric model in a replay-like
setting, where we sample observed states from the past. We note that model-based learning can be
unstable in theory, and hypothesised that replay is likely a better strategy under that state sampling
distribution. This is confirmed by at-scale experiments on Atari 2600 video games, where our
replay-based agent attained state-of-the-art data efficiency, besting the impressive model-based results
by Kaiser et al. [2019].

We further hypothesised that parametric models are perhaps more useful when used either 1) to
plan backward for credit assignment, or 2) to plan forward for behaviour. Planning forward for
credit assignment was hypothesised and shown to be less effective, even though the approach is quite
common. The intuitive reasoning was that when the model is inaccurate, then planning backwards
with a learnt model may lead to updating fictional states, which seems less harmful than updating
real states with inaccurate transitions as would happen in forward planning for credit assignment.
Forward planning for behaviour, rather than credit assignment, was deemed potentially useful and
less likely to be harmful for learning, because the resulting plan is not trusted as real experience by
the prediction or policy updates. Empirical results supported these conclusions.

There is a rich literature on model-based reinforcement learning, and this paper cannot cover all the
potential ways to plan with learnt models. One notable topic that is out of scope for this paper is
the consideration of abstract models [Silver et al., 2017] and alternative ways to use these models in
addition to classic planning [cf. Weber et al., 2017].

Finally, we note that our discussion focused mostly on the distinction between parametric models and
replay, because these are the most common, but it is good to acknowledge that one can also consider
non-parametric models. For instance, one could apply a nearest-neighbours or kernel approach to
a replay buffer, and thereby obtain a non-parametric model that can be equivalent to replay when
sampled at the observed states, but that can interpolate and generalise to unseen states when sampled
at other states [Pan et al., 2018]. This is conceptually an appealing alternative, although it comes
with practical algorithmic questions of how best to define distance metrics in high-dimensional state
spaces. This seems another interesting potential avenue for more future work.
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Appendix
A Divergence example

As a concrete illustration of the issue discussed in Section 3, consider the two-state Markov reward
process (MRP) depicted in Figure 4a. This example is similar in nature to other examples from the
literature [Baird, 1995, Tsitsiklis and Van Roy, 1997]. On each transition with probability p we
transition to state s = 1 (left), and with probability of 1− p transition to s = 2 (right). All rewards
are 0, discount is γ = 0.99. Each state has a single feature x(s) = s. The goal is to learn a weight w
such that vw(s) = w × x(s) is accurate. The optimal weight is, trivially, w = 0.

As discussed, the expected update can diverge if the sampling distribution of states d does not match
the sampling distribution under model m. Figure 4b shows under which sampling probabilities
d(s) = P (St = s) and transition probabilities P (St+1 = 1|St) the updates diverge. Divergence
occurs when the probability of sampling state s = 1 (under d) is sufficiently higher than the transition
probability into state s = 1. Note how oversampling state s = 2 is less harmful for this specific
choice of function approximation.

Updates do not diverge because the learnt model is inaccurate, but because of a mismatch between
the model dynamics and the state sampling distribution. Divergence can thus occur even when using
the true dynamics, if d does not match the steady-state distribution induced by such dynamics. For a
true dynamics of p(St+1 = 1|St) = 0.5, Figure 4c shows the likelihood of observing divergence as a
function of the number of samples used to estimate the empirical distribution d, assuming a perfect
model and unbiased data-dependent estimates of d.

B Experiment details: Scalability of planning

The layout of maze used in these experiments is shown in the main text. The agent can see a 5× 5
portion of the maze, centered in its current location, where walls are encoded with 1s, and free cells as
0s. The agent can choose among 4 actions (up, down, left, right) that result in deterministic transitions
to the adjacent cell, as long as such cell is empty; if the cell is a wall, the action has no effect.

Both the forward Dyna agent and the replay-based Q-learning agent used a multi-layer perceptron
(with two fully connected hidden layers, of size 20, and ReLU activations throughout) to approximate
Q-values. The final output layer had no activation, and had only 4 nodes, one per action. The
forward Dyna agent used separate networks with the same hidden layers to model state transitions,
rewards and terminations; the output layers of these had 25, 1, and 1 outputs. Both agents use a
replay with a capacity of 10000 transitions; the Q-networks are updated with double Q-learning,
on mini-batches of size 32; updates are rescaled by TensorFlow’s implementation of the Adam
optimizer, using a learning rate of 1e− 3. In the replay-based agent the update is computed using
only the real data from the transition st−1, at−1, rt, γt, st; in forward dyna the fictional transition
st−1, at−1,mR(st−1, at−1),mT (st−1, at−1),mS(st−1, at−1) is used instead, where mR,mT ,mS

are the outputs of the three neural networks used to parameterize the model.

C Experiment details: Benefits of Planning

For these experiments we run on the four-rooms environment shown in the text. At the beginning
of each episode, the agent’s starting position is randomized and the goal position is held fixed. The
dynamics are deterministic, with four actions that move the agent in the four cardinal directions, and
a no-op action. The state is fully-observed, and we use a tabular (state-index) representation for these
experiments. In both experiments we learn an exact Bayesian tabular model. We also learn a tabular
value function in tandem using one-step (tabular) Q-learning.

D Additional results on Atari

In Figure 5a and 5b we show the results of ablation experiments performed to isolate the effect of
increasing the bootstrapping parameter and the effect of increasing the frequency of updates. In
Figure 5a we show the effect of varying the bootstrapping parameter N ∈ [5, 10, 20], while keeping
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Figure 4: (a) A simple Markov reward process from Sutton et al. [2016]. (b) Observed divergence
for different sampling distributions d and transition probabilities p. (c) Assuming a perfect model
and an unbiased data-dependent estimate of d sampled from an instantiation of the environment with
p(St+1 = 1|St) = 0.5, we plot the likelihood of observing divergence as a function of the number of
samples used to estimate the empirical distribution d.
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Figure 5: Left: an ablation experiment where we investigate the effect of various settings for the
length of the multi-step bootstrapped targets. Center: an ablation experiment where we compare our
variant of Rainbow to performing updates every 4 steps as in the canonical Rainbow DQN. Center
comparing our data efficient Rainbow DQN with M = 1, P = 32 to a different Rainbow DQN which
achieves the same 4× increase in the number of transitions sampled from replay, by increasing the
batch size instead (M = 4, P = 128).

the update frequency fixed (M = 1). Consistently with our expectations a bootstrapping length
of N = 5 resulted in much worse performance, although our such variant of Rainbow DQN still
achieved results comparable to those of SimPLe. Both N = 10 and N = 20 resulted in good
performance, with the difference between the two not found to be statistically significant (under a
Welch’s test applied to the 5 replicas of each hyper-parameter evaluation, with significance level
of 0.1). In Figure 5b we show the effect of varying the frequency of the updates M ∈ [1, 4], while
keeping the number of steps before bootstrapping fixed (N = 20); The agent which performs updates
on each step performed much better, and the gap in performance was larger then the gap observed
when varying the bootstrap parameter N . Finally, in Figure 5c we report an additional experiment
where we compare our variant of Rainbow DQN with M = 1, P = 32 to a different Rainbow DQN
which achieves the same 4× increase in the number of transitions sampled from replay, by increasing
the batch size instead (M = 4, P = 128). The performance was significantly lower.

E Table of results

In Table 1 we report, for each of the 26 Atari game used by Kaiser et al. [2019] in their experiments,
the mean episode return, at the end of training, of both SimPLe and our data efficient variant of
Rainbow. On each score we mark in bold the best performing among the two agents. We also report
the reference human and random scores that were used to normalize the scores in all learning curves.
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Game Human Random SimPLe Rainbow

alien 7127.7 227.8 405.2 739.9

amidar 1719.5 5.8 88.0 188.6

assault 742.0 222.4 369.3 431.2

asterix 8503.3 210.0 1089.5 470.8

bank_heist 753.1 14.2 8.2 51.0

battle_zone 37187.5 2360.0 5184.4 10124.6

boxing 12.1 0.1 9.1 0.2

breakout 30.5 1.7 12.7 1.9

chopper_command 7387.8 811.0 1246.9 861.8

crazy_climber 35829.4 10780.5 39827.8 16185.3

demon_attack 1971.0 152.1 169.5 508.0

freeway 29.6 0.0 20.3 27.9

frostbite 4334.7 65.2 254.7 866.8

gopher 2412.5 257.6 771.0 349.5

hero 30826.4 1027.0 1295.1 6857.0

jamesbond 302.8 29.0 125.3 301.6

kangaroo 3035.0 52.0 323.1 779.3

krull 2665.5 1598.0 4539.9 2851.5

kung_fu_master 22736.3 258.5 17257.2 14346.1

ms_pacman 6951.6 307.3 762.8 1204.1

pong 14.6 -20.7 5.2 -19.3

private_eye 69571.3 24.9 58.3 97.8

qbert 13455.0 163.9 559.8 1152.9

road_runner 7845.0 11.5 5169.4 9600.0

seaquest 42054.7 68.4 370.9 354.1

up_n_down 11693.2 533.4 2152.6 2877.4

Table 1: Mean episode returns of Human, Random, SimPLe and Rainbow agents, on each of 26 Atari
games. The Rainbow results are measured at the end of training and averaged across 5 seeds; the
results for SimPLe are taken from Kaiser et al. [2019]. On each game we mark as bold the higher
score among SimPLe and Rainbow.
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F Atari hyper-parameters

In Table 2 we report, for completeness and ease of reproducibility, the hyper-parameter settings used
by the canonical Rainbow DQN agent, as well as the hyper-parameters that differ in our data efficient
variation. renewcommand11.2

Hyper-parameter setting (for both variations)

Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Action repetitions 4
Reward clipping [-1, 1]
Terminal on loss of life True
Max frames per episode 108K
Update Distributional Double Q
Target network update period∗ every 2000 updates
Support of Q-distribution 51 bins
Discount factor 0.99
Minibatch size 32
Optimizer Adam
Optimizer: first moment decay 0.9
Optimizer: second moment decay 0.999
Optimizer: ε 0.00015
Max gradient norm 10
Priority exponent 0.5
Priority correction∗∗ 0.4→ 1
Hardware CPU
Noisy nets parameter 0.1

Hyper-parameter canonical data-efficient

Training frames 200,000,000 400,000
Min replay size for sampling 20,000 1600
Memory size 1,000,000 steps unbounded
Replay period every 4 steps 1 steps
Multi-step return length 3 20
Q network: channels 32, 64, 64 32, 64
Q network: filter size 8× 8, 4× 4, 3× 3 5× 5, 5× 5
Q network: stride 4, 2, 1 5, 5
Q network: hidden units 512 256
Optimizer: learning rate 0.0000625 0.0001
∗ The target network update period depends on the number of updates (not frames). This means
that this update is more frequent in the data-efficient variant, in terms of frames.
∗∗ The priority correction linearly annealed from 0.4 to 1 during training: exponent = (1− η)×
0.4+η×1.0, where η = current_step/max_steps. For the canonical variant, max_step = 50M,
for the data-efficient variant max_step = 100K

Table 2: The hyper-parameters used by the canonical and the data-efficient variant of the Rainbow
DQN agent.
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