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Abstract

Knowledge graph reasoning, which aims at predicting the missing facts through
reasoning with the observed facts, is critical to many applications. Such a problem
has been widely explored by traditional logic rule-based approaches and recent
knowledge graph embedding methods. A principled logic rule-based approach is
the Markov Logic Network (MLN), which is able to leverage domain knowledge
with first-order logic and meanwhile handle the uncertainty. However, the inference
in MLNs is usually very difficult due to the complicated graph structures. Different
from MLNs, knowledge graph embedding methods (e.g. TransE, DistMult) learn
effective entity and relation embeddings for reasoning, which are much more
effective and efficient. However, they are unable to leverage domain knowledge.
In this paper, we propose the probabilistic Logic Neural Network (pLogicNet),
which combines the advantages of both methods. A pLogicNet defines the joint
distribution of all possible triplets by using a Markov logic network with first-order
logic, which can be efficiently optimized with the variational EM algorithm. In
the E-step, a knowledge graph embedding model is used for inferring the missing
triplets, while in the M-step, the weights of logic rules are updated based on both
the observed and predicted triplets. Experiments on multiple knowledge graphs
prove the effectiveness of pLogicNet over many competitive baselines.

1 Introduction

Many real-world entities are interconnected with each other through various types of relationships,
forming massive relational data. Naturally, such relational data can be characterized by a set of (h, r, t)
triplets, meaning that entity h has relation r with entity t. To store the triplets, many knowledge graphs
have been constructed such as Freebase [14] and WordNet [24]. These graphs have been proven
useful in many tasks, such as question answering [49], relation extraction [34] and recommender
systems [4]. However, one big challenge of knowledge graphs is that their coverage is limited.
Therefore, one fundamental problem is how to predict the missing links based on the existing triplets.

One type of methods for reasoning on knowledge graphs are the symbolic logic rule-based ap-
proaches [12, 17, 35, 41, 46]. These rules can be either handcrafted by domain experts [42] or mined
from knowledge graphs themselves [10]. Traditional methods such as expert systems [12, 17] use
hard logic rules for prediction. For example, given a logic rule ∀x, y,Husband(x, y) ⇒ Wife(y, x)
and a fact that A is the husband of B, we can derive that B is the wife of A. However, in many cases
logic rules can be imperfect or even contradictory, and hence effectively modeling the uncertainty
of logic rules is very critical. A more principled method for using logic rules is the Markov Logic
Network (MLN) [35, 39], which combines first-order logic and probabilistic graphical models. MLNs
learn the weights of logic rules in a probabilistic framework and thus soundly handle the uncertainty.
Such methods have been proven effective for reasoning on knowledge graphs. However, the inference
process in MLNs is difficult and inefficient due to the complicated graph structure among triplets.
Moreover, the results can be unsatisfactory as many missing triplets cannot be inferred by any rules.

Another type of methods for reasoning on knowledge graphs are the recent knowledge graph em-
bedding based methods (e.g., TransE [3], DistMult [48] and ComplEx [44]). These methods learn
useful embeddings of entities and relations by projecting existing triplets into low-dimensional spaces.
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These embeddings preserve the semantic meanings of entities and relations, and can effectively
predict the missing triplets. In addition, they can be efficiently trained with stochastic gradient
descent. However, one limitation is that they do not leverage logic rules, which compactly encode
domain knowledge and are useful in many applications.

We are seeking an approach that combines the advantages of both worlds, one which is able to exploit
first-order logic rules while handling their uncertainty, infer missing triplets effectively, and can
be trained in an efficient way. We propose such an approach called the probabilistic Logic Neural
Networks (pLogicNet). A pLogicNet defines the joint distribution of a collection of triplets with a
Markov Logic Network [35], which associates each logic rule with a weight and can be effectively
trained with the variational EM algorithm [26]. In the variational E-step, we infer the plausibility of
the unobserved triplets (i.e., hidden variables) with amortized mean-field inference [11, 21, 29], in
which the variational distribution is parameterized as a knowledge graph embedding model. In the
M-step, we update the weights of logic rules by optimizing the pseudolikelihood [1], which is defined
on both the observed triplets and those inferred by the knowledge graph embedding model. The
framework can be efficiently trained by stochastic gradient descent. Experiments on four benchmark
knowledge graphs prove the effectiveness of pLogicNet over many competitive baselines.

2 Related Work

First-order logic rules can compactly encode domain knowledge and have been extensively explored
for reasoning. Early methods such as expert systems [12, 17] use hard logic rules for reasoning.
However, logic rules can be imperfect or even contradictory. Later studies try to model the uncertainty
of logic rules by using Horn clauses [5, 19, 30, 46] or database query languages [31, 41]. A more
principled method is the Markov logic network [35, 39], which combines first-order logic with
probabilistic graphical models. Despite the effectiveness in a variety of tasks, inference in MLNs
remains difficult and inefficient due to the complicated connections between triplets. Moreover, for
predicting missing triplets on knowledge graphs, the performance can be limited as many triplets
cannot be discovered by any rules. In contrast to them, pLogicNet uses knowledge graph embedding
models for inference, which is much more effective by learning useful entity and relation embeddings.

Another category of approach for knowledge graph reasoning is the knowledge graph embedding
method [3, 8, 28, 40, 44, 45, 48], which aims at learning effective embeddings of entities and relations.
Generally, these methods design different scoring functions to model different relation patterns for
reasoning. For example, TransE [3] defines each relation as a translation vector, which can effectively
model the composition and inverse relation patterns. DistMult [48] models the symmetric relation
with a bilinear scoring function. ComplEx [44] models the asymmetric relations by using a bilinear
scoring function in complex space. RotatE [40] further models multiple relation patterns by defining
each relation as a rotation in complex spaces. Despite the effectiveness and efficiency, these methods
are not able to leverage logic rules, which are beneficial in many tasks. Recently, there are a few
studies on combining logic rules and knowledge graph embedding [9, 15]. However, they cannot
effectively handle the uncertainty of logic rules. Compared with them, pLogicNet is able to use logic
rules and also handle their uncertainty in a more principled way through Markov logic networks.

Some recent work also studies using reinforcement learning for reasoning on knowledge graphs [6,
23, 38, 47], where an agent is trained to search for reasoning paths. However, the performance of
these methods is not so competitive. Our pLogicNets are easier to train and also more effective.

Lastly, there are also some recent studies trying to combine statistical relational learning and graph
neural networks for semi-supervised node classification [33], or using Markov networks for visual
dialog reasoning [32, 51]. Our work shares similar idea with these studies, but we focus on a different
problem, i.e., reasoning with first-order logic on knowledge graphs. There is also a concurrent work
using graph neural networks for logic reasoning [50]. Compared to this study which emphasizes
more on the inference problem, our work focuses on both the inference and the learning problems.

3 Preliminary

3.1 Problem Definition

A knowledge graph is a collection of relational facts, each of which is represented as a triplet (h, r, t).
Due to the high cost of knowledge graph construction, the coverage of knowledge graphs is usually
limited. Therefore, a critical problem on knowledge graphs is to predict the missing facts.
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Formally, given a knowledge graph (E,R,O), where E is a set of entities, R is a set of relations, and
O is a set of observed (h, r, t) triplets, the goal is to infer the missing triplets by reasoning with the
observed triplets. Following existing studies [27], the problem can be reformulated in a probabilistic
way. Each triplet (h, r, t) is associated with a binary indicator variable v(h,r,t). v(h,r,t) = 1 means
(h, r, t) is true, and v(h,r,t) = 0 otherwise. Given some true facts vO = {v(h,r,t) = 1}(h,r,t)∈O, we
aim to predict the labels of the remaining hidden triplets H , i.e., vH = {v(h,r,t)}(h,r,t)∈H . We will
discuss how to generate the hidden triplets H later in Sec. 4.4.

This problem has been extensively studied in both traditional logic rule-based methods and recent
knowledge graph embedding methods. For logic rule-based methods, we mainly focus on one
representative approach, the Markov logic network [35]. Essentially, both types of methods aim to
model the joint distribution of the observed and hidden triplets p(vO,vH). Next, we briefly introduce
the Markov logic network (MLN) [35] and the knowledge graph embedding methods [3, 40, 48].

3.2 Markov Logic Network

In the MLN, a Markov network is designed to define the joint distribution of the observed and the
hidden triplets, where the potential function is defined by the first-order logic. Some common logic
rules to encode domain knowledge include: (1) Composition Rules. A relation rk is a composition of
ri and rj means that for any three entities x, y, z, if x has relation ri with y, and y has relation rj with
z, then x has relation rk with z. Formally, we have ∀x, y, z ∈ E,v(x,ri,y) ∧ v(y,rj ,z) ⇒ v(x,rk,z).
(2) Inverse Rules. A relation rj is an inverse of ri indicates that for two entities x, y, if x has relation
ri with y, then y has relation rj with x. We can represent the rule as ∀x, y ∈ E,v(x,ri,y) ⇒ v(y,rj ,x).
(3) Symmetric Rules. A relation r is symmetric means that for any entity pair x, y, if x has relation
r with y, then y also has relation r with x. Formally, we have ∀x, y ∈ E,v(x,r,y) ⇒ v(y,r,x). (4)
Subrelation Rules. A relation rj is a subrelation of ri indicates that for any entity pair x, y, if x and y
have relation ri, then they also have relation rj . Formally, we have ∀x, y ∈ E,v(x,ri,y) ⇒ v(x,rj ,y).

For each logic rule l, we can obtain a set of possible groundings Gl by instantiating the entity
placeholders in the logic rule with real entities in knowledge graphs. For example, for a subre-
lation rule, ∀x, y,v(x,Born in,y) ⇒ v(x,Live in,y), two groundings in Gl can be v(Newton,Born in,UK) ⇒
v(Newton,Live in,UK) and v(Einstein,Born in,German) ⇒ v(Einstein,Live in,German). We see that the former one is
true while the latter one is false. To handle such uncertainty of logic rules, Markov logic networks
introduce a weight wl for each rule l, and then the joint distribution of all triplets is defined as follows:

p(vO,vH) =
1

Z
exp





∑

l∈L

wl

∑

g∈Gl

✶{g is true}



 =
1

Z
exp

(

∑

l∈L

wlnl(vO,vH)

)

, (1)

where nl is the number of true groundings of the logic rule l based on the values of vO and vH .

With such a formulation, predicting the missing triplets essentially becomes inferring the posterior dis-
tribution p(vH |vO). Exact inference is usually infeasible due to the complicated graph structures, and
hence approximation inference is often used such as MCMC [13] and loopy belief propagation [25].

3.3 Knowledge Graph Embedding

Different from the logic rule-based approaches, the knowledge graph embedding methods learn
embeddings of entities and relations with the observed facts vO, and then predict the missing facts
with the learned entity and relation embeddings. Formally, each entity e ∈ E and relation r ∈ R is
associated with an embedding xe and xr. Then the joint distribution of all the triplets is defined as:

p(vO,vH) =
∏

(h,r,t)∈O∪H

Ber(v(h,r,t)|f(xh,xr,xt)), (2)

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the score function f can be formulated as σ(γ − ||xh + xr − xt||) according
to [40], where σ is the sigmoid function and γ is a fixed bias. To learn the entity and relation
embeddings, these methods typically treat observed triplets as positive examples and the hidden
triplets as negative ones. In other words, these methods seek to maximize log p(vO = 1,vH = 0).
The whole framework can be efficiently optimized with the stochastic gradient descent algorithm.
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Nationality ⇐ Politician of 2.6

Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (✓) or not (✗). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [35], which is trained with the variational
EM algorithm [26], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}
|L|
i=1, our approach uses a Markov logic network [35] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

(

∑

l

wlnl(vO,vH)

)

, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) ≥ L(qθ, pw) = Eqθ(vH)[log pw(vO,vH)− log qθ(vH)], (4)

where qθ(vH) is a variational distribution of the hidden variables vH . The equation holds when
qθ(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [26], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update
qθ to minimize the KL divergence between qθ(vH) and pw(vH |vO). In the M-step, which is known
as the learning procedure, we fix qθ and update pw to maximize the log-likelihood function of all the
triplets, i.e., Eqθ(vH)[log pw(vO,vH)]. Next, we introduce the details of both steps.

4.2 E-step: Inference Procedure

For inference, we aim to infer the posterior distribution of the hidden variables, i.e., pw(vH |vO). As
exact inference is intractable, we approximate the true posterior distribution with a mean-field [29]
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variational distribution qθ(vH), in which each v(h,r,t) is inferred independently for (h, r, t) ∈ H . To
further improve inference, we use amortized inference [11, 21], and parameterize qθ(v(h,r,t)) with a
knowledge graph embedding model. Formally, qθ(vH) is formulated as below:

qθ(vH) =
∏

(h,r,t)∈H

qθ(v(h,r,t)) =
∏

(h,r,t)∈H

Ber(v(h,r,t)|f(xh,xr,xt)), (5)

where Ber stands for the Bernoulli distribution, and f(·, ·, ·) is a scoring function defined on triplets
as introduced in Sec. 3.3. By minimizing the KL divergence between the variational distribution
qθ(vH) and the true posterior pw(vH |vO), the optimal qθ(vH) is given by the fixed-point condition:

log qθ(v(h,r,t)) = Eqθ(vMB(h,r,t))[log pw(v(h,r,t)|vMB(h,r,t))] + const for all (h, r, t) ∈ H, (6)

where MB(h, r, t) is the Markov blanket of (h, r, t), which contains the triplets that appear together
with (h, r, t) in any grounding of the logic rules. For example, from a grounding v(Newton,Born in,UK) ⇒
v(Newton,Live in,UK), we can know both triplets are in the Markov blanket of each other.

With Eq. (6), our goal becomes finding a distribution qθ that satisfies the condition. However, Eq. (6)
involves the expectation with respect to qθ(vMB(h,r,t)). To simplify the condition, we follow [16]
and estimate the expectation with a sample v̂MB(h,r,t) = {v̂(h′,r′,t′)}(h′,r′,t′)∈MB(h,r,t). Specifically,
for each (h′, r′, t′) ∈ MB(h, r, t), if it is observed, we set v̂(h′,r′,t′) = 1, and otherwise v̂(h′,r′,t′) ∼
qθ(v(h′,r′,t′)). In this way, the right side of Eq. (6) is approximated as log pw(v(h,r,t)|v̂MB(h,r,t)),
and thus the optimality condition can be further simplified as qθ(v(h,r,t)) ≈ pw(v(h,r,t)|v̂MB(h,r,t)).

Intuitively, for each hidden triplet (h, r, t), the knowledge graph embedding model predicts v(h,r,t)

through the entity and relation embeddings (i.e., qθ(v(h,r,t))), while the logic rules make the
prediction by utilizing the triplets connected with (h, r, t) (i.e., pw(v(h,r,t)|v̂MB(h,r,t))). If any
triplet (h′, r′, t′) connected with (h, r, t) is unobserved, we simply fill in v(h′,r′,t′) with a sample
v̂(h′,r′,t′) ∼ qθ(v(h′,r′,t′)). Then, the simplified optimality condition tells us that for the optimal
knowledge graph embedding model, it should reach a consensus with the logic rules on the distribution
of v(h,r,t) for every (h, r, t), i.e., qθ(v(h,r,t)) ≈ pw(v(h,r,t)|v̂MB(h,r,t)).

To learn the optimal qθ, we use a method similar to [36]. We start by computing pw(v(h,r,t)|v̂MB(h,r,t))
with the current qθ. Then, we fix the value as target, and update qθ to minimize the reverse KL
divergence of qθ(v(h,r,t)) and the target pw(v(h,r,t)|v̂MB(h,r,t)), leading to the following objective:

Oθ,U =
∑

(h,r,t)∈H

Epw(v(h,r,t)|v̂MB(h,r,t))[log qθ(v(h,r,t))]. (7)

To optimize this objective, we first compute pw(v(h,r,t)|v̂MB(h,r,t)) for each hidden triplet (h, r, t).
If pw(v(h,r,t) = 1|v̂MB(h,r,t)) ≥ τtriplet with τtriplet being a hyperparameter, then we treat (h, r, t) as a
positive example and train the knowledge graph embedding model to maximize the log-likelihood
log qθ(v(h,r,t) = 1). Otherwise the triplet is treated as a negative example. In this way, the knowledge
captured by logic rules can be effectively distilled into the knowledge graph embedding model.

We can also use the observed triplets in O as positive examples to enhance the knowledge graph
embedding model. Therefore, we also optimize the following objective function:

Oθ,L =
∑

(h,r,t)∈O

log qθ(v(h,r,t) = 1). (8)

By adding Eq. (7) and (8), we obtain the overall objective function for qθ, i.e., Oθ = Oθ,U +Oθ,L.

4.3 M-step: Learning Procedure

In the learning procedure, we will fix qθ, and update the weights of logic rules w by maximizing
the log-likelihood function, i.e., Eqθ(vH)[log pw(vO,vH)]. However, directly optimizing the log-
likelihood function can be difficult, as we need to deal with the partition function, i.e., Z in Eq. (3).
Therefore, we follow existing studies [22, 35] and instead optimize the pseudolikelihood function [1]:

ℓPL(w) , Eqθ(vH)[
∑

h,r,t

log pw(v(h,r,t)|vO∪H\(h,r,t))] = Eqθ(vH)[
∑

h,r,t

log pw(v(h,r,t)|vMB(h,r,t))],
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where the second equation is derived from the independence property of the MLN in the Eq. (3).

We optimize w through the gradient descent algorithm. For each expected conditional distribution
Eqθ(vH)[log pw(v(h,r,t)|vMB(h,r,t))], suppose v(h,r,t) connects with vMB(h,r,t) through a set of rules.
For each of such rules l, the derivative with respect to wl is computed as:

▽wl
Eqθ(vH)[log pw(v(h,r,t)|vMB(h,r,t))] ≃ y(h,r,t) − pw(v(h,r,t) = 1|v̂MB(h,r,t)) (9)

where y(h,r,t) = 1 if (h, r, t) is an observed triplet and y(h,r,t) = qθ(v(h,r,t) = 1) if (h, r, t) is a
hidden one. v̂MB(h,r,t) = {v̂(h′,r′,t′)}(h′,r′,t′)∈MB(h,r,t) is a sample from qθ. For each (h′, r′, t′) ∈
MB(h, r, t), v̂(h′,r′,t′) = 1 if (h′, r′, t′) is observed, and otherwise v̂(h′,r′,t′) ∼ qθ(v(h′,r′,t′)).

Intuitively, for each observed triplet (h, r, t) ∈ O, we seek to maximize pw(v(h,r,t) = 1|v̂MB(h,r,t)).
For each hidden triplet (h, r, t) ∈ H , we treat qθ(v(h,r,t) = 1) as target for updating the probability
pw(v(h,r,t) = 1|v̂MB(h,r,t)). In this way, the knowledge graph embedding model qθ essentially
provides extra supervision to benefit learning the weights of logic rules.

4.4 Optimization and Prediction

During training, we iteratively perform the E-step and the M-step until convergence. Note that there
are a huge number of possible hidden triplets (i.e., |E| × |R| × |E| − |O|), and handling all of
them is impractical for optimization. Therefore, we only include a small number of triplets in the
hidden set H . Specifically, an unobserved triplet (h, r, t) is added to H if we can find a grounding
[premise] ⇒ [hypothesis], where the hypothesis is (h, r, t) and the premise only contains triplets
in the observed set O. In practice, we can construct H with brute-force search as in [15].

After training, according to the fixed-point condition given in Eq. (6), the posterior distribution
pw(v(h,r,t)|vO) for (h, r, t) ∈ H can be characterized by either qθ(v(h,r,t)) or pw(v(h,r,t)|v̂MB(h,r,t))
with v̂MB(h,r,t) ∼ qθ(vMB(h,r,t)). Although we try to encourage the consensus of pw and qθ during
training, they may still give different predictions as different information is used. Therefore, we use
both of them for prediction, and we approximate the true posterior distribution pw(v(h,r,t)|vO) as:

pw(v(h,r,t)|vO) ∝
{

qθ(v(h,r,t)) + λpw(v(h,r,t)|v̂MB(h,r,t))
}

, (10)

where λ is a hyperparameter controlling the relative weight of qθ(v(h,r,t)) and pw(v(h,r,t)|v̂MB(h,r,t)).
In practice, we also expect to infer the plausibility of the triplets outside H . For each of such triplets
(h, r, t), we can still compute qθ(v(h,r,t)) through the learned embeddings, but we cannot make
predictions with the logic rules, so we simply replace pw(v(h,r,t) = 1|v̂MB(h,r,t)) with 0.5 in Eq. 10.

5 Experiment

5.1 Experiment Settings

Datasets. In experiments, we evaluate the pLogicNet on four benchmark datasets. The FB15k [3]
and FB15k-237 [43] datasets are constructed from Freebase [2]. WN18 [3] and WN18RR [8] are
constructed from WordNet [24]. The detailed statistics of the datasets are summarized in appendix.

Evaluation Metrics. We compare different methods on the task of knowledge graph reasoning. For
each test triplet, we mask the head or the tail entity, and let each compared method predict the masked
entity. Following existing studies [3, 48], we use the filtered setting during evaluation. The Mean
Rank (MR), Mean Reciprocal Rank (MRR) and Hit@K (H@K) are treated as the evaluation metrics.

Compared Algorithms. We compare with both the knowledge graph embedding methods and rule-
based methods. For the knowledge graph embedding methods, we choose five representative methods
to compare with, including TransE [3], DistMult [48], HolE [28], ComplEx [44] and ConvE [8]. For
the rule-based methods, we compare with the Markov logic network (MLN) [35] and the Bayesian
logic programming (BLP) method [7], which model logic rules with Markov networks and Bayesian
networks respectively. Besides, we also compare with RUGE [15] and NNE-AER [9], which are
hybrid methods that combine knowledge graph embedding and logic rules. As only the results on the
FB15k dataset are reported in the RUGE paper, we only compare with RUGE on that dataset. For
our approach, we consider two variants, where pLogicNet uses only qθ to infer the plausibility of
unobserved triplets during evaluation, while pLogicNet∗ uses both qθ and pw through Eq. (10).
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Experimental Setup of pLogicNet. To generate the candidate rules in the pLogicNet, we search
for all the possible composition rules, inverse rules, symmetric rules and subrelations rules from the
observed triplets, which is similar to [10, 15]. Then, we compute the empirical precision of each rule,
i.e. pl =

|Sl∩O|
|Sl|

, where Sl is the set of triplets extracted by the rule l and O is the set of the observed
triplets. We only keep rules whose empirical precision is larger than a threshold τrule. TransE [3] is
used as the default knowledge graph embedding model to parameterize qθ. We update the weights of
logic rules with gradient descent. The detailed hyperparameters settings are available in the appendix.

5.2 Results

5.2.1 Comparing pLogicNet with Other Methods

Table 1: Results of reasoning on the FB15k and WN18 datasets. The results of the KGE and the
Hybrid methods except for TransE are directly taken from the corresponding papers. H@K is in %.

Category Algorithm
FB15k WN18

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

KGE

TransE [3] 40 0.730 64.5 79.3 86.4 272 0.772 70.1 80.8 92.0
DistMult [18] 42 0.798 - - 89.3 655 0.797 - - 94.6

HolE [28] - 0.524 40.2 61.3 73.9 - 0.938 93.0 94.5 94.9
ComplEx [44] - 0.692 59.9 75.9 84.0 - 0.941 93.6 94.5 94.7

ConvE [8] 51 0.657 55.8 72.3 83.1 374 0.943 93.5 94.6 95.6

Rule-based
BLP [7] 415 0.242 15.1 26.9 42.4 736 0.643 53.7 71.7 83.0

MLN [35] 352 0.321 21.0 37.0 55.0 717 0.657 55.4 73.1 83.9

Hybrid
RUGE [15] - 0.768 70.3 81.5 86.5 - - - - -

NNE-AER [9] - 0.803 76.1 83.1 87.4 - 0.943 94.0 94.5 94.8

Ours
pLogicNet 33 0.792 71.4 85.7 90.1 255 0.832 71.6 94.4 95.7
pLogicNet∗ 33 0.844 81.2 86.2 90.2 254 0.945 93.9 94.7 95.8

Table 2: Results of reasoning on the FB15k-237 and WN18RR datasets. The results of the KGE
methods except for TransE are directly taken from the corresponding papers. H@K is in %.

Category Algorithm
FB15k-237 WN18RR

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

KGE

TransE [3] 181 0.326 22.9 36.3 52.1 3410 0.223 1.3 40.1 53.1
DistMult [18] 254 0.241 15.5 26.3 41.9 5110 0.43 39 44 49
ComplEx [44] 339 0.247 15.8 27.5 42.8 5261 0.44 41 46 51

ConvE [8] 244 0.325 23.7 35.6 50.1 4187 0.43 40 44 52

Rule-based
BLP [7] 1985 0.092 6.2 9.8 15.0 12051 0.254 18.7 31.3 35.8

MLN [35] 1980 0.098 6.7 10.3 16.0 11549 0.259 19.1 32.2 36.1

Ours
pLogicNet 173 0.330 23.1 36.9 52.8 3436 0.230 1.5 41.1 53.1
pLogicNet∗ 173 0.332 23.7 36.7 52.4 3408 0.441 39.8 44.6 53.7

The main results on the four datasets are presented in Tab. 1 and 2. We can see that the pLogicNet
significantly outperforms the rule-based methods, as pLogicNet uses a knowledge graph embedding
model to improve inference. pLogicNet also outperforms all the knowledge graph embedding
methods in most cases, where the improvement comes from the capability of exploring the knowledge
captured by the logic rules. Moreover, our approach is superior to both hybrid methods (RUGE and
NNE-AER) under most metrics, as it handles the uncertainty of logic rules in a more principled way.

Comparing pLogicNet and pLogicNet∗, pLogicNet∗ uses both qθ and pw to predict the plausibility
of hidden triplets, which outperforms pLogicNet in most cases. The reason is that the information
captured by qθ and pw is different and complementary, so combining them yields better performance.

5.2.2 Analysis of Different Rule Patterns

Table 3: Analysis of different rule patterns. H@K is in %.

Rule Pattern
FB15k FB15k-237

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

Without 40 0.730 64.7 79.4 86.4 181 0.326 22.9 36.3 52.1
Composition 40 0.752 69.3 78.7 86.0 173 0.335 24.1 37.1 52.5

Inverse 39 0.813 77.7 83.1 88.1 175 0.332 23.8 36.7 52.4
Symmetric 40 0.793 75.0 81.7 87.1 175 0.333 23.8 36.8 52.4
Subrelation 40 0.761 70.2 79.8 86.6 172 0.334 23.9 36.8 52.5
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In pLogicNet, four types of rule patterns are used. Next, we systematically study the effect of each
rule pattern. We take the FB15k and FB15k-237 datasets as examples, and report the results obtained
with each single rule pattern in Tab. 3. On both datasets, most rule patterns can lead to significant
improvement compared to the model without logic rules. Moreover, the effects of different rule
patterns are quite different across datasets. On FB15k, the inverse and symmetric rules are more
important, whereas on FB15k-237, the composition and subrelation rules are more effective.

5.2.3 Inference with Different Knowledge Graph Embedding Methods

Table 4: Comparison of using different knowledge graph embedding methods. H@K is in %.

KGE Method Algorithm
FB15k WN18RR

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

TransE
pLogicNet 33 0.792 71.4 85.7 90.1 3436 0.230 1.5 41.1 53.1
pLogicNet∗ 33 0.844 81.2 86.2 90.2 3408 0.441 39.8 44.6 53.7

DistMult
pLogicNet 40 0.791 73.1 83.2 89.5 4902 0.442 39.8 45.5 53.5
pLogicNet∗ 39 0.815 76.8 84.6 89.8 4894 0.443 39.9 45.5 53.6

ComplEx
pLogicNet 39 0.776 70.6 81.7 88.5 5266 0.471 43.0 49.2 55.7
pLogicNet∗ 45 0.788 73.5 82.1 88.5 5233 0.475 43.5 49.2 55.7

In this part, we compare the performance of pLogicNet with different knowledge graph embedding
methods for inference. We use TransE as the default model and compare with two other widely-used
knowledge graph embedding methods, DistMult [48] and ComplEx [44]. The results on the FB15k
and WN18RR datasets are presented in Tab. 4. Comparing with the results in Tab. 1 and 2, we see
that pLogicNet improves the performance of all the three methods by using logic rules. Moreover,
the pLogicNet achieves very robust performance with any of the three methods for inference.

Iteration
FB15k WN18

# Triplets Precision # Triplets Precision

1 64,929 79.21% 11,146 80.99%
2 74,717 79.31% 11,430 82.06%
3 76,268 79.10% 11,432 82.09%

Table 5: Effect of KGE on logic rules.

72
73
74
75
76

1 2 3 4

FB15k

92
93
94
95
96

1 2 3 4

WN18

Figure 2: Convergence analysis.

5.2.4 Effect of Knowledge Graph Embedding on Logic Rules

In the M-step of pLogicNet, we use the learned embeddings to annotate the hidden triplets, and
further update the weights of logic rules. Next, we analyze the effect of knowledge graph embeddings
on logic rules. Recall that in the E-step, the logic rules are used to annotate the hidden triplets
through Eq. (7), and thus collect extra positive training data for embedding learning. To evaluate the
performance of logic rules, in each iteration we report the number of positive triplets discovered by
logic rules, as well as the precision of the triplets in Tab. 5. We see that as training proceeds, the logic
rules can find more triplets with stable precision. This observation proves that the knowledge graph
embedding model can indeed provide effective supervision for learning the weights of logic rules.

5.2.5 Convergence Analysis

Finally, we present the convergence curves of pLogicNet∗ on the FB15k and WN18 datasets in Fig. 2.
The horizontal axis represents the iteration, and the vertical axis shows the value of Hit@1 (in %). We
see that on both datasets, our approach takes only 2-3 iterations to converge, which is very efficient.

6 Conclusion

This paper studies knowledge graph reasoning, and an approach called the pLogicNet is proposed to
integrate existing rule-based methods and knowledge graph embedding methods. pLogicNet models
the distribution of all the possible triplets with a Markov logic network, which is efficiently optimized
with the variational EM algorithm. In the E-step, a knowledge graph embedding model is used to infer
the hidden triplets, whereas in the M-step, the weights of rules are updated based on the observed and
inferred triplets. Experimental results prove the effectiveness of pLogicNet. In the future, we plan to
explore more advanced models for inference, such as relational GCN [37, 50] and RotatE [40].
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