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Abstract

We propose a novel nonparametric online predictor for discrete labels conditioned
on multivariate continuous features. The predictor is based on a feature space
discretization induced by a full-fledged k-d tree with randomly picked directions
and a recursive Bayesian distribution, which allows to automatically learn the
most relevant feature scales characterizing the conditional distribution. We prove
its pointwise universality, i.e., it achieves a normalized log loss performance
asymptotically as good as the true conditional entropy of the labels given the
features. The time complexity to process the n-th sample point is O (log n) in
probability with respect to the distribution generating the data points, whereas other
exact nonparametric methods require to process all past observations. Experiments
on challenging datasets show the computational and statistical efficiency of our
algorithm in comparison to standard and state-of-the-art methods.

1 Introduction

Universal online predictors. An online (or sequential) probability predictor processes sequentially
input symbols l1, l2, . . . belonging to some alphabet L. Before observing the next symbol in the
sequence, it predicts it by estimating the probability of observing each symbol of the alphabet. Then,
it observes the symbol and some loss is incurred depending on the estimated probability of the
current symbol. Subsequently, it adapts its model in order to better predict future symbols. The
goal of universal prediction is to achieve an asymptotically optimal performance independently of
the generating mechanism (see, e.g., the survey of Merhav and Feder [22]). When performance
is measured in terms of the logarithmic loss, prediction is intimately related to data compression,
gambling and investing (see, e.g., [7, 6]).

Barron’s theorem [3] (see also [10, Ch.15]) establishes a fundamental link between prediction under
logarithmic loss and learning: the better we can sequentially predict data from a probabilistic source,
the faster we can identify a good approximation of it. This is of paramount importance when applied
to nonparametric models of infinite dimensionality, where overfitting is a serious concern. This is our
case, since the predictor observes some associated side information (i.e. features) zi ∈ Rd before
predicting li ∈ L, where L = {λ1, . . . , λ|L|}. We consider the probabilistic setup where the pairs
of observations (zi, li) are i.i.d. realizations of some random variables (Z,L) with joint probability
measure P. Therefore, we aim at estimating a nonparametric model of the conditional measure PL|Z .

Nonparametric distributions can be approximated by universal distributions over countable unions
of parametric models (see e.g., [10, Ch. 13]). This approach requires defining parametric models
that can arbitrarily approximate the nonparametric distribution as the number of parameters tend to
infinity. For example, models based on histograms with arbitrarily many bins have been proposed to
approximate univariate nonparametric densities (e.g., [13, 26, 36]).
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Bayesian mixtures allow to obtain universal distributions for countable unions of parametric models
(e.g., [35, 34]). Nevertheless, standard Bayesian mixtures suffer from the catch-up phenomenon, i.e.,
their convergence rate is not optimal. In [31], it has been shown that a better convergence rate can be
achieved by allowing models to change over time, by considering, instead of a set of distributionsM,
a (larger) set constituted by sequences of distributions ofM. The resulting switch distribution has
still a Bayesian form but the mixture is done over sequences of models.

Previous works on prediction with side information either are non-sequential (e.g. PAC learning [30]),
or use other losses (e.g. [11, 12] ) or consider side information in more restrictive spaces (e.g. [1, 5]).
Our work bears similarities to [16, 29, 32] but the objectives are different and so are the guarantees.
Recently, [19] proposed a universal online predictor for side information in Rd based on a mixture of
nearest-neighbors regressors with different k(n) functions specifying the number of neighbors at time
n. Practically, the performances depend on the particular set of functions—a design choice—and
its time complexity is linear in n due to the exact nearest neighbor search. Gaussian Processes (see,
e.g., [25]) are nonparametric Bayesian methods which can be used for online prediction with side
information. It is conjectured that exact Gaussian processes with the radial basis function (RBF)
kernel are universal under some conditions on the marginal measure PZ [10, Sec. 13.5.3]. In practice,
approximations are required to compute the predictive posterior for discrete labels (e.g. Laplace)
and the kernel width strongly affects the results. In addition, their time complexity to predict each
observation is O

(
n3
)
, making them practical for small samples sizes only.

We propose a novel nonparametric online predictor with universal guarantees for continuous side
information exhibiting two distinctive features. First, it relies on a hierarchical feature space dis-
cretization and a recursive Bayesian distribution, automatically learning the relevant feature scales
and making it scale-hyperparameter free. Second, in contrast to other nonparametric approaches, its
time complexity to process the n-th sample point is O (log n) in probability. Due to space constraints,
proofs are presented in the supplementary material.

2 Basic definitions and notations

In order to represent sequences, we use the notation xn ≡ x1, . . . , xn. The functions |·| and |·|λ, give,
respectively, the length of a sequence and the number of occurrences of a symbol λ in it. Let P be the
joint probability measure of L,Z. Let PL,PZ be their respective marginal measures and PZ|L the
probability measure of Z conditioned on L. The entropy of random variables is denoted H (·), while
the entropy of L conditioned on Z is denoted H (L|Z). The mutual information between L and Z is
denoted I (L;Z). Logarithms are taken in base 2.

A finite-measurable partition A = (γ1, . . . , γn) of some set Ω is a subdivision of Ω into a finite
number of disjoint measurable sets or cells γi whose union is Ω. An n-sample partition rule πn(·) is
a mapping from Ωn to the space of finite-measurable partitions for Ω, denoted A(Ω). A partitioning
scheme for Ω is a countable collection of k-sample partition rules Π ≡ {πk}k∈N+ . The partitioning
scheme at time n defines the set of partition rules Πn ≡ {πk}k=1..n. For a given n-sample partition
rule πn(·) and a sequence zn ∈ Ωn, πn(z|zn) denotes the unique cell in πn(zn) containing a given
point z ∈ Ω. For a given partition A, let A(z) denote the unique cell of A containing z. Let γ (·)
denote the operator that extracts the subsequences whose symbols have corresponding zi ∈ γ.

3 The kd-switch distribution

We define the kd-switch distribution Pkds using a k-d tree based hierarchical partitioning and a
switch distribution defined over the union of multinomial distributions implied by the partitioning.
Full-fledged k-d tree based spatial partitioning. We obtain a hierarchical partitioning of Ω = Rd
using a full-fledged k-d tree [8, Sec. 20.4] that is naturally amenable to an online construction
since pivot points are chosen in the same order as sample points are observed. Instead of rotating
deterministically the axis of the projections, we sample the axis uniformly at each node of the tree.
Formally, let Πkd ≡ {πk}k∈N+ be the nested partitioning scheme such that πn(zn) is the spatial
partition generated by a full-fledged k-d tree after observing zn. In order to define it recursively,
let the base case be π0(z0) ≡ Rd, where z0 is the empty string. Then, πn+1(zn+1) is obtained by
uniformly drawing a direction J in 1..d and by replacing the cell γ ∈ πn(zn) such that zn+1 ∈ γ by
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the following cells {
γ1 ≡ {z ∈ γ : z[J ] ≤ zn+1[J ]}
γ2 ≡ {z ∈ γ : z[J ] > zn+1[J ]} (1)

where ·[J ] extracts the J-th coordinate of the given vector. A spatial partition A ={
γ1, γ2, . . . , γ|A|

}
of Rd defines a class of piecewise multinomial distributions characterized by

θA ≡ [θ1, . . . , θ|A|], θi ∈ ∆|L|, where ∆|L| is the standard |L|-simplex. More precisely, PθA(·|z) is
multinomial with parameter θi if z ∈ γi.

z1

γ1 γ2

(a) π1(z
1): γ1 and γ2

are created, z1 ∈ γ1.

γ2,1
z1
z2

γ2,2

(b) π2(z
2): γ2,1 and

γ2,2 are created. z2 ∈
γ2,2.

Figure 1: Cell creation process and cell split-
ting index. The cell splitting index is defined
w.r.t. its subsequence: τ2(Ω) = 1, τ2(γ2) = 1
since γ2

(
z2
)

= z2, and τ2(γ1) = τ2(γ2,1) =
τ2(γ2,2) =∞.

Context Tree Switching. We adapt the Con-
text Tree Switching (CTS) distribution [33] to
use spatial cells as contexts. Since these contexts
are created as sample points zi are observed, the
chronology of their creation has to be taken into
account. Given a nested partitioning scheme Π
whose instantiation with zn creates a cell γ and
splits it into γ1 and γ2, we define the cell split-
ting index τn(γ) as the index in the subsequence
γ (zn) when γ1 and γ2 are created (see Fig. 1).
If γ is not split by Π instantiated with zn, then
we define τn(γ) ≡ ∞.

At each cell γ, two models, defined later and
denoted a and b, are considered. Let wγ(·)
be a prior over model index sequences im ≡
i1, . . . , im ∈ {a, b}m at cell γ, recursively de-
fined by

wγ(im) ≡


1 if m = 0
1
2 if m = 1

wγ(im−1) ((1− αγm)1E + αγm1¬E) if m > 1

, E ≡ {im = im−1}, αγm = m−1.

In order to define the CTS distribution, we need the Jeffreys’ mixture over multinomial distributions
also known as the Krichevsky-Trofimov estimator [17]

Pkt(l
n) ≡

∫
θ∈∆|L|

∏
j∈1...|L|

θ[j]
|ln|λjw(θ)dθ (2)

with θ[j] being the j-th component of the vector θ, |ln|λj the number of occurrences of λj in ln

and w(·) the Jeffreys’ prior for the multinomial distribution [14] i.e. a Dirichlet distribution with
parameters (1/2, . . . , 1/2).

Consider any cell γ created by the partitioning scheme Π instantiated with zn. γ can either be refined
into two child cells γ1 and γ2 or have τn(γ) = ∞. Given a sequence of labels ln such that all the
corresponding positions zi ∈ γ, the modified CTS distribution is given by

PΠ,γ
cts (ln|zn) ≡

∑
in∈{a,b}n

wγ(in)

n∏
k=1

[
1{ik=a}φa(lk|lk−1) +1{ik=b}φ

γ
b (lk|lk−1, zk)

]
(3)

where the predictive distributions of models a and b are given by

φa(lk|lk−1) ≡ Pkt

(
lk|lk−1

)
≡

Pkt

(
lk
)

Pkt(l
k−1)

(4)

and

φγb (lk|lk−1, zk) ≡

Pkt

(
lk|lk−1

)
if k < τk(γ)

P
Π,γj
cts (γj(lk)|γj(zk))

P
Π,γj
cts (γj(lk) -1 |γj(zk) -1)

with j : zk ∈ γj , otherwise
(5)

where · -1 removes the last symbol of a sequence and, for the empty sequences l0, z0, PΠ,γ
cts

(
l0|z0

)
≡ 1

and Pkt

(
l0
)
≡ 1.
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Definition of Pkds. The kd-switch distribution is obtained from the modified CTS distribution on
the context cells defined by the full-fledged k-d tree spatial partitioning scheme i.e.

Pkds(l
n|zn) ≡ PΠkd,Rd

cts (ln|zn) . (6)

Remark 1. In [33], the authors observe better empirical performance with αγm = n−1 for any cell γ,
where n is the number of samples observed at the root partition Ω when the m-th sample is observed
in γ. With this switching rate they were able to provide a good redundancy bound for bounded depth
trees. In our unbounded case, we observed a better empirical performance with αγm = m−1.

Remark 2. A Context Tree Weighting [35] scheme can be obtained by setting αγm = 0. The
corresponding distribution is denoted Pkdw.

4 Pointwise universality

In this section, we show that Pkds is pointwise universal, i.e. it achieves a normalized log loss
asymptotically as good as the true conditional entropy of the source generating the samples. More
formally, we state the following theorem.

Theorem. 1. The kd-switch distribution is pointwise universal, i.e.

− lim
n→∞

1

n
logPkds(L

n|Zn) ≤ H (L|Z) a.s. (7)

for any probability measure P generating the samples such that PZ|L are absolutely continuous with
respect to the Lebesgue measure.

In order to prove Thm. 1, we first show that PΠ,Ω
cts is universal with respect to the class of piecewise

multinomial distributions defined by any nested partitioning scheme Π. Then, we show that Πkd
allows to approximate arbitrarily well any conditional distribution.
Universality with respect to the class of piecewise multinomial distributions. Consider a nested
partitioning scheme Π for Ω. Πn instantiated with some zn ∈ Ωn naturally defines a tree structure
whose root node represents Ω. Given an arbitrary set of internal nodes, we can prune the tree by
transforming these internal nodes into leaves and discarding the corresponding subtrees. The new set
of leaf nodes define a partition of Ω. Let Pn(zn) be the set of all the partitions that can be obtained
by pruning the tree induced by Πn instantiated with zn.

The next lemma shows that PΠ,Ω
cts , defined in Eq. 3, is universal with respect to the class of piecewise

multinomial distributions defined on the partitions Pn(zn).

Lemma. 1. Consider arbitrary sequences ln ∈ Ln, zn ∈ Ωn, n ≥ 0. Then, for any A ∈ Pn(zn)
and for any piecewise multinomial distribution PθA , the following holds

− logPΠ,Ω
cts (ln|zn) ≤ − logPθA(ln|zn) + |A|ζ

(
n

|A|

)
+ ΓA log 2n+O (1) (8)

and

− lim
n→∞

1

n
logPΠ,Ω

cts (Ln|Zn) ≤ H (L|A(Z)) a.s. (9)

where ΓA is the number of nodes in the tree, induced by Πn instantiated with zn, that represents A
(i.e., the code length given by a natural code for unbounded trees) and

ζ(x) ≡

{
x log|L| if 0 ≤ x < 1
|L|−1

2 log x+ log|L| if x ≥ 1
. (10)

Remark 3. In a Context Tree Weighting scheme (αγm = 0), the log 2n factor in Eq. 8 disappears.
See proof of Lemma 1. Thus, universality holds for this case too.

Universal discretization of the feature space. In order to prove that the k-d tree based partitions
allow to approximate arbitrarily well the conditional entropy H (L|Z), we use the following corollary
of [28, Thm. 4.2].
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Corollary. 1. Let �(γ) ≡ supx,y∈γ ‖x− y‖. Let P be any probability measure such that PZ|L
are absolutely continuous with respect to the Lebesgue measure. Given a partition scheme Π ≡
{πk}k∈N+ , if ∀δ > 0

PZ
({
z ∈ Rd : �(πn(z|Zn)) > δ

}) a.s.−−→ 0 (11)
then Π universally discretizes the feature space, i.e.

H (L|πn(Z|Zn))
a.s.−−→ H (L|Z) . (12)

The next lemma provides the required shrinking condition for the k-d tree based partitioning.
Lemma. 2. Πkd satisfies the shrinking condition of Eq. 11 and, thus, universally discretizes the
feature space.

Pointwise universality. The proof of Thm. 1 on the pointwise universality of Pkds stems from a
combination of Lemmas 1 and 2—see Appendix.

5 Online algorithm

Since a direct computation of Eq. (3) is intractable and an online implementation is desired, we
use the recursive form of [33, Algorithm 1], which performs the exact calculation. We denote by
P γs the sequentially computed kd-switch distribution at node γ. In Section 5.2, we show that
P γs (ln|zn) = PΠkd,γ

cts (ln|zn).

5.1 Algorithm

Outline. For each node of the k-d tree, the algorithm maintains two weights denoted waγ and wbγ . As
follows from [33, Lemma 2], if lt, zt are the subsequences observed in γ and waγ is the weight before
processing lt, then, waγPkt

(
lt|lt−1

)
corresponds to the contribution of all possible model sequences

ending in model a (KT) to the total probability assigned to lt by the CTS distribution. Analogously,
wbγP

γ
s

(
lt|lt−1, zt

)
corresponds to the contribution of all possible model sequences ending in model b

(CTS).

We now describe the three steps that allow the online computation of P γs (ln|zn) given by Eq. 14.
The algorithm starts with only a root node representing Rd. When a new point z∗ is observed, the
following steps are performed.
Step 1: k-d tree update and new cells’ initialization. The point z∗ is passed down the k-d tree
until it reaches a leaf cell γ. Then, a coordinate J is uniformly drawn from 1 . . . d and two child
nodes, corresponding to the new cells defined in Eq. 1 with z∗ as splitting point, are created.

Let ln, zn be the subsequences observed in γ and thus zn = z∗. Since the new cells may contain some
of the symbols in ln−1, the following initialization is performed at each new node γi, i ∈ {1, 2}:

waγi ←
1

2
Pkt

(
γi
(
ln−1

))
wbγi ←

1

2
Pkt

(
γi
(
ln−1

)), with Pkt

(
γi
(
ln−1

))
= 1 if γi

(
ln−1

)
is empty. (13)

Step 2: Prediction. The probability assigned to the subsequence ln given zn observed in γ is

P γs (ln|zn)← waγPkt

(
ln|ln−1

)
+ wbγP

γ
r

(
ln|ln−1, zn

)
(14)

where

P γr
(
ln|ln−1, zn

)
←

{
Pkt

(
ln|ln−1

)
if n < τn(γ)

P
γj
s (γj(l

n)|γj(zn))

P
γj
s (γj(ln) -1 |γj(zn) -1)

with j : zn ∈ γj , otherwise
. (15)

Step 3: Updates. Having computed the probability assignment of Eq. 14, the weights of the nodes
corresponding to the cells {γ : z∗ ∈ γ} are updated. Given a node γ to be updated, let ln, zn be the
subsequences observed in γ. The following updates are applied:

waγ ← αγn+1P
γ
s (ln|zn) + βγn+1w

a
γPkt

(
ln|ln−1

)
wbγ ← αγn+1P

γ
s (ln|zn) + βγn+1w

b
γP

γ
r

(
ln|ln−1, zn

) (16)
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where βγn ≡ (1− 2αγn). When γ has just been created (i.e. γ is a leaf node), these updates reduce to

waγ ← waγPkt

(
ln|ln−1

)
wbγ ← wbγPkt

(
ln|ln−1

). (17)

Remark 4. The KT estimator can be computed sequentially using the following formula [27]:

Pkt

(
ln|ln−1

)
=

∣∣ln−1
∣∣
ln

+ 1
2

|ln−1|+ |L|
2

. (18)

Therefore, the sequential computation only requires maintaining the counters
∣∣ln−1

∣∣
ln

for each cell.

Remark 5. Samples zi only need to be stored at leaf nodes. Once a leaf node is split, they are moved
to their corresponding child nodes.

5.2 Correctness

The steps of our algorithm are the same as those of [33, Algorithm 1] except for the initialization of
Eq. 13. In fact, as shown in the next lemma, it is equivalent to building the partitioning tree from
the beginning (assuming, without loss of generality, that zn is known in advance) and applying the
original algorithm at every relevant context.
Lemma. 3. Let n ∈ N+ and assume the partitioning tree for zn is built from the beginning. Let γ
be any node of the tree. If the original initialization and update equations from [33, Algorithm 1]
(corresponding respectively to Eq. 13 with an empty sequence and Eq. 16) are applied, the weights,
after observing lt in γ with t < τn(γ), are waγ = 1

2Pkt(l
t) and wbγ = 1

2Pkt(l
t), which correspond to

those obtained after the initialization of Eq. 13 and the updates of Eq. 17.

The correctness of our algorithm follows from Lem. 3 and [33, Thm. 4], since for t ≥ τn(γ) the
original update equations are used.

5.3 Complexity

The cost of processing ln, zn is linear in the depth Dn of the node split by the insertion of zn, since
the algorithm updates the weights at each node in the path leading to this node. If PZ is absolutely
continuous with respect to the Lebesgue measure, since the full-fledged k-d tree is monotone
transformation invariant, we can assume without loss of generality that the marginal distributions
of Z are uniform in [0, 1] (see [8, Sec. 20.1]) and thus its profile is equivalent to that of a random
binary search tree under the random permutation model (see [21, Sec. 2.3]). Then, Dn corresponds
to the cost of an unsuccessful search and Dn

2 logn → 1 in probability (see [21, Sec. 2.4]). Therefore,
the complexity of processing ln, zn is O (log n) in probability with respect to PZn .

6 Experiments

Software-hardware setup. Python code and data used for the experiments are available at https:
//github.com/alherit/kd-switch. Experiments were carried out on a machine running Debian
3.16, equipped with two Intel(R) Xeon(R) E5-2667 v2 @ 3.30GHz processors and 62 GB of RAM.
Boosting finite length performance with ensembling. When considering finite length performance,
we can be unlucky and obtain a bad set of hierarchical partitions (i.e., with low discrimination power).
In order to boost the probability of finding good partitions, we can use a Bayesian mixture of J trees.
Bayesian mixtures trivially maintain universality.
Two sampling scenarii for labels. In the first one, labels are sampled from a Bernoulli distribution
such that P (L = 0) = θ0, where θ0 is a known parameter. We then we sample from PZ|L. In this

case, the root node distribution Pkt

(
ln|ln−1

)
is replaced by P (Ln = ln) = θ

1{ln=0}
0 (1− θ0)1{ln=1} ,

since θ0 is known. In the second one, observations come in random order and P (L) is unknown.

6.1 Normalized log loss (NLL) convergence

Datasets. We use the following datasets, detailed in Appendix B.1: (L-i) A 2D dataset consists
of two Gaussian Mixtures spanning three different scales. (L-ii) A dataset in dimension d = 784
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Figure 2: (Left and Middle) Convergence of NLL as a function of n, for a 30’ calculation. (Right)
Running time as a function of n. Error bands represent the std dev. w.r.t. the randomness in the tree
generation except for dataset (L-iv) where they represent the std dev. w.r.t. the shuffling of the data.

composed of both real MNIST digits, as well as digits generated by a Generative Adversarial Network
[24] trained on the MNIST dataset. (L-iii) The Higgs dataset [20], the goal being to distinguish the
signature of processes producing Higgs bosons. (L-iv) The Breast Cancer Wisconsin (Diagnostic)
Data Set [20]—dimension d = 30.

For cases (L-i,L-ii,L-iii), in order to feed the online predictors, we apply the first sampling scenario
for labels. For case (L-iv), we apply the second one and, in each trial, we take the pooled dataset in a
random order to feed the online predictors.
Results. We focus on the cumulative normalized log loss performance (NLL), and the trade-off with
the computational requirements—by limiting the running time to 30’.

We compare the performance of our online predictors Pkds and Pkdw (see Rmk. 2) with a number of
trees J ∈ {1, 50}, against the following contenders. The Bayesian mixture of knn-based sequential
regressors proposed in [19], with a switch distribution using a horizon-free prior as Pkds. Practically,
this predictor depends on a given set of functions of n specifying the number of neighbors. We
use the same set specified in [19]. We also consider a Bayesian Mixture of Gaussian Processes
Classifiers (gp) with RBF kernel width σ ∈ {24i}i=−5...7. (Our implementation uses the scikit-
learn GaussianProcessClassifier [23]. For each observation, we retrain the classifier using all past
observations—a step requiring samples from the two populations. Thus, we predict with a uniform
distribution (or P (L) when known) until at least one instance of each label has been observed.) In
the case (L-i), we also compare to the true conditional probability, which can be easily derived since
PZ|L are known. Note that the normalized log loss of the true conditional probability converges to
the conditional entropy by the Shannon–McMillan–Breiman theorem [7].

Fig. 2 (Left and Middle) shows the NLL convergence with respect to the number of samples. Notice
that due to the 30’ running time budget, curves stop at different n. Fig. 2 (Right) illustrates the
computational complexity of each method. For our predictors, the statistical efficiency increases with
the number of trees—at the expense of the computational burden. Weighting performs better than
switching for datasets (L-i, L-ii, L-iv), and the other way around for (L-iii). knn takes some time to
get the right scale, then converges fast in most cases—with a plateau though on dataset L-ii though.
This owes to the particular set of exponents used to define the mixture of regressors [19]. Also, knn
is computationally demanding, in particular when compared to our predictors with J = 1.
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Figure 3: Tests on randomly rotated Gaussian datasets from [15]. The abscissa represents the
test sample size ntest for each of the two samples. Thus, for sequential methods, n = 4ntest.

6.2 Two-sample testing (TST)

Construction. Given samples from two distributions, whose corresponding random variables X ∈
Rd and Y ∈ Rd are i.i.d., a nonparametric two-sample test tries to determine whether the null
hypothesis PX = PY holds or not (see, e.g., [18, Section 6.9]). Consistent sequential two-sample
tests with optional stop (i.e. the p-value is valid at any time n) can be built from a pointwise universal
online predictor Q [19] by defining (L,Z) as: (0, X) with probability θ0, or (1, Y ) with probability
1 − θ0, where θ0 is a design parameter set to 1/2 in the following experiments. The p-value is
the likelihood ratio P(ln)

Q(ln|zn) . Note this corresponds to the first sampling scenario for labels. The
instantiation of this construction with Pkds and J = 50 is denoted KDS-seq.
Contenders. We compare KDS-seq against SWπS from [19], denoted KNN-seq: a sequential two-
sample test obtained by instantiating the construction described above with the online knn predictor
described in the previous section. We also compare KDS-seq against the kernel tests from [15]:
ME-full, ME-grid, SCF-full, SCF-grid, MMD-quad, MMD-lin, and the classical Hotelling’s T2for
differences in means under Gaussian assumptions. These tests depend on a kernel width σ learned
on a trained set—the train-test paradigm—as opposed to KDS-seq which automatically detects the
pertinent scales. Contenders were launched with the hyperparameters specified in their respective
paper. For a fair comparison between sequential methods and those tests using the train-test paradigm
with ntest used for testing, we use a number of samples n = 4ntest—detail in Appendix B.2.
Datasets. We use the four datasets from [15, Table 1]: (T-i) Same Gaussians in dimension d = 50,
to assess the type I error; (T-ii) Gaussian Mean Difference (GMD): normal distributions with a
difference in means along one direction, d = 100; (T-iii) Gaussian Variance Difference (GVD):
normal distributions with a difference in variance along one direction, d = 50; (T-iv) Blobs (Mixture
of Gaussian distributions centered on a lattice) [9]. Datasets (T-ii, T-iii, T-iv) are meant to assess type
II error. To prevent k-d tree cuts to exploit the particular direction where the difference lies, these
datasets undergo a random rotation (one per tree). See Appendix B.3 for results without rotations.
Results. The significance level is set to α = .01 in all the cases. The Type I error rate and the power
(1 − Type II error rate) are computed over 500 trials. In the SG case (Fig. 3(a)), all the tests have
a Type I error rate around the specified α as expected. In the GMD and Blobs cases (Fig. 3(b,d)),
KDS-seq matches or outperforms all the contenders. On Blobs, KDS-seq outperforms KNN-seq
thanks to its automatic scale detection, even though the mixture used by the latter allows it to handle
the multiple scales. For GVD (Fig. 3(c)), our results are weaker. To see why, recall that GMD
is generated by adding one unit to one coordinate of the mean vector, while GVD is obtained by
doubling the variance along one direction. The span of the latter dataset is larger, and upon rotating
the data—see comment above—all directions are impacted. Given the high dimensionality, the
partitioning of k-d trees faces more difficulties to reduce the diameter of cells, which is key to
convergence—see Corollary 1.

7 Outlook

We foresee the following research directions. A first open question is to characterize the situations
where switching should be preferred over weighting. A second core question is to quantify the ability
of our k-d tree based construction to cope with multiple scales in the data. A third one is the derivation
of finite length bounds related to the complexity of the underlying conditional distribution. Finally,
accommodating data in a metric (non Euclidean) space, using e.g. metric trees, would widen the
application spectrum of the method.
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A Proofs

Lemma 1. We follow the lines of the proof of [33, Thm. 3], except that we need to take into account
the chronology of cell creation. For notational convenience we omit Π in PΠ,·

cts .

Let Ã denote the set of cells corresponding to internal nodes in the tree structure leading to A.
Given a cell γ and ln, zn, let us denote nγ ≡ |γ (zn)|, lnγ ≡ γ(ln) and znγ ≡ γ(zn). Then,
∀n ≥ 1,∀ln ∈ Ln,∀zn ∈ Ωn, by dropping the sum in Equation 3 and choosing the model index
sequences bb . . . b for internal nodes and aa . . . a for leaf nodes, we have that for any cell γ ∈ Ã

P γcts(γ(ln)|γ(zn)) ≥ wγ(bnγ )Pkt

(
lτn(γ)−1

) nγ∏
k=τn(γ)

2∑
j=1

1{zk∈γj}

P
γj
cts

(
γj

(
lk
)
|γj
(
zk
))

P
γj
cts

(
γj

(
lk
)

-1 |γj (zk) -1
)

= wγ(bnγ )Pkt

(
lτn(γ)−1

) 2∏
j=1

P
γj
cts(γj (lnγ ) |γj (znγ ))

P
γj
cts

(
γj

(
lτn(γ)

)
-1 |γj

(
zτn(γ)

)
-1
) (19)

and for any cell γ ∈ A
P γcts(γ(ln)|γ(zn)) ≥ wγ(anγ )Pkt(γ(ln)) . (20)

Then, by repeatedly applying Eq. 19 at internal nodes and Eq. 20 at leaf nodes, we obtain

PΩ
cts(l

n|zn) ≥

∏
γ∈A

wγ(anγ )

∏
γ∈Ã

wγ(bnγ )

∏
γ∈A

Pkt(γ (ln))

κ (21)

where κ groups all the terms from Eq. 19 that do not depend on n. We have

wγ(anγ ) =
1

2

nγ∏
t=2

t− 1

t
=

1

2nγ
≥ 1

2n
(22)

where the factor t−1
t for t ≥ 2 comes from the prior probability of not switching. Analogously,

wγ(bnγ ) ≥ 1
2n . (Note that, in a Context Tree Weighting scheme (see Remark 2), the prior probability

of not switching is 1 and thus, the lower bound for wγ(anγ ) and wγ(bnγ ) becomes 1/2.) Then,

PΩ
cts(l

n|zn) ≥ κ(2n)−ΓA
∏
γ∈A

Pkt(γ (ln)) . (23)

The claimed inequality follows since, from [35, Eq. 23] (see e.g. [4, Eq. 17] for |L| > 2),

− log
∏
γ∈A

Pkt(γ (ln)) ≤ |A|ζ
(
n

|A|

)
− logPθA(ln|zn). (24)

The limit follows from the Shannon–McMillan–Breiman theorem (see, e.g., [7]).

Corollary 1. The conditional entropy can be written as

H (L|Z) = H (L)− I (L;Z) (25)

= H (L)− EPL
[
DKL

(
PZ|L‖PZ

)]
(26)

whereDKL (·‖·) denotes the Kullback-Leibler divergence. Since PZ|L are absolutely continuous with
respect to PZ and these measures are absolutely continuous with respect to the Lebesgue measure,
the claim follows from [28, Thm. 4.2], which guarantees

DKL

(
Pπn(Z|Zn)|L‖Pπn(Z|Zn)

) a.s.−−→ DKL

(
PZ|L‖PZ

)
.

Lemma 2. By Markov’s inequality, it is sufficient to show that

EPZ [�(πn(Z|Zn))]
n→∞−−−−→ 0 a.s.. (27)
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As in [8, Sec. 20.1], since the k-d tree is monotone transformation invariant, we can assume without
loss of generality that Z ∈ [0, 1]d. In the proof of [8, Thm. 20.3], it is shown that for any ε > 0 and
any x ∈ Rd

�(πn(x|Zn)) ≤ 2ε
√
d (28)

if some specific event E(x, Zn, ε) holds. (Devroye presents the proof for the case d = 2, leaving the
straightforward adaptation for d > 2 to the reader. The proof considers a fixed point x and, upon
inserting k points into the k-d tree, the maximum distance from x to the 2d faces of its containing
hyper-rectangle. The event E(x, Zn, ε) stipulates that this maximum distance is bounded by ε upon
inserting a number of points which may be k = n1/3 or k = n2/3 or k = n.) Then, it is shown that
one can construct a set B ⊂ Rd such that PZ (Z ∈ B) = 1 and for all x ∈ B, and sufficiently small
ε > 0, PZn (E(x, Zn, ε))

n→∞−−−−→ 1.

Then, for ε > 0 sufficiently small, by total probability, we have
PZn,Z (E(Z,Zn, ε)) (29)
= PZn,Z (E(Z,Zn, ε)|Z ∈ B)PZ (Z ∈ B) + PZn,Z (E(Z,Zn, ε)|Z /∈ B)PZ (Z /∈ B) (30)
= PZn,Z (E(Z,Zn, ε)|Z ∈ B) . (31)

Since the desired property is defined w.r.t. PZ while Eq. (28) involves the sequence Zn, we apply the
law of total expectation with the two events E(Z,Zn, ε) and ¬E(Z,Zn, ε):

lim
n→∞

EPZ [�(πn(Z|Zn))] =

lim
n→∞

EPZ [�(πn(Z|Zn)) |E(Z,Zn, ε) ]PZn,Z (E(Z,Zn, ε)|Z ∈ B) +

EPZ [�(πn(Z|Zn)) |¬E(Z,Zn, ε) ]PZn,Z (¬E(Z,Zn, ε)|Z ∈ B) =

(32)

lim
n→∞

EPZ [�(πn(Z|Zn))|E(Z,Zn, ε)] · lim
n→∞

PZn,Z (E(Z,Zn, ε)|Z ∈ B) +

lim
n→∞

EPZ [�(πn(Z|Zn))|¬E(Z,Zn, ε)] · lim
n→∞

PZn,Z (¬E(Z,Zn, ε)|Z ∈ B) =
(33)

lim
n→∞

EPZ [�(πn(Z|Zn))|E(Z,Zn, ε)] (34)

where the last equality stems from�(πn(Z|Zn)) <∞ and limn→∞ PZn,Z (E(Z,Zn, ε)|Z ∈ B) =
1, for sufficiently small ε > 0. The random variable �(πn(Z|Zn) is bounded since Z ∈ [0, 1]d.
Therefore, by Lebesgue’s dominated convergence theorem:

lim
n→∞

EPZ [�(πn(Z|Zn)) |E(Z,Zn, ε) ] = EPZ

[
lim
n→∞

�(πn(Z|Zn)) |E(Z,Zn, ε)
]

= 0 (35)

since �(πn(Z|Zn)) ≤ 2ε
√
d if E(Z,Zn, ε) holds, for any ε > 0. Therefore,

PZn
(

lim
n→∞

EPZ [�(πn(Z|Zn))] = 0
)

= 1.

Proof of Theorem 1. By Lemma 2, for any ε > 0, there exists n(ε) such that ∀n ≥ n(ε)

H (L|πn(Z|Zn)) < H (L|Z) + ε a.s.. (36)
Then, by Lemma 1

− lim
n→∞

1

n
logPkds(L

n|Zn) ≤ H
(
L|πn(ε)

(
Z|Zn(ε)

))
a.s.. (37)

The claim follows since ε can be arbitrary small.

Lemma 3. We use induction on t and we denote waγ,t the value of waγ at the end of the updates
after observing lt in γ. For t = 0, it trivially holds since the observed sequence is empty. For
1 ≤ t < τn(γ), by Eq. 14 and 16

waγ,t = αγt+1Pkt

(
lt
)

+ βγt+1w
a
γ,t−1Pkt

(
lt|lt−1

)
wbγ,t = αγt+1Pkt

(
lt
)

+ βγt+1w
b
γ,t−1Pkt

(
lt|lt−1

). (38)

Using the inductive hypothesis, we get

waγ,t = αγt+1Pkt

(
lt
)

+ βγt+1

1

2
Pkt

(
lt
)

=
1

2
Pkt

(
lt
)

wbγ,t = αγt+1Pkt

(
lt
)

+ βγt+1

1

2
Pkt

(
lt
)

=
1

2
Pkt

(
lt
). (39)
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Figure 4: Multiscale Gaussian Mixture dataset. Union of two sample sets, each from a random
mixture model.

Figure 5: (Left.) Examples of real images. (Right.) Examples of GAN generated synthetic images.

B Experiments

B.1 Datasets for the normalized log loss convergence analysis

Multiscale Gaussian Mixture dataset. The Gaussian mixture dataset from Section 6.1 is built
by generating two Gaussian Mixture models, one for each label. The means of the Gaussians are
uniformly drawn from [0, 1]2 and are the same for both mixtures. The weights are randomly drawn
from a Dirichlet distribution with parameters (1, . . . , 1) and are the same for both the mixtures. The
covariance matrices are randomly drawn from an inverse Wishart distribution with d+ 2 degrees of
freedom and a scale parameter I for a third of the components, .01I for the second third and .0001I
for the last one. See Fig. 4 for an illustration.

GAN dataset. We used the pretrained Deep Convolutional Generative Adversarial Network avail-
able at https://github.com/csinva/pytorch_gan_pretrained. We generate as many sam-
ples as real ones (60000). We consider the real samples as coming from PZ|L=0 and the synthetic
ones from PZ|L=1. See Fig. 5 for an illustration.

HIGGS dataset. To distinguish the signature of processes producing Higgs bosons from back-
ground processes which do not, we use the four low-level features (azimuthal angular momenta φ for
four particle jets) which are known to carry very little discriminating information [20, 2].

B.2 Datasets and sampling for the Two-sample-test experiments

Datasets. We use the four datasets from [15, Table 1]: Same Gaussian (SG; PX and PY are identical
normal distributions; d = 50); Gaussian Mean Difference (GMD; PX and PY are normal distributions
with a difference in means along one direction; d = 100); Gaussian Variance Difference (GVD; PX
and PY are normal distributions with a difference in variance along one direction; d = 50); Blobs

13



1000 2000 3000 4000 5000
Test sample size

0.005

0.010

0.015

Ty
pe

-I 
er

ro
r

1000 2000 3000 4000 5000
Test sample size

0.2

0.4

0.6

0.8

1.0

Te
st

 p
ow

er

1000 2000 3000 4000 5000
Test sample size

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 p
ow

er

1000 2000 3000 4000 5000
Test sample size

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 p
ow

er

ME-full
ME-grid
SCF-full
SCF-grid
MMD-quad
MMD-lin
T2

KDS-seq
KNN-seq

(a) SG. d = 50. (b) GMD. d = 100. (c) GVD. d = 50. (d) Blobs. d = 2.

Figure 6: Tests on non-rotated Gaussian datasets, as specified in [15]. The abscissa represents
the test sample size ntest for each of the two samples. Thus, for sequential methods, n = 4ntest.

(Mixture of Gaussian distributions centered on a lattice)—a challenging case since differences occur
at a much smaller length scale compared to the global scale [9]. To prevent k-d tree cuts to exploit the
particular direction where the difference lies, such datasets undergo a random rotation (one per tree).
Sampling. For a fair comparison against tests using the train-test paradigm, sequential two-
sample tests use a sample size equal to the sum of the training and test set sizes used by the
contenders. When we compare to these tests, samples are obtained by the same sampling mechanism
and with the same random seed, using the code provided at https://github.com/wittawatj/
interpretable-test. Sequential tests (i.e. KDS-seq and KNN-seq) consume these samples fol-
lowing the first sampling scenario specified in Section 6, with θ0 = .5—labels are balanced.

B.3 Two-sample-test experiments without random rotations

Figure 6 shows the results on the original datasets without undergoing random rotations. We observe
that k-d tree cuts are able to quickly detect the particular directions where the difference lies making
the power significantly higher than for the randomly rotated case.

14


