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Abstract

We propose a new objective, the counterfactual objective, unifying existing ob-
jectives for off-policy policy gradient algorithms in the continuing reinforcement
learning (RL) setting. Compared to the commonly used excursion objective, which
can be misleading about the performance of the target policy when deployed,
our new objective better predicts such performance. We prove the Generalized
Off-Policy Policy Gradient Theorem to compute the policy gradient of the coun-
terfactual objective and use an emphatic approach to get an unbiased sample from
this policy gradient, yielding the Generalized Off-Policy Actor-Critic (Geoff-PAC)
algorithm. We demonstrate the merits of Geoff-PAC over existing algorithms in
Mujoco robot simulation tasks, the first empirical success of emphatic algorithms
in prevailing deep RL benchmarks.

1 Introduction

Reinforcement learning (RL) algorithms based on the policy gradient theorem (Sutton et al., 2000;
Marbach and Tsitsiklis, 2001) have recently enjoyed great success in various domains, e.g., achieving
human-level performance on Atari games (Mnih et al., 2016). The original policy gradient theorem is
on-policy and used to optimize the on-policy objective. However, in many cases, we would prefer to
learn off-policy to improve data efficiency (Lin, 1992) and exploration (Osband et al., 2018). To this
end, the Off-Policy Policy Gradient (OPPG) Theorem (Degris et al., 2012; Maei, 2018; Imani et al.,
2018) was developed and has been widely used (Silver et al., 2014; Lillicrap et al., 2015; Wang et al.,
2016; Gu et al., 2017; Ciosek and Whiteson, 2017; Espeholt et al., 2018).

Ideally, an off-policy algorithm should optimize the off-policy analogue of the on-policy objective. In
the continuing RL setting, this analogue would be the performance of the target policy in expectation
w.r.t. the stationary distribution of the target policy, which is referred to as the alternative life objective
(Ghiassian et al., 2018). This objective corresponds to the performance of the target policy when
deployed. Previously, OPPG optimizes a different objective, the performance of the target policy in
expectation w.r.t. the stationary distribution of the behavior policy. This objective is referred to as the
excursion objective (Ghiassian et al., 2018), as it corresponds to the excursion setting (Sutton et al.,
2016). Unfortunately, the excursion objective can be misleading about the performance of the target
policy when deployed, as we illustrate in Section 3.

It is infeasible to optimize the alternative life objective directly in the off-policy continuing setting.
Instead, we propose to optimize the counterfactual objective, which approximates the alternative
life objective. In the excursion setting, an agent in the stationary distribution of the behavior policy
considers a hypothetical excursion that follows the target policy. The return from this hypothetical
excursion is an indicator of the performance of the target policy. The excursion objective measures this
return w.r.t. the stationary distribution of the behavior policy, using samples generated by executing
the behavior policy. By contrast, evaluating the alternative life objective requires samples from
the stationary distribution of the target policy, to which the agent does not have access. In the
counterfactual objective, we use a new parameter γ̂ to control how counterfactual the objective is,
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akin to Gelada and Bellemare (2019). With γ̂ = 0, the counterfactual objective uses the stationary
distribution of the behavior policy to measure the performance of the target policy, recovering the
excursion objective. With γ̂ = 1, the counterfactual objective is fully decoupled from the behavior
policy and uses the stationary distribution of the target policy to measure the performance of the
target policy, recovering the alternative life objective. As in the excursion objective, the excursion is
never actually executed and the agent always follows the behavior policy.

We make two contributions in this paper. First, we prove the Generalized Off-Policy Policy Gradient
(GOPPG) Theorem, which gives the policy gradient of the counterfactual objective. Second, using an
emphatic approach (Sutton et al., 2016) to compute an unbiased sample for this policy gradient, we
develop the Generalized Off-Policy Actor-Critic (Geoff-PAC) algorithm. We evaluate Geoff-PAC
empirically in challenging robot simulation tasks with neural network function approximators. Geoff-
PAC outperforms the actor-critic algorithms proposed by Degris et al. (2012); Imani et al. (2018), and
to our best knowledge, Geoff-PAC is the first empirical success of emphatic algorithms in prevailing
deep RL benchmarks.

2 Background

We use a time-indexed capital letter (e.g., Xt) to denote a random variable. We use a bold capital
letter (e.g., X) to denote a matrix and a bold lowercase letter (e.g., x) to denote a column vector. If
x : S → R is a scalar function defined on a finite set S, we use its corresponding bold lowercase
letter to denote its vector form, i.e., x .

= [x(s1), . . . , x(s|S|)]
T. We use I to denote the identity matrix

and 1 to denote an all-one column vector.

We consider an infinite horizon MDP (Puterman, 2014) consisting of a finite state space S, a finite
action space A, a bounded reward function r : S ×A → R and a transition kernel p : S × S ×A →
[0, 1]. We consider a transition-based discount function (White, 2017) γ : S × A × S → [0, 1]
for unifying continuing tasks and episodic tasks. At time step t, an agent at state St takes an
action At according to a policy π : A × S → [0, 1]. The agent then proceeds to a new state St+1

according to p and gets a reward Rt+1 satisfying E[Rt+1] = r(St, At). The return of π at time
step t is Gt

.
=
∑∞
i=0 Γi−1

t Rt+1+i, where Γi−1
t

.
= Πi−1

j=0γ(St+j , At+j , St+j+1) and Γ−1
t

.
= 1. We

use vπ to denote the value function of π, which is defined as vπ(s)
.
= Eπ[Gt|St = s]. Like White

(2017), we assume vπ exists for all s. We use qπ(s, a)
.
= Eπ[Gt|St = s,At = a] to denote the

state-action value function of π. We use Pπ to denote the transition matrix induced by π, i.e.,
Pπ[s, s′]

.
=
∑
a π(a|s)p(s′|s, a). We assume the chain induced by π is ergodic and use dπ to denote

its unique stationary distribution. We define Dπ
.
= diag(dπ).

In the off-policy setting, an agent aims to learn a target policy π but follows a behavior policy
µ. We use the same assumption of coverage as Sutton and Barto (2018), i.e., ∀(s, a), π(a|s) >
0 =⇒ µ(a|s) > 0. We assume the chain induced by µ is ergodic and use dµ to denote its
stationary distribution. Similarly, Dµ

.
= diag(dµ). We define ρ(s, a)

.
= π(a|s)

µ(a|s) , ρt
.
= ρ(St, At) and

γt
.
= γ(St−1, At−1, St).

Typically, there are two kinds of tasks in RL, prediction and control.

Prediction: In prediction, we are interested in finding the value function vπ of a given policy
π. Temporal Difference (TD) learning (Sutton, 1988) is perhaps the most powerful algorithm for
prediction. TD enjoys convergence guarantee in both on- and off-policy tabular settings. TD can
also be combined with linear function approximation. The update rule for on-policy linear TD is
w ← w + α∆t, where α is a step size and ∆t

.
= [Rt+1 + γV (St+1) − V (St)]∇wV (St) is an

incremental update. Here we use V to denote an estimate of vπ parameterized by w. Tsitsiklis and
Van Roy (1997) prove the convergence of on-policy linear TD. In off-policy linear TD, the update ∆t

is weighted by ρt. The divergence of off-policy linear TD is well documented (Tsitsiklis and Van Roy,
1997). To approach this issue, Gradient TD methods (Sutton et al. 2009) were proposed. Instead of
bootstrapping from the prediction of a successor state like TD, Gradient TD methods compute the
gradient of the projected Bellman error directly. Gradient TD methods are true stochastic gradient
methods and enjoy convergence guarantees. However, they are usually two-time-scale, involving two
sets of parameters and two learning rates, which makes it hard to use in practice (Sutton et al., 2016).
To approach this issue, Emphatic TD (ETD, Sutton et al. 2016) was proposed.
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ETD introduces an interest function i : S → [0,∞) to specify user’s preferences for different
states. With function approximation, we typically cannot get accurate predictions for all states
and must thus trade off between them. States are usually weighted by dµ(s) in the off-policy
setting (e.g., Gradient TD methods) but with the interest function, we can explicitly weight them
by dµ(s)i(s) in our objective. Consequently, we weight the update at time t via Mt, which is the
emphasis that accumulates previous interests in a certain way. In the simplest form of ETD, we
have Mt

.
= i(St) + γtρt−1Mt−1. The update ∆t is weighted by ρtMt. In practice, we usually set

i(s) ≡ 1.

Inspired by ETD, Hallak and Mannor (2017) propose to weight ∆t via ρtc̄(St) in the Consistent
Off-Policy TD (COP-TD) algorithm, where c̄(s) .

= dπ(s)
dµ(s) is the density ratio, which is also known as

the covariate shift (Gelada and Bellemare, 2019). To learn c̄ via stochastic approximation, Hallak and
Mannor (2017) propose the COP operator. However, the COP operator does not have a unique fixed
point. Extra normalization and projection is used to ensure convergence (Hallak and Mannor, 2017)
in the tabular setting. To address this limitation, Gelada and Bellemare (2019) further propose the
γ̂-discounted COP operator.

Gelada and Bellemare (2019) define a new transition matrix Pγ̂
.
= γ̂Pπ+(1− γ̂)1dT

µ where γ̂ ∈ [0, 1]
is a constant. Following this matrix, an agent either proceeds to the next state according to Pπ w.p.
γ̂ or gets reset to dµ w.p. 1− γ̂. Gelada and Bellemare (2019) show the chain under Pγ̂ is ergodic.
With dγ̂ denoting its stationary distribution, they prove

dγ̂ = (1− γ̂)(I− γ̂PT
π)−1dµ (γ̂ < 1) (1)

and dγ̂ = dπ (γ̂ = 1). With c(s) .
=

dγ̂(s)
dµ(s) , Gelada and Bellemare (2019) prove that

c = γ̂D−1
µ PT

πDµc + (1− γ̂)1, (2)

yielding the following learning rule for estimating c in the tabular setting:

C(St+1)← C(St+1) + α[γ̂ρtC(St) + (1− γ̂)− C(St+1)], (3)

where C is an estimate of c and α is a step size. A semi-gradient is used when C is a parameterized
function (Gelada and Bellemare, 2019). For a small γ̂ (depending on the difference between π and
µ), Gelada and Bellemare (2019) prove a multi-step contraction under linear function approximation.
For a large γ̂ or nonlinear function approximation, they provide an extra normalization loss for the
sake of the constraint dT

µc = 1Tdγ̂ = 1. Gelada and Bellemare (2019) use ρtc(St) to weight the
update ∆t in Discounted COP-TD. They demonstrate empirical success in Atari games (Bellemare
et al., 2013) with pixel inputs.

Control: In this paper, we focus on policy-based control. In the on-policy continuing setting, we
seek to optimize the average value objective (Silver, 2015)

Jπ
.
=
∑
s dπ(s)i(s)vπ(s). (4)

Optimizing the average value objective is equivalent to optimizing the average reward objective
(Puterman, 2014) if both γ and i are constant (see White 2017). In general, the average value
objective can be interpreted as a generalization of the average reward objective to adopt transition-
based discounting and nonconstant interest function.

In the off-policy continuing setting, Imani et al. (2018) propose to optimize the excursion objective

Jµ
.
=
∑
s dµ(s)i(s)vπ(s) (5)

instead of the alternative life objective Jπ. The key difference between Jπ and Jµ is how we trade
off different states. With function approximation, it is usually not possible to maximize vπ(s) for all
states, which is the first trade-off we need to make. Moreover, visiting one state more implies visiting
another state less, which is the second trade-off we need to make. Jµ and Jπ achieve both kinds
of trade-off according to dµ and dπ respectively. However, it is Jπ, not Jµ, that correctly reflects
the deploy-time performance of π, as the behavior policy will no longer matter when we deploy the
off-policy learned π in a continuing task.

In both objectives, i(s) is usually set to 1. We assume π is parameterized by θ. In the rest of this
paper, all gradients are taken w.r.t. θ unless otherwise specified, and we consider the gradient for only
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(a) (b) (c)

Figure 1: (a) The two-circle MDP. Rewards are 0 unless specified on the edge (b) The probability of
transitioning to B from A under target policy π during training (c) The influence of γ̂ and λ2 on the
final solution found by Geoff-PAC.

one component of θ for the sake of clarity. It is not clear how to compute the policy gradient of Jπ in
the off-policy continuing setting directly. For Jµ, we can compute the policy gradient as

∇Jµ =
∑
s dµ(s)i(s)

∑
a

(
qπ(s, a)∇π(a|s) + π(a|s)∇qπ(s, a)

)
. (6)

Degris et al. (2012) prove in the Off-Policy Policy Gradient (OPPG) theorem that we can ignore the
term π(s, a)∇qπ(s, a) without introducing bias for a tabular policy1 when i(s) ≡ 1, yielding the
Off-Policy Actor Critic (Off-PAC), which updates θ as

θt+1 = θt + αρtqπ(St, At)∇ log π(At|St), (7)

where α is a step size, St is sampled from dµ, and At is sampled from µ(·|St). For a policy using a
general function approximator, Imani et al. (2018) propose a new OPPG theorem. They define

F
(1)
t

.
= i(St) + γtρt−1F

(1)
t−1, M

(1)
t

.
= (1− λ1)i(St) + λ1F

(1)
t ,

Z
(1)
t

.
= ρtM

(1)
t qπ(St, At)∇ log π(At|St),

where λ1 ∈ [0, 1] is a constant used to optimize the bias-variance trade-off and F (1)
−1

.
= 0. Imani

et al. (2018) prove that Z(1)
t is an unbiased sample of∇Jµ in the limiting sense if λ1 = 1 and π is

fixed, i.e., limt→∞ Eµ[Z
(1)
t ] = ∇Jµ. Based on this, Imani et al. (2018) propose the Actor-Critic with

Emphatic weightings (ACE) algorithm, which updates θ as θt+1 = θt + αZ
(1)
t . ACE is an emphatic

approach where M (1)
t is the emphasis to reweigh the update.

3 The Counterfactual Objective

We now introduce the counterfactual objective

Jγ̂
.
=
∑
s dγ̂(s)̂i(s)vπ(s), (8)

where î is a user-defined interest function. Similarly, we can set î(s) to 1 for the continuing setting
but we proceed with a general î. When γ̂ = 1, Jγ̂ recovers the alternative life objective Jπ. When
γ̂ = 0, Jγ̂ recovers the excursion objective Jµ. To motivate the counterfactual objective Jγ̂ , we first
present the two-circle MDP (Figure 1a) to highlight the difference between Jπ and Jµ.

In the two-circle MDP, an agent needs to make a decision only in state A. The behavior policy µ
proceeds to B or C randomly with equal probability. For this continuing task, the discount factor γ
is always 0.6 and the interest is always 1. Under this task specification (White, 2017), the optimal
policy under the alternative life objective Jπ , which is equivalent to the average reward objective as γ
and i are constant, is to stay in the outer circle. However, to maximize Jµ, the agent prefers the inner
circle. To see this, first note vπ(B) and vπ(C) hardly change w.r.t. π, and we have vπ(B) ≈ 3.6 and
vπ(C) ≈ 5. To maximize Jµ, the target policy π would prefer transitioning to state C to maximize
vπ(A). The agent, therefore, remains in the inner circle. The two-circle MDP is tabular, so the policy

1See Errata in Degris et al. (2012), also in Imani et al. (2018); Maei (2018).
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maximizing vπ(s) for all s can be represented accurately. If we consider an episodic task, e.g., we
aim to maximize only vπ(A) and set the discount of the transition back to A to 0, such policy will be
optimal under the episodic return criterion. However, when we consider a continuing task and aim
to optimize Jπ, we have to consider state visitation. The excursion objective Jµ maximizes vπ(A)
regardless of the state visitation under π, yielding a policy π that never visits the state D, a state of
the highest value. Such policy is sub-optimal in this continuing task. To maximize Jπ , the agent has
to sacrifice vπ(A) and visits state D more. This two-circle MDP is not an artifact due to the small γ.
The same effect can also occur with a larger γ if the path is longer. With function approximation, the
discrepancy between Jµ and Jπ can be magnified as we need to make trade-off in both maximizing
vπ(s) and state visitation.

One solution to this problem is to set the interest function i in Jµ in a clever way. However, it is not
clear how to achieve this without domain knowledge. Imani et al. (2018) simply set i to 1. Another
solution might be to optimize Jπ directly in off-policy learning, if one could use importance sampling
ratios to fully correct dµ to dπ as Precup et al. (2001) propose for value-based methods in the episodic
setting. However, this solution is infeasible for the continuing setting (Sutton et al., 2016). One may
also use differential value function (Sutton and Barto, 2018) to replace the discounted value function
in Jµ. Off-policy policy gradient with differential value function, however, is still an open problem
and we are not aware of existing literature on this.

In this paper, we propose to optimize Jγ̂ instead. It is a well-known fact that the policy gradient of the
stationary distribution exists under mild conditions (e.g., see Yu (2005)).2 It follows immediately from
the proof of this existence that limγ̂→1 dγ̂ = dπ. Moreover, it is trivial to see that limγ̂→0 dγ̂ = dµ,
indicating the counterfactual objective can recover both the excursion objective and the alternative
life objective smoothly. Furthermore, we show empirically that a small γ̂ (e.g., 0.6 in the two-circle
MDP and 0.2 in Mujoco tasks) is enough to generate a different solution from maximizing Jµ.

4 Generalized Off-Policy Policy Gradient

In this section, we derive an estimator for∇Jγ̂ and show in Proposition 1 that it is unbiased in the
limiting sense. Our (standard) assumptions are given in supplementary materials. The OPPG theorem
(Imani et al., 2018) leaves us the freedom to choose the interest function i in Jµ. In this paper,
we set i(s) .

= î(s)c(s), which, to our best knowledge, is the first time that a non-trivial interest is
used. Hence, i depends on π and we cannot invoke OPPG directly as∇Jµ 6=

∑
d dµ(s)i(s)∇vπ(s).

However, we can still invoke the remaining parts of OPPG:∑
s

dµ(s)i(s)∇vπ(s) =
∑
s

m(s)
∑
a

qπ(s, a)∇π(a|s), (9)

where mT .
= iTDµ(I− Pπ,γ)−1,Pπ,γ [s, s′]

.
=
∑
a π(a|s)p(s′|s, a)γ(s, a, s′). We now compute the

gradient∇Jγ̂ .

Theorem 1 (Generalized Off-Policy Policy Gradient Theorem)

∇Jγ̂ =
∑
s

m(s)
∑
a

qπ(s, a)∇π(a|s)︸ ︷︷ ︸
1

+
∑
s

dµ(s)̂i(s)vπ(s)g(s)︸ ︷︷ ︸
2

(
γ̂ < 1

)

where g .
= γ̂D−1

µ (I− γ̂PT
π)−1b, b .

= ∇PT
πDµc

Proof. We first use the product rule of calculus and plug in dγ̂(s) = dµ(s)c(s):

∇Jγ̂ =
∑
s

dγ̂(s)̂i(s)∇vπ(s) +
∑
s

∇dγ̂(s)̂i(s)vπ(s)

=
∑
s

dµ(s)c(s)̂i(s)∇vπ(s)︸ ︷︷ ︸
3

+
∑
s

dµ(s)∇c(s)̂i(s)vπ(s).︸ ︷︷ ︸
4

2 For completeness, we include that proof in supplementary materials.
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1 = 3 follows directly from (9). To show 2 = 4 , we take gradients on both sides of (2). We
have∇c = γ̂D−1

µ PT
πDµ∇c + γ̂D−1

µ ∇PT
πDµc. Solving this linear system of∇c leads to

∇c = (I− γ̂D−1
µ PT

πDµ)−1γ̂D−1
µ ∇PT

πDµc =
(

D−1
µ (I− γ̂PT

π)Dµ
)−1

γ̂D−1
µ ∇PT

πDµc

=
(

D−1
µ (I− γ̂PT

π)−1Dµ
)
γ̂D−1

µ ∇PT
πDµc = g.

With∇c(s) = g(s), 2 = 4 follows easily. �

Now we use an emphatic approach to provide an unbiased sample of∇Jγ̂ . We define

It
.
= c(St−1)ρt−1∇ log π(At−1|St−1), F

(2)
t

.
= It + γ̂ρt−1F

(2)
t−1, M

(2)
t

.
= (1− λ2)It + λ2F

(2)
t .

Here It functions as an intrinsic interest (in contrast to the user-defined extrinsic interest î) and is
a sample for b. F (2)

t accumulates previous interests and translates b into g. λ2 is for bias-variance
trade-off similar to Sutton et al. (2016); Imani et al. (2018). We now define

Z
(2)
t

.
= γ̂î(St)vπ(St)M

(2)
t , Zt

.
= Z

(1)
t + Z

(2)
t

and proceed to show that Zt is an unbiased sample of∇Jγ̂ when t→∞.

Lemma 1 Assuming the chain induced by µ is ergodic and π is fixed, the limit f(s)
.
=

dµ(s) limt→∞ Eµ[F
(2)
t |St = s] exists, and f = (I− γ̂PT

π)−1b for γ̂ < 1.

Proof. Previous works (Sutton et al., 2016; Imani et al., 2018) assume limt→∞ Eµ[F
(1)
t |St = s] exists.

Here we prove the existence of limt→∞ Eµ[F
(2)
t |St = s], inspired by the process of computing the

value of limt→∞ Eµ[F
(1)
t |St = s] (assuming its existence) in Sutton et al. (2016). The existence of

limt→∞ Eµ[F
(1)
t |St = s] with transition-dependent γ can also be established with the same routine.3

The proof also involves similar techniques as Hallak and Mannor (2017). Details in supplementary
materials. �

Proposition 1 Assuming the chain induced by µ is ergodic, π is fixed, λ1 = λ2 = 1, γ̂ < 1, i(s)
.
=

î(s)c(s), then limt→∞ Eµ[Zt] = ∇Jγ̂

Proof. The proof involves Proposition 1 in Imani et al. (2018) and Lemma 1. Details are provided in
supplementary materials. �

When γ̂ = 0, the Generalized Off-Policy Policy Gradient (GOPPG) Theorem recovers the OPPG
theorem in Imani et al. (2018). The main contribution of GOPPG lies in the computation of ∇c, i.e.,
the policy gradient of a distribution, which has not been done by previous policy gradient methods.
The main contribution of Proposition 1 is the trace F (2)

t , which is an effective way to approximate
∇c. Inspired by Propostion 1, we propose to update θ as θt+1 = θt + αZt, where α is a step size.

So far, we discussed the policy gradient for a single dimension of the policy parameter θ, so
F

(1)
t ,M

(1)
t , F

(2)
t ,M

(2)
t are all scalars. When we compute policy gradients for the whole θ in parallel,

F
(1)
t ,M

(1)
t remain scalars while F (2)

t ,M
(2)
t become vectors of the same size as θ. This is because

our intrinsic interest “function” It is a multi-dimensional random variable, instead of a deterministic
scalar function like î. We, therefore, generalize the concept of interest.

So far, we also assumed access to the true density ratio c and the true value function vπ . We can plug
in their estimates C and V , yielding the Generalized Off-Policy Actor-Critic (Geoff-PAC) algorithm.4
The density ratio estimate C can be learned via the learning rule in (3). The value estimate V can
be learned by any off-policy prediction algorithm, e.g., one-step off-policy TD (Sutton and Barto,
2018), Gradient TD methods, (Discounted) COP-TD or V-trace (Espeholt et al., 2018). Pseudocode
of Geoff-PAC is provided in supplementary materials.

We now discuss two potential practical issues with Geoff-PAC. First, Proposition 1 requires t→∞.
In practice, this means µ has been executed for a long time and can be satisfied by a warm-up before

3This existence does not follow directly from the convergence analysis of ETD in Yu (2015).
4At this moment, a convergence analysis of Geoff-PAC is an open problem.
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training. Second, Proposition 1 provides an unbiased sample for a fixed policy π. Once π is updated,
F

(1)
t , F

(2)
t will be invalidated as well as C, V . As their update rule does not have a learning rate,

we cannot simply use a larger learning rate for F (1)
t , F

(2)
t as we would do for C, V . This issue

also appeared in Imani et al. (2018). In principle, we could store previous transitions in a replay
buffer (Lin, 1992) and replay them for a certain number of steps after π is updated. In this way, we
can satisfy the requirement t → ∞ and get the up-to-date F (1)

t , F
(2)
t . In practice, we found this

unnecessary. When we use a small learning rate for π, we assume π changes slowly and ignore this
invalidation effect.

5 Experimental Results

Our experiments aim to answer the following questions. 1) Can Geoff-PAC find the same solution as
on-policy policy gradient algorithms in the two-circle MDP as promised? 2) How does the degree of
counterfactualness (γ̂) influence the solution? 3) Can Geoff-PAC scale up to challenging tasks like
robot simulation in Mujoco with neural network function approximators? 4) Can the counterfactual
objective in Geoff-PAC translate into performance improvement over Off-PAC and ACE? 5) How
does Geoff-PAC compare with other downstream applications of OPPG, e.g., DDPG (Lillicrap et al.,
2015) and TD3 (Fujimoto et al., 2018)?

5.1 Two-circle MDP

We implemented a tabular version of ACE and Geoff-PAC for the two-circle MDP. The behavior
policy µ was random, and we monitored the probability from A to B under the target policy π. In
Figure 1b, we plot π(A→ B) during training. The curves are averaged over 10 runs and the shaded
regions indicate standard errors. We set λ1 = λ2 = 1 so that both ACE and Geoff-PAC are unbiased.
For Geoff-PAC, γ̂ was set to 0.9. ACE converges to the correct policy that maximizes Jµ as expected,
while Geoff-PAC converges to the policy that maximizes Jπ , the policy we want in on-policy training.
Figure 1c shows how manipulating γ̂ and λ2 influences the final solution. In this two-circle MDP, λ2

has little influence on the final solution, while manipulating γ̂ significantly changes the final solution.

5.2 Robot Simulation

Figure 2: Comparison among Off-PAC, ACE, and Geoff-PAC. Black dash lines are random agents.

Figure 3: Comparison among DDPG, TD3, and Geoff-PAC

Evaluation: We benchmarked Off-PAC, ACE, DDPG, TD3, and Geoff-PAC on five Mujoco robot
simulation tasks from OpenAI gym (Brockman et al., 2016). As all the original tasks are episodic,
we adopted similar techniques as White (2017) to compose continuing tasks. We set the discount
function γ to 0.99 for all non-termination transitions and to 0 for all termination transitions. The
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agent was teleported back to the initial states upon termination. The interest function was always
1. This setting complies with the common training scheme for Mujoco tasks (Lillicrap et al., 2015;
Asadi and Williams, 2016). However, we interpret the tasks as continuing tasks. As a consequence,
Jπ, instead of episodic return, is the proper metric to measure the performance of a policy π. The
behavior policy µ is a fixed uniformly random policy, same as Gelada and Bellemare (2019). The
data generated by µ is significantly different from any meaningful policy in those tasks. Thus, this
setting exhibits a high degree of off-policyness. We monitored Jπ periodically during training. To
evaluate Jπ, states were sampled according to π, and vπ was approximated via Monte Carlo return.
Evaluation based on the commonly used total undiscounted episodic return criterion is provided in
supplementary materials. The relative performance under the two criterion is almost identical.

Implementation: Although emphatic algorithms have enjoyed great theoretical success (Yu, 2015;
Hallak et al., 2016; Sutton et al., 2016; Imani et al., 2018), their empirical success is still limited to
simple domains (e.g., simple hand-crafted Markov chains, cart-pole balancing) with linear function
approximation. To our best knowledge, this is the first time that emphatic algorithms are evaluated
in challenging robot simulation tasks with neural network function approximators. To stabilize
training, we adopted the A2C (Clemente et al., 2017) paradigm with multiple workers and utilized
a target network (Mnih et al., 2015) and a replay buffer (Lin, 1992). All three algorithms share
the same architecture and the same parameterization. We first tuned hyperparameters for Off-PAC.
ACE and Geoff-PAC inherited common hyperparameters from Off-PAC. For DDPG and TD3, we
used the same architecture and hyperparameters as Lillicrap et al. (2015) and Fujimoto et al. (2018)
respectively. More details are provided in supplementary materials and all the implementations are
publicly available 5.

Results: We first studied the influence of λ1 on ACE and the influence of λ1, λ2, γ̂ on Geoff-PAC in
HalfCheetah. The results are reported in supplementary materials. We found ACE was not sensitive
to λ1 and set λ1 = 0 for all experiments. For Geoff-PAC, we found λ1 = 0.7, λ2 = 0.6, γ̂ = 0.2
produced good empirical results and used this combination for all remaining tasks. All curves are
averaged over 10 independent runs and shaded regions indicate standard errors. Figure 2 compares
Geoff-PAC, ACE, and Off-PAC. Geoff-PAC significantly outperforms ACE and Off-PAC in 3 out of
5 tasks. The performance on Walker and Reacher is similar. This performance improvement supports
our claim that optimizing Jγ̂ can better approximate Jπ than optimizing Jµ. We also report the
performance of a random agent for reference. Moreover, this is the first time that ACE is evaluated on
such challenging domains instead of simple Markov chains. Figure 3 compares Geoff-PAC, DDPG,
and TD3. Geoff-PAC outperforms DDPG in Hopper and Swimmer. DDPG with a uniformly random
policy exhibits high instability in HalfCheetah, Walker, and Hopper. This is expected because DDPG
ignores the discrepancy between dµ and dπ . As training progresses, this discrepancy gets larger and
finally yields a performance drop. TD3 uses several techniques to stabilize DDPG, which translate
into the performance and stability improvement over DDPG in Figure 3. However, Geoff-PAC still
outperforms TD3 in Hopper and Swimmer. This is not a fair comparison in that many design choices
for DDPG, TD3 and Geoff-PAC are different (e.g., one worker vs. multiple workers, deterministic
vs. stochastic policy, network architectures), and we do not expect Geoff-PAC to outperform all
applications of OPPG. However, this comparison does suggest GOPPG sheds light on how to improve
applications of OPPG.

6 Related Work

The density ratio c is a key component in Geoff-PAC, which is proposed by Gelada and Bellemare
(2019). However, how we use this density ratio is different. Q-Learning (Watkins and Dayan, 1992;
Mnih et al., 2015) is a semi-gradient method. Gelada and Bellemare (2019) use the density ratio
to reweigh the Q-Learning semi-gradient update directly. The resulting algorithm still belongs to
semi-gradient methods. If we would use the density ratio to reweigh the Off-PAC update (7) directly,
it would just be an actor-critic analogue of the Q-Learning approach in Gelada and Bellemare (2019).
This reweighed Off-PAC, however, will no longer follow the policy gradient of the objective Jµ,
yielding instead “policy semi-gradient”. In this paper, we use the density ratio to define a new
objective, the counterfactual objective, and compute the policy gradient of this new objective directly
(Theorem 1). The resulting algorithm, Geoff-PAC, still belongs to policy gradient methods (in the

5https://github.com/ShangtongZhang/DeepRL
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limiting sense). Computing the policy gradient of the counterfactual objective requires computing the
policy gradient of the density ratio, which has not been explored in Gelada and Bellemare (2019).

There have been many applications of OPPG, e.g., DPG (Silver et al., 2014), DDPG, ACER (Wang
et al., 2016), EPG (Ciosek and Whiteson, 2017), and IMPALA (Espeholt et al., 2018). Particularly,
Gu et al. (2017) propose IPG to unify on- and off-policy policy gradients. IPG is a mix of gradients
(i.e., a mix of ∇Jµ and ∇Jπ). To compute ∇Jπ , IPG does need on-policy samples. In this paper, the
counterfactual objective is a mix of objectives, and we do not need on-policy samples to compute
the policy gradient of the counterfactual objective. Mixing∇Jγ̂ and∇Jπ directly in IPG-style is a
possibility for future work.

There have been other policy-based off-policy algorithms. Maei (2018) provide an unbiased estimator
(in the limiting sense) for∇Jµ, assuming the value function is linear. Theoretical results are provided
without empirical study. Imani et al. (2018) eliminate this linear assumption and provide a thorough
empirical study. We, therefore, conduct our comparison with Imani et al. (2018) instead of Maei
(2018). In another line of work, the policy entropy is used for reward shaping. The target policy can
then be derived from the value function directly (O’Donoghue et al., 2016; Nachum et al., 2017a;
Schulman et al., 2017a). This line of work includes the deep energy-based RL (Haarnoja et al., 2017,
2018), where a value function is learned off-policy and the policy is derived from the value function
directly, and path consistency learning (Nachum et al., 2017a,b), where gradients are computed to
satisfy certain path consistencies. This line of work is orthogonal to this paper, where we compute the
policy gradients of the counterfactual objective directly in an off-policy manner and do not involve
reward shaping.

Liu et al. (2018) prove that c̄ is the unique solution for a minimax problem, which involves max-
imization over a function set F . They show that theoretically F should be sufficiently rich (e.g.,
neural networks). To make it tractable, they restrict F to a ball of a reproducing kernel Hilbert space,
yielding a closed form solution for the maximization step. SGD is then used to learn an estimate
for c̄ in the minimization step, which is then used for policy evaluation. In a concurrent work (Liu
et al., 2019), this approximate for c̄ is used in off-policy policy gradient for Jπ , and empirical success
is observed in simple domains. By contrast, our Jγ̂ unifies Jπ and Jµ, where γ̂ naturally allows
bias-variance trade-off, yielding an empirical success in challenging robot simulation tasks.

7 Conclusions

In this paper, we introduced the counterfactual objective unifying the excursion objective and the
alternative life objective in the continuing RL setting. We further provided the Generalized Off-Policy
Policy Gradient Theorem and corresponding Geoff-PAC algorithm. GOPPG is the first example
that a non-trivial interest function is used, and Geoff-PAC is the first empirical success of emphatic
algorithms in prevailing deep RL benchmarks. There have been numerous applications of OPPG
including DDPG, ACER, IPG, EPG and IMPALA. We expect GOPPG to shed light on improving
those applications. Theoretically, a convergent analysis of Geoff-PAC involving compatible function
assumption (Sutton et al., 2000) or multi-timescale stochastic approximation (Borkar, 2009) is also
worth further investigation.
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A Assumptions and Proofs

A.1 Assumptions

We use the same standard assumptions as Yu (2015) and Imani et al. (2018).

A.2 Proof of the Existence of∇dγ̂

Proof. (From Yu (2005)) The stationary distribution dγ̂ is an eigenvector of Pγ̂ associated with the
eigenvalue 1, which is the largest eigenvalue. For any primitive matrix X, Seneta (2006) states in
the proof of his Theorem 1.1 (f) that each row of Adj(I− X) is an eigenvector associated with the
largest eigenvalue of the matrix X, where Adj(X) is the adjugate matrix of X. As Pγ̂ is ergodic, it is
primitive. Consequently, the rows of Adj(I− Pγ̂) are the eigenvectors associated with the eigenvalue
1, which is the stationary distribution dγ̂ . According to fact that each element of Adj(I− Pγ̂) is a
polynomial of elements in Pγ̂ , ∇dγ̂ exists whenever ∇π exists. Particularly, dγ̂ is polynomials of γ̂,
it follows easily that limγ̂→1 dγ̂ = dπ . �

A.3 Proof of Lemma 1

Proof. To get F (2)
t , we start from F

(2)
−1 and follow µ for t steps. The expectation is taken w.r.t. to this

process of following µ for t steps. We use p(s|s̄, k) to denote the probability of transitioning to a
state s from a state s̄ in k steps under the target policy π. We define shorthands:

pt(s̄, ā, s)
.
= Pr

µ
(St−1 = s̄, At−1 = ā|St = s), (10)

ft(s)
.
= Eµ[F

(2)
t |St = s], (11)

it(s)
.
= Eµ[It|St = s]. (12)

When t→∞, the agent goes to the stationary distribution dµ, so

lim
t→∞

pt(s̄, ā, s) (13)

= lim
t→∞

Prµ(St−1 = s̄, At−1 = ā, St = s)

dµ(s)
(Bayes’ rule) (14)

=dµ(s)−1dµ(s̄)µ(ā|s̄)p(s|s̄, ā). (15)

Consequently,

dµ(s)ρ(s̄, ā) lim
t→∞

pt(s̄, ā, s) = dµ(s̄)π(ā|s̄)p(s|s̄, ā). (16)

We first compute the limit of the intrinsic interest It:

lim
t→∞

it(s) (17)

= lim
t→∞

∑
s̄,ā

Pr
µ

(St−1 = s̄, At−1 = ā|St = s)Eµ[It|St−1 = s̄, At−1 = ā] (18)

(Law of total expectation and Markov property)

=dµ(s)−1
∑
s̄,ā

dµ(s̄)µ(ā|s̄)p(s|s̄, ā)c(s̄)ρ(s̄, ā)∇ log π(ā|s̄) (Eq. 13 and definition of It) (19)

=dµ(s)−1
∑
s̄,ā

dµ(s̄)π(ā|s̄)p(s|s̄, ā)c(s̄)∇ log π(ā|s̄) (20)

=dµ(s)−1
∑
s̄

dµ(s̄)c(s̄)
∑
ā

∇π(ā|s̄)p(s|s̄, ā) (21)

=dµ(s)−1b(s) (Definition of b) (22)
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We then expend ft recursively:

ft(sk)

=Eµ[It + γ̂ρt−1F
(2)
t−1|St = sk]

=it(sk) + γ̂Eµ[ρt−1F
(2)
t−1|St = sk]

=it(sk) + γ̂
∑

sk−1,ak−1

pt(sk−1, ak−1, sk)Eµ[ρt−1F
(2)
t−1|St−1 = sk−1, At−1 = ak−1]

=it(sk) + γ̂
∑

sk−1,ak−1

pt(sk−1, ak−1, sk)ρ(sk−1, ak−1)ft−1(sk−1)]

=it(sk) + γ̂
∑

sk−1,ak−1

pt(sk−1, ak−1, sk)ρ(sk−1, ak−1)it−1(sk−1)]

+ γ̂2
∑

sk−1,ak−1

pt(sk−1, ak−1, sk)ρ(sk−1, ak−1)
∑

sk−2,ak−2

pt−1(sk−2, ak−2, sk−1)ρ(sk−2, ak−2)ft−2(sk−2)

=it(sk) + γ̂
∑

sk−1,ak−1

pt(sk−1, ak−1, sk)ρ(sk−1, ak−1)it−1(sk−1)

+ γ̂2
∑

sk−1,ak−1

pt(sk−1, ak−1, sk)ρ(sk−1, ak−1)
∑

sk−2,ak−2

pt−1(sk−2, ak−2, sk−1)ρ(sk−2, ak−2)it−2(sk−2)]

+ . . .

+ γ̂t
∑

sk−1,ak−1

pt(sk−1, ak−1, sk)ρ(sk−1, ak−1) · · ·
∑

sk−t,ak−t

p1(sk−t, ak−t, sk−t+1)ρ(sk−t, ak−t)f0(sk−t)

This means we can expand ft(sk) into t+ 1 terms. For each term, we multiply it by dµ(sk) and
compute the limit of the product as:

lim
t→∞

dµ(sk)
∑

sk−1,ak−1

pt(sk−1, ak−1, sk)ρ(sk−1, ak−1)it−1(sk−1) (23)

=
∑

sk−1,ak−1

dµ(sk)ρ(sk−1, ak−1) lim
t→∞

pt(sk−1, ak−1, sk) lim
t→∞

it−1(sk−1) (24)

=
∑

sk−1,ak−1

dµ(sk−1)π(ak−1|sk−1)p(sk|sk−1, ak−1)dµ(sk−1)−1b(sk−1) (Eq. 16 and Eq. 17)

(25)

=
∑
sk−1

b(sk−1)p(sk|sk−1, 1) (26)

lim
t→∞

dµ(sk)
∑

sk−1,ak−1

pt(sk−1, ak−1, sk)ρ(sk−1, ak−1)
∑

sk−2,ak−2

pt−1(sk−2, ak−2, sk−1)ρ(sk−2, ak−2)it−2(sk−2)

=
∑

sk−1,ak−1

dµ(sk)ρ(sk−1, ak−1) lim
t→∞

pt(sk−1, ak−1, sk) lim
t→∞

∑
sk−2,ak−2

pt−1(sk−2, ak−2, sk−1)ρ(sk−2, ak−2)it−2(sk−2)

=
∑

sk−1,ak−1

dµ(sk−1)π(ak−1|sk−1)p(sk|sk−1, ak−1) lim
t→∞

∑
sk−2,ak−2

pt−1(sk−2, ak−2, sk−1)ρ(sk−2, ak−2)it−2(sk−2)

=
∑

sk−1,ak−1

π(ak−1|sk−1)p(sk|sk−1, ak−1)
∑
sk−2

b(sk−2)p(sk−1|sk−2, 1) (Eq. 23)

=
∑
sk−2

b(sk−2)p(sk|sk−2, 2)
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Putting all the limits together, we have

f(sk)

=dµ(sk) lim
t→∞

ft(sk)

=b(sk)

+ γ̂
∑
sk−1

b(sk−1)p(sk|sk−1, 1)

+ γ̂2
∑
sk−2

b(sk−2)p(sk|sk−2, 2)

+ . . .

In a matrix form, we have

f = b + γ̂PT
πb + (γ̂PT

π)2b + . . .

It follows easily that f = (I− γ̂PT
π)−1b �

A.4 Proof of Proposition 1

Proof. From Proposition 1 in Imani et al. (2018) 6, we have

lim
t→∞

Eµ
[
ρtM

(1)
t qπ(St, At)∇ log π(At|St)

]
= 1 .

With Dî
.
= diag(̂i), we have,

lim
t→∞

Eµ[γ̂vπ(St)̂i(St)M
(2)
t ] = γ̂ lim

t→∞
Eµ
[
Eµ[vπ(St)̂i(St)F

(2)
t |St = s]

]
(law of total expectation)

= γ̂ lim
t→∞

∑
s

dµ(s)Eµ[vπ(St)̂i(St)F
(2)
t |St = s]

= γ̂
∑
s

dµ(s)̂i(s)vπ(s) lim
t→∞

Eµ[F
(2)
t |St = s] (conditional independence)

= γ̂
∑
s

vπ(s)̂i(s)f(s)

= γ̂vT
πDîf

= γ̂vT
πDîDµD−1

µ (I− γ̂PT
π)−1b (Lemma 1)

= vT
πDîDµg

=
∑
s

dµ(s)̂i(s)vπ(s)g(s) = 2 .

As ∇Jγ̂ = 1 + 2 , we have proved limt→∞ Eµ[Zt] = ∇Jγ̂ . �

B Details of Experiments

B.1 Pseudocode of Geoff-PAC

Algorithm 1 provides the pseudocode of Geoff-PAC. SNLoss refers to the soft normalization loss for
θc in Gelada and Bellemare (2019). β is the weight for the SNLoss.

B.2 Implementation Details

Task Selection: We use 5 Mujoco tasks from Open AI gym 7(Brockman et al., 2016). Those 5 tasks
are of a medium difficulty level. The easy tasks (e.g., the pendulum tasks) and the hard tasks (e.g.,
the ant task and the humanoid tasks) are excluded.

6It can be easily verified that the dependence of i on π does not influence this proposition.
7https://gym.openai.com/

15

https://gym.openai.com/


Algorithm 1: Geoff-PAC with function approximation
Input:
V : value function parameterized by θv
C: density ratio estimation parameterized by θc
π: policy function parameterized by θ
î : an interest function

Initialize target networks θ−v ← θv, θ
−
c ← θc

Initialize F (1) ← 0, F (2) ← 0, t← 0
while True do

Sample a transition St, At, Rt+1, St+1 according to behavior policy µ
if t = 0 then

t← t+ 1
continue

end
δt = Rt+1 + γtV (St+1; θ−v )− V (St; θv)
Update θv to minimize ρtδ2

t

Update θc to minimize
((
γ̂ρtC(St; θ

−
c ) + (1− γ̂)− C(St+1; θc)

)2
+ βSNLoss(θc)

)
F (1) ← γρt−1F

(1) + î(St)C(St; θc)

M (1) ← (1− λ1)̂i(St)C(St; θc) + λ1F
(1)

I ← C(St−1; θc)ρt−1∇ log π(At−1|St−1; θ)

F (2) ← γ̂ρt−1F
(2) + I

M (2) ← (1− λ2)I + λ2F
(2)

Update θ in the direction of γ̂î(St)V (St; θv)M
(2) + ρtM

(1)δt∇ log π(At|St; θ)
Synchronize θ−v , θ

−
c with θv, θc periodically

t← t+ 1
end

Function Parameterization: For Off-PAC, ACE, and Geoff-PAC, we use separate two-hidden-layer
networks to parameterize C, V and π. Each hidden layer has 64 hidden units and a ReLU (Nair
and Hinton, 2010) activation function. Particularly, we parameterized π as a diagonal Gaussian
distribution with the mean being the output of the network. The standard derivation is a global
state-independent variable. This is a common policy parameterization for continuous-action problems
(Schulman et al., 2015, 2017b). For DDPG and TD3, we use the same parameterization as Lillicrap
et al. (2015) and Fujimoto et al. (2018) respectively.

Hyperparameter Tuning: Our implementation is based on the A2C (Clemente et al., 2017) ar-
chitecture. We first tune hyperparameters for Off-PAC based on the A2C implementation from
Dhariwal et al. (2017) and previous experiences. Our ACE and Geoff-PAC implementations inherited
common hyperparameters from the Off-PAC implementation without further fine-tuning. Previously,
Off-PAC and ACE were evaluated on only simple domains with linear function approximation. To
our best knowledge, we are the first to demonstrate an empirical success for them in challenging
robot simulation tasks.

Hyperparameters of Off-PAC:
Number of workers: 10
Optimizer: RMSProp with an initial learning rate 10−3

Gradient clip by norm: 0.5
Replay buffer size: 106

Batch size of the replay buffer: 10
Warm-up steps before learning: 100 environment steps
Target network update frequency: 200 optimization steps
Importance sampling ratio clip: [0, 2]

Additional Hyperparameters of ACE:
λ1 : 0, tuned over {0, 0.1, 0.2, . . . , 0.9, 1} on HalfCheetah with a grid search
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Additional Hyperparameters of Geoff-PAC:
Density ratio (C) clip: [0, 2]
SNLoss weight (β): 10−3, suggested by Gelada and Bellemare (2019)
λ1 : 0.7, tuned over {0, 0.1, 0.2, . . . , 0.9, 1} on HalfCheetah
λ2 : 0.6, tuned over {0, 0.1, 0.2, . . . , 0.9, 1} on HalfCheetah
γ̂ : 0.2, tuned over {0, 0.1, 0.2, . . . , 0.9} on HalfCheetah
We first select a reasonable γ̂ based on some preliminary experiments. Then λ1 and λ2 are tuned with
a grid search.

Hyperparameters of DDPG:
We implemented DDPG ourself. With the normal behavior policy, our implementation matched the re-
ported performance in the literature, e.g., in Fujimoto et al. (2018). We use the same hyperparameters
as Lillicrap et al. (2015). We do not use batch normalization.

Hyperparameters of TD3:
We implemented TD3 ourself. With the normal behavior policy, our implementation matched the
reported performance in Fujimoto et al. (2018). With a uniformly random behavior policy, our
implementation outperformed the implementation from Fujimoto et al. (2018) by a large margin, we
therefore use our implementation for comparison. We use the same hyperparameters as Fujimoto
et al. (2018).

Computing Infrastructure:
We conducted our experiments on an Nvidia DGX-1 with PyTorch.

B.3 Other Experimental Results

We include a comparison under the total undiscounted episodic return criterion for reference. The
results are reported in Figure 4 and Figure 5. All curves are averaged over 10 independent runs, and
standard errors are reported as the shadow.

Figure 4: Comparison among Off-PAC, ACE, and Geoff-PAC. Black dash line is a random agent.

Figure 5: Comparison among DDPG, TD3, and Geoff-PAC

We studied the influence of (λ1, λ2, γ̂) on ACE and Geoff-PAC in HalfCheetah. Results are reported
in Figure 6. Five random seeds were used.
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(a) (b) (c)

Figure 6: Hyper-parameter study on HalfCheetah (a) The influence of λ1 on ACE (b) The influence
of γ̂ on Geoff-PAC (c) The influence of λ1, λ2 on Geoff-PAC
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