
A Environment, Model Architectures, and Implementation522

In this section, we describe the environment and tasks we designed, and various implementation523

details such as the architectures of the policy networks.524

A.1 Environment525

We want an environment where we can evaluate the agent’s ability to learn policies for long-horizon526

tasks that have compositional structure. In robotics, manipulating and rearranging objects is a527

fundamental way through which robots interact with the environment, which is often cluttered528

and unstructured. Humans also tend to decompose complex tasks into smaller sub-tasks in the529

environment (e.g. putting together a complicated model or write a piece of program). While previous530

works have studied the use of language in navigation domain, we aim to develop an environment531

where the agent can physically interact with and change the environment.532

To that end, we designed a new environment for language and manipulation tasks in MuJoCo where533

the agents must interact with the objects in the scene. To succeed in this environment, the agents534

must be able to handle different number of objects with diverse visual and physical properties.535

We will refer to all the elements in the environment collectively as the world state. The environment536

can contain up to 5 object. Each object is represented by oi that contains the 3d coordinate, pi, of537

its center of mass, and a one-hot representation of its 4 properties: color, shape, size, and material.538

The environment keeps an internal relation graph Gadj for all the objects currently in the scene. The539

relation graph is stored as an adjacency list whose ith entry is a nested array storing oi’s neighbors540

in 4 cardinal directions left, right, front and behind. The criterion for oj to be the neighbor of oi in541

certain direction is if ||pj � pi|| rmax and the angle between pj � pi and the cardinal vector of542

that vector is smaller than �max. After every interaction between the agent and the environment, oi543

and the relation graph are updated to reflect the current world state.544

The agent takes the form of a point mass that can teleport around, which is a mild assumption for545

standard robotic arms (Other agents are possible as well). Before each interaction, the environment546

stores a set of language statements that are not satisfied by the current world state. These statements547

are re-evaluated after the interaction. The statements whose values change to True during the548

interaction can be used as the goals or instructions for relabeling the trajectories (cf. pre and post549

conditions used in classical AI planning). Assuming the low-level policy only follows a single550

instruction at any given instant, the reward for every transition is 1 if the goal is achieved and 0551

otherwise. The action space we use in this work consists of a point mass agent pushing one object in552

1 of the 8 cardinal directions for a fixed number of frames, so the discrete action space has size 8kt,553

where kt 5 is the number of objects.554

A.2 Tasks555

The high-level policy’s reward function can be tailored towards the task of interests, where we propose556

three difficult benchmark tasks with extremely sparse rewards.557

A.2.1 Five Object Settings (Standard)558

In this setting, we have a fixed set of 5 spheres of different colors cyan, purple, green, blue, red.559

The first task we consider is object arrangement. We sample a random set of statements that can560

be simultaneously satisfied and, at every time step, the agent receives a reward of -10.0 if at least 1561

statement is not satisfied satisfied and 0.0 only if all statements are satisfied. At the beginning of every562

episode, we reset the environment until none of the statements is satisfied. The exact arrangement563

constraints are: (1) red ball to the right of purple ball; (2) green ball to the right of red ball; (3) green564

ball to the right of cyan ball; (4) purple ball to the left of cyan ball; (5) cyan ball to the right of purple565

ball; (6) red ball in front of blue ball; (7) red ball to the left of green ball; (8) green ball in front of566

blue ball; (9) purple ball to the left of cyan ball; (10) blue ball behind the red ball567

The second task is object ordering. An example of such a task is “arrange the objects so that their568

colors range from red to blue in the horizontal direction, and keep the objects close vertically". In569

this case, the configuration can be specified with 4 pair-wise constraint between the objects. We reset570

the environment until at most 1 pair-wise constraint is satisfied involving the x-coordinate and the571

12

y-coordinate. At every time step, the agent receives a reward of -10.0 if at least 1 statement is not572

satisfied satisfied and 0.0 only if all statements are satisfied. The ordering of color is: cyan, purple,573

green, blue, red from left to right.574

The third task is object sorting. In this task, the agent needs to sort 4 object around a central object;575

further, the 4 objects cannot be too far away from the central object. Once again, the agent receives576

a reward of -10.0 if at least 1 constraint is violated, and 0.0 only if all constraints are satisfied and577

environment is reset until at most 1 constraint is satisfied. Images of end goal for each high-level578

tasks are show in Figure 3.579

A.2.2 Diverse Object Settings580

Here, instead of 5 fixed objects, we introduce 3 different shapes cube, sphere and cylinder in581

combinations with 5 colors. Both colors and shapes can repeat but the same combination of color and582

shape does not repeat. In this setting, there are
�15
5

�
= 3003 possible object configurations. In this583

setting, we define the color hierarchy to be red, green, blue, cyan, purple from left to right and the584

shape hierarchy to be sphere, cube, cylinder from left to right. Sample goal states of each task are585

shown in 3.586

The first task is color ordering where the agent needs to manipulate the objects such that their colors587

are in ascending order.588

The second task is shape ordering where the agent needs to manipulate the object such that their589

shapes are in ascending order.590

Finally, the last task is color & shape ordering where the agent needs to manipulate the object such591

that the color needs to be in ascending order, and within each color group the shapes are also in592

ascending order.593

Like in the fixed object setting, the agent only receives 0 reward when the objects are completely594

ordered; otherwise, the reward is always -10.595

A.3 Implementation details596

Language supervisor. In this work, each language statement generated by the environment is597

associated with a functional program that can be executed on the environment’s relation graph to598

yield an answer that reflects the value of that statement on the current scene. The functional programs599

are built from simple elementary operation such as querying the property of objects in the scene, but600

they can represent a wide range of statements of different nature and can be efficiently executed on601

the relation graph. This scheme for generating language statements is reminiscent of the CLEVR602

dataset [23] whose code we drew on and modified for our use case. Note that a language statement603

that can be evaluated is equivalent to a question, and the instructions we use also take the form of604

questions. For simplicity and computational efficiency, we use a smaller subset of question family605

defined in CLEVR that only involves pair-wise relationships (one-hop) between the objects. We plan606

to scale up to full and beyond CLEVR scale in future works.607

State based low-level policy. When we have access to the ground truth states of the objects in the608

scene, we use an object-centric representation of states by assuming st = {oi}
kt
i=1, where oi 2 Rdo609

is the state representation of object i, and kt is the number of objects (which can change over time).610

We also assume at = {↵i}
kt
i=1, where each ↵i 2 Rd↵ acts on individual the object oi.611

We implement a specialized universal value function approximator [46] for this case. To handle a612

variable number of relations between the different objects, and their changing properties, we built a613

goal-conditioned self attention policy network. Given a set of k object {oi}
k

i=1, we first create pair-614

wise concatenation of the objects, O = {oikoj}
k,k

j=1,i=1. Then we transform every pair-wise vectors615

with a single neural network f1 into Z = {f1(oikoj)}
k,k

j=1,i=1. A recurrent neural network with GRU616

[9], f2, embeds the instruction g into a real valued vector eg = f2(g). We use the embedding to attend617

over every pair of object to compute weights {wi = heg, zii|zi 2 Z}. We then compute a weighted618

combination of all pi where the weights are equal to the softmax weights exp(wi)/
P

k
2

j=1 exp(wj).619

This combination transforms the elements of Z are combined into a single vector z̄ of fixed size.620

Each oi is concatenated with eg and z̄ into o0
i
= (oikegkz̄). Then each o0

i
is transformed with the621

another neural network f3 whose output is of dimension d↵. The final output Q = {f3(oikegkz̄)}ki=1622

13

is in Rk⇥d↵ which represents all state-action values of the state. Illustration of the architecture is623

shown in Figure 7.624

Figure 7: Computation graph of the state-based low level policy.

Image based low-level policy. In reality, we often do not have access to the state representation of625

the scene. For many application, a natural alternative is images. We assume st 2 [0, 1]W⇥H⇥C is626

the available image representation of the scene (in all experiemnts, W=64, H=64, C=3). Further, we627

need to adopt a more general action space since we no longer have access to the state representation628

(e.g. coordinates of the location). To that end, we discretize the 2D space in to 10⇥ 10 grids and an629

action involves picking an starting location out of the 100 available grid and a direction out of the the630

8 cardinal direction to push. This induces an 800 dimensional discrete action space.631

It is well-known that reinforcement learning from raw image observation is difficult, and even off-632

policy methods require millions of interaction on Atari games where the discrete action space is small.633

Increasing the action space would understandably make the already difficult exploration problem634

harder. A potential remedy is found in the fact that these high dimensional action space can often635

be factorized into semantically meaningful groups (e.g. the pushing task can be break down into636

discrete bins of the x and y axes as well as a pushing direction). Previous works attempted to leverage637

this observation by using auto-regressive models or assuming conditional independence between the638

groups [32, 55]. We offer a new approach that aims to make the least assumptions. Following the639

group assumption, we assume there exists m = 3 groups and each group consists of km discrete640

sub-actions (i.e. Am = {a(1)
m ,a(2)

m , . . .a(km)
m }). Following this definition, we can build a bijective641

look-up map ⇣ between A to tuples of sub-actions:642

B =
mY

n=1

{1, 2, . . . , kn} (2)

A
⇣

=) {(a(i1)
1 , . . . ,a(im)

m
) | 8(i1, . . . , im) 2 B} (3)

We overload the notion a(i)
m (s) to the action feature of a(i)

m conditioned on the state and goal and643

⇣(a, s) to be a tuple of the corresponding action features. Then the value function each action can be644

represented as:645

Q(s,a) = f (⇣(a, s)) (4)
where f is a single neural network parameterized by that is shared between all a. This model646

does not require picking an order like the auto-regressive model and does not assume conditional647

independence between the groups. Most importantly, the number of parameter scales sublinearly with648

the dimension of the actions. The trade-off of this model is that it can be memory-expensive to model649

the full joint distribution of actions at the same time; however, we found that this model performs650

empirically well for the pushing tasks considered in this work. We will refer to this operation as651

Tensor Concatenation.652

The overall architecture for the UVFA is as follows: the image input is fed through 3 convolution653

layers with kernel size {8, 5, 3}, stride {2, 2, 1}, and channel {46, 128, 64}; each convlution block is654

FiLM’d [39] with the instruction embedding. Then the activation is flattened spatially to 256⇥ 64655

14

and projected to 28⇥ 64. This is further split into 3 action group of sizes {10⇥ 64, 10⇥ 64, 8⇥ 64}656

and fed through tensor concatenation. f is parameterized with 2-layer MLP with 512 hidden units657

at each layer and output dimension of 1 which is the Q-value.658

Figure 8: Computation graph of the vision-based low level policy.

Both policy networks are trained with HIR. Training mini-batches are uniformly sampled from the659

replay buffer. Each episode lasts for 100 steps. When the current instruction is accomplished, a new660

one that is currently not satisfied will be sampled. To accelerate the initial training and increase the661

diversity of instructions, we put a 10 step time limit on each instruction, so the policy does not get662

stuck if it is unable to finish the current instruction.663

High-level policy. For simplicity, we use a Double DQN [58] to train the high-level policy. We uses664

an instruction set that consists of 80 instructions (|I| = 80 for standard and |I| = 240 for diverse)665

that can sufficiently cover all relationships between the objects. We roll out the low-level policy666

for 5 steps for every high-level instruction (T 0 = 5). Training mini batches are uniformly sampled667

from the replay buffer. The state-based high-level policy uses the same observation space as the668

low-level policy; the image-based high-level policy uses extracted visual features from the low-level669

policy and then extract salient spatial points with spatial softmax [29]. The convolutional weights670

are frozen during training. This design choice makes natural sense since humans also use a single671

visual cortex to process all initial visual signals, but training from scratch is certain possible, if not672

ideal, should computation budget not matter. For the diverse visual tasks, we found that using the673

convolutional features with spatial softmax could not yield a good representation for the downstream674

tasks. Due tot time constraints, the experiments shown for the diverse high-level tasks use the ground675

truth state, namely position and one-hot encoded colors and shapes for the high-level policy; however,676

the low-level policy only has access to the image. We believe a learned convolutional layer would677

solve this problem. Finally, we note that the high-level policy picks each sentence independent and678

therefore does not leverage the structure of language. While generating language is generally hard, a679

generative model would correspond to thought more. We think this is an extremely important and680

exciting direction for future work.681

B Algorithms682

In this section we elaborate on our proposed algorithm and lay out finer details.683

B.1 Overall algorithm684

The overall hierarchical algorithm is as follows:685

B.2 Training low-level policy686

For both state-based and vision-based experiments, we use DDQN as Al. For the state-based687

experiments, the agent receives binary reward based on whether the action taken completes the688

instruction; for the vision-based experiments, we found it instrumental to add a object movements689

bonus, i.e. if the agents change the position of the objects by some minimum threshold, the agetn690

receives a 0.25 reward. This alleviates the exploration problem in high dimensional action space691

15

Algorithm 1 Overall Hierarchical Training
1: Inputs: Low level RL algorithm Al; High level RL algorithm Ah; Environment E; other relevant

inputs of Algorithms 2 and 3
2: ⇡l(a|s, g) low level policy trained with Al and other appropriate inputs (Algorithm 2)
3: ⇡h(g|s) high level policy trained with Ah, ⇡l(a|s, g) and other appropriate inputs (Algorithm

3)
4: return ⇡l(a|s, g) and ⇡h(g|s)

Algorithm 2 RL with hindsight instruction relabeling (HIR)
1: Inputs: off-policy RL algorithm Al; instruction relabeling strategy S; language supervisor ⌦;

Environment E; number of relabeled future K
2: Initialize replay buffer B and ⇡l(a|s, g)
3: for episode i = 1 to M do
4: s0 reset E
5: g ⇠ U({g 2 ⌦(s0) | (s0, g) = 0})
6: ⌧ []
7: for step t = 0 to T do
8: Ut {g 2 ⌦(st) | (st, g) = 0}
9: at ⇠ ⇡A(a|st, g)

10: st+1 Take action at from st
11: rt (st+1, g)
12: Vt Ut \ {g 2 ⌦(st+1) | (st+1, g) = 0}
13: add (st,at, g, rt, st+1,at+1,Vt) to ⌧
14: if rt = 1 then
15: g ⇠ U({g 2 ⌦(st+1) | (st+1, g) = 0})
16: end if
17: end for
18: for step t = 0 to T do
19: B B [{(st,at, g, rt, st+1,at+1)}
20: for g0

2 Vt do
21: B B [{(st,at, g0, 1, st+1,at+1)}
22: end for
23: W S(⌧, t,K)†

24: for (g0, r0) 2W do
25: B B [{st,at, g0, r0, st+1,at+1)}
26: end for
27: end for
28: Update ⇡l(a|s, g) with Al using minibtach from B
29: end for
30: return ⇡l(a|s, g)
31: † Details in Appendix B.4; U(·) denotes uniform sampling from the given set.

(R800), but the algorithm is capable of learning without the exploration bonus. (Algorithm 2). We692

adopt the similar setting as HER where unit of time consists of epochs, cycles and episode. Each cycle693

consists of 50 episode and each episode consists of 100 steps. While we set the number of epoch to694

50, in practice we never actually reach there. We adopt an epsilon greedy exploration strategy where695

every cycle we decrease the exploration by a factor of 0.993, starting from 1 but at the beginning we696

10 cylces to populate the buffer. The minimum epsilon is 0.1. We use � = 0.9 and replay buffer of697

size 2e6. The target network we use is a 0.95 moving average of the model parameters, updated at the698

beginning of every cycle. Every episode, we update the network 100 steps with the Adam Optimizer699

with minibatch randomly sampled from the replay buffer.700

B.3 Training high-level policy701

Ah is also a DDQN. One single set of hyperparameter is used for standard experiments and another702

for the diverse experiments. DDQN is trained for 2e6 steps, uses uniform replay buffer of size 1e5,703

16

linearly anneal epsilon from 1 to 0.05 in 3e5 steps, Adam and batch size 256. T 0 = 5 for all all our704

experiments, but the experience the network sees is equivalent of 1 step. For the diverse settings, do705

to time constraint, we use priority replay buffer of size 1e6 for all diverse experiment including the706

DDQN baselines. (Algorithm 3) We use the Adam Optimizer [26] with initial learning rate of 0.0001.707

Discounte factor � = 0.9. Learning starts after 100 episode each of which lasts for 100 steps / 100708

high-level actions.709

Algorithm 3 Training high-level policy

1: Inputs: Any RL algorithm Ah; reward function R : S ! [rmin, rmax]⇤; instruction set I;
instruction encoder �; low-level policy ⇡l(a|s, g)

2: Initialize A
3: for episode i = 1 to M do
4: s0 reset E
5: for step t = 0 to T do
6: g Sample from I using ⇡h(g|st)
7: s0 st
8: for substep t0 = 1 to T 0 do
9: a0

⇠ ⇡l(a|s0, g)
10: s0 Take action a0 from s0

11: end for
12: st+1 s0

13: Store experience
14: end for
15: Update Ah accordingly with experience collected
16: end for
17: *Here we assume the reward is only based on the new state for simplicity

B.4 Relabeling Strategy710

HER [2] demonstrated that the relabeling strategy for trajectories can have significant impacts on the711

performance of the policy. The most successful relabeling strategy is the “k-future" strategy where712

the goal state and the reward are relabeled with k states in the trajectories that are reached after the713

current time step and the reward is discounted based on the discount factor � and how far away the714

current state is from the future state in `2 distance. We modify this strategy for relabeling a language715

conditioned policy. One challenge with language instruction is that the notion of distance is not well716

defined as the instruction is under-determined and only captures a part of the information about the717

actual state. As such, conventional metrics for describing distance between sequences of tokens (e.g.718

edit distance) do not actually capture the information we are interested in. Instead, we adopt a more719

“greedy" approach to relabeling by putting more focus on 1-step transition where the instruction is720

actually fulfilled. Namely, we store all transition tuples in Vt to the replay buffer B (Algorithm 2).721

For future relabeling, we simply use the reward discounted by time steps into the future to relabel the722

trajectory. While the discounted reward does not usually capture the “optimal" or true discounted723

reward, we found it to provide sufficient learning signal. Detailed steps are shown below (Algorithm724

4). In our experiments, we use K = 4.725

In additon to relabeling, if an object is moved (using 800 dimensional action space), we add to replay726

buffer a transition where the instruction is the name of the object such as “large rubber red ball"727

and the reward is 1.0. We found this helps the agent to learn the concept of objects. We refer to this728

operation as Unary Relabeling.729

C Experimental Details730

C.1 One-hot encoded representation731

We assign each instruction a varying number of bins in the one-hot vector. Concretely, we give732

each instruction of the 600 instruction 1, 4, 10, and 20 bins in the one-hot vector, which means the733

effective size of the one-hot vector is 600, 2400, 6000 and 12000. When sampling goals, each goal is734

uniformly dropped into one of its corresponding bins.735

17

Algorithm 4 Future Instruction Relabeling Strategy (S)
1: Inputs: Trajectory ⌧ ; current time step t; number of relabeled future K
2: � []
3: count 0
4: while count < K do
5: future ⇠ U({t+ 1, . . . , |⌧ |})
6: (s,a, g, r, s0,a0,V) ⌧ [future]
7: if |V| > 0 then
8: g0

⇠ U(V)
9: r0 r · �future�t

10: Store (g0, r0) in �
11: count count+ 1
12: end if
13: end while
14: return �

C.2 Non-compositional representation736

To faithfully evaluate the importance of compositionality, we want a representation that carries the737

identical information as the language instruction but without the explicit compositional property738

(but perhaps still to some degree compositional). To this end, we use a Seq2Seq [53] autoencoder739

with 64 hidden units to compress the 600 instructions into real-valued continuous vectors. The740

original tokens are fully recovered which indicates that the compression is lossless and the latent’s741

information content is the same as the original instruction. This embedding is used in place of742

the GRU instruction embedding. We also observed that adding regularization to the autoencoder743

decreases the performance of the resulting representation. For example, decreasing the bottleneck size744

leads to worse performance, so does adding dropout. Figure 4 uses an autoencoder with dropout of 0.5745

while 1 uses one with no dropout. As you can see, the performance without dropout is better than the746

one with. We hypothesis adding regularization decreases the compositionality of the representation.747

C.3 Non-hierarchical baseline748

We use Double DQN implementation from OpenAI baselines749

(https://github.com/openai/baselines/tree/master/baselines/deepq). We use a 2 layer MLP750

with 512 hidden units at each layer with the respective action dimension as the output as the policy.751

C.4 HRL baselines752

In general, we note that it is difficult to compare different HRL algorithms in an apple-to-apple753

manner. HIRO assumes a continuous goal space so we modified the goal to be an R10 vector754

representing the locations of each object rather than using language. In this regime, we observed755

HIRO was unable to make good progress. We hypothesize that the highly sparse reward might756

be the culprit. It is also worth noting that HIRO uses a goal space in R2 for navigation (which is757

by itself a choice of abstraction because the actual agent state space is much higher) while ours758

is of higher dimensionality. The Tensorflow implementation of HIRO we use can be found at759

https://github.com/tensorflow/models/tree/master/research/efficient-hrl. (This is the implementation760

from the original author).761

Option-critic aims to learn everything in a complete end-to-end manner which means it does not use762

the supervision from language, which makes it perhaps not as surprising that the sparse tasks do not763

provide sufficient signal for OC. In other words, while our method enjoys the benefit of a flexible but764

fixed abstraction while OC needs to learn such abstraction. We tried 8, 16, and 32 options for OC765

but our method has much more sub-policies due to the combinatorial nature of language. The OC766

implementation in Tensorflow we used can be found at https://github.com/yadrimz/option-critic.767

18

C.5 Hardware Specs and Training time768

All our experiments are performed on a single Nvidia Tesla V100. We are unable to verify the specs769

of the virtual CPU. The low-level policy for state-based observation takes about 2 days to train and,770

for image-based observation, 6 days. The high-level policies for the state-based observation takes771

about 2 days to train and 3 days for image-based observations (wall-clock time). The implementations772

are not deliberately optimized for performance (major bottleneck is actually the language supervisor)773

so it is very likely the time could be dramatically shortened.774

D More Experimental Results775

D.1 Low-level policy for diverse environment776

Figure 9 shows the training instruction per episode on the diverse environment. We see that the777

performance is worse than fixed number of objects with the same amount of experience. This is778

perhaps not surprising considering the visual tasks are much more diverse and hence more challenging.779

Figure 9: Results training the low-level policy on the diverse environment.
780

D.2 Why is the proposed environment difficult?781

While DDQN worked on 2 cases in the state-based environemnt, it is unable to solve any of the782

problems in visual domain. We hypothesize that the pixel observations and increase in action space783

(20⇥ increase) makes the exploration difficult for DDQN. The difficulty of the tasks–in particular784

the 3 standard tasks–is reflected in the fact that the reward from non-hierarchical random action is785

stably 0 with small variance, meaning that under the sparse reward setting the agent rarely visits the786

goal state. On the other hand, the random exploration reward is much higher for our method as the787

exploration in the space of language is structured.788

19

	Introduction
	Related Work
	Preliminaries
	Hierarchical Reinforcement Learning with Language Abstractions
	Problem statement
	Training a language-conditioned low-level policy
	Acting in language with the high-level policy

	The Environment and Implementation
	Experiments
	Low-level Policy
	High-level policy

	Discussion
	Environment, Model Architectures, and Implementation
	Environment
	Tasks
	Five Object Settings (Standard)
	Diverse Object Settings

	Implementation details

	Algorithms
	Overall algorithm
	Training low-level policy
	Training high-level policy
	Relabeling Strategy

	Experimental Details
	One-hot encoded representation
	Non-compositional representation
	Non-hierarchical baseline
	HRL baselines
	Hardware Specs and Training time

	More Experimental Results
	Low-level policy for diverse environment
	Why is the proposed environment difficult?

