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R1 (correctness of prop.5,6,7): We believe that the results in the paper are correct as stated. First, Props 6 and 7 have2

no issue with disjoint support since Xn ∼ q; Xn will not fall in a region where p > 0 and q = 0 almost surely. And3

although E
[
(1 +R)2

]
may be infinite, in this case the second bound in Prop 5 says that dH(p, q) ≥ 0, which is true4

(albeit vacuous). Likewise, in the first bound, any time R is large (or infinite) we have that the indicator function returns5

0 and the argument in the expectation is (R/(1 +R))2 ≤ 1.6

R1 (uniqueness of p̂): In the paragraph before Theorem 2, we note that Q is the closure of the mixtures, and hence the7

best possible approximation p̂ exists and is unique since Q is convex and closed. But we realize now that earlier in the8

paper we denoted Q to be the finite mixtures (not the closure), which is certainly confusing. Thank you for pointing9

this out, we will make sure to clarify this and keep notation consistent in the final draft.10

R1 (solving eq.4 with (1− δ) relative error):. A great point! We agree that this was not clear and will improve our11

explanation for the final draft. By “solving eq. 4 with (1− δ) relative error”, we mean that the component we find has12

objective value at least (1− δ) times the maximum value of the optimum (i.e. it is not necessary to solve the problem13

exactly for our result to hold). Note that this is equivalent for both formulae in eq. 4, since f − 〈f, ḡn〉 ḡn is orthogonal14

to ḡn and thus the two only differ by a multiplicative constant ‖f − 〈f, ḡn〉 ḡn‖. However, in practice we currently15

cannot assert that we have solved eq. 4 with a certain precision as it is a non-convex optimization problem. We are16

currently working towards a possible solution to this problem as a follow up to the present work.17

R1 (references on l. 37):. Dehaene and Barthelme (2018) is indeed a relevant reference to add here; thanks for pointing18

this out to us. We will add this as well as a reference to the classical BvM theorem in the final draft.19

R3 (disadvantages of Hellinger): Another excellent point. We will include a discussion of the drawbacks of the20

Hellinger distance in the final draft. While Hellinger has many statistical strengths (as outlined in the text), its21

weaknesses tend to be computational in nature. In particular, Monte Carlo gradient estimates for our objectives are both22

biased and tend to be higher variance than the corresponding KL gradient estimates (due to the logE [e...] objective23

structure), making stochastic optimization a bit more difficult. We have further upcoming work that addresses both of24

these issues, which we hope to be out shortly.25

R3 (nonexponential family components): It is certainly possible that other densities may yield a computationally26

tractable procedure; as long as the relevant inner products are easily evaluated / approximated, all should work out the27

same. Note that our theory also holds in the general (possibly misspecified) setting. Generally though, exponential28

families are a broad enough class to capture most settings of interest (full support, nonnegative, discrete, etc).29

R3 (BBVI): Good eye – we will ensure that this initialism (“boosting black box variational inference”) is defined and30

cited more directly (ref [27]) in the final draft.31

R3 (complexity): The main cost of our algorithm lies in finding the next component, which is a nonconvex optimization32

problem; characterizing the complexity of such problems is generally nontrivial. The other expensive step is inverting33

Z in the weights optimization, where incremental methods using block matrix inversion reduce the cost at iteration n to34

O(n2) and overall cost to O(N3). Note that this was discussed in the paper just before Section 3.2 on p. 5.35

R3 (scaling to high dimensions / large data): In order to make the method computationally tractable in high36

dimensions, we switch to diagonal covariances in the mixture components (as mentioned at the beginning of the37

experiments section). Note that our theoretical guarantees do not explicitly depend on dimension and hold equally well38

in the high-dimensional setting; the variable τ implicitly serves the role of “dimension” and captures the complexity of39

the densities to approximate (as mentioned just before eq. 2). Further, as mentioned in the appendix, our algorithm40

should also scale to the big data setting by using Monte Carlo gradient estimates similar to those in Rényi variational41

inference (Li & Turner 2016); but see the remark below about this setting. We will add remarks about dimension,42

diagonal vs full rank covariances, as well as the big data setting, in the final draft.43

R2,3 (empirical results):. We certainly agree that testing the approach on high dimensional problems with large44

datasets is an important task to complete. But note that the primary purpose of the present work was to obtain a45

tuning-free variational method with statistical quality guarantees. To the best of our knowledge, this is the first method46

that accomplishes this goal, and we believe our experiments justify the claims in the paper. A comprehensive treatment47

of the high-dimensional / large-data regimes, with guarantees / computational techniques directed to these settings,48

is the focus of an ongoing follow-up project; based on the empirical results from recent work on Hellinger VI (Li &49

Turner 2016) and boosting VI (Locatello et al. 2018), we believe it will be possible to successfully apply our method to50

these settings.51


