A Relationship between iMAML and Prior Algorithms

The presented iIMAML algorithm has close connections, as well as notable differences, to a number
of related algorithms like MAML [15], first-order MAML, and Reptile [43]. Conventionally, these
algorithms do not consider any explicit regularization in the inner-level and instead rely on early
stopping, through only a few gradient descent steps. In our problem setting described in Eq. 4,
we consider an explicitly regularized inner-level problem (refer to discussion in Section 2.2). We
describe the connections between the algorithms in this explicitly regularized setting below.

MAML. The MAML algorithm first invokes an iterative algorithm to solve the inner optimization
problem (see definition 1). Subsequently, it backpropagates through the path of the optimization
algorithm to update the meta-parameters as:

M
1
ot = gF — 7 > " doLi(Algi(6)).
=1

Since Alg;(0) approximates Alg;(0), it can be viewed that both MAML and iMAML intend to
perform the same idealized update in Eq. 5. However, they perform the meta-gradient computation
very differently. MAML backpropagates through the path of an iterative algorithm, while iMAML
computes the meta-gradient through the implicit Jacobian approach outlined in Section 3.1 (see
Figure 1 for a visual depiction). As a result, IMAML can be vastly more efficient in memory while
having lesser or comparable computational requirements. It also allows for higher order optimization
methods and non-differentiable components.

First-order MAML ignores the effect of meta-parameters 6 on task parameters {¢; } in the meta-
gradient computation and updates the meta-parameters as:

M
1
0k+1 = Ok -7 M qusﬁz((b,) ‘¢i:Alfli(0k)

i=1

Note that iMAML strictly generalizes this, since first-order MAML is simply iMAML when the
conjugate gradient procedure is not invoked (or corresponds to 0 steps of CG). Thus, iMAML allows
for an easy way to interpolate from first-order MAML to the full MAML algorithm.

Reptile [43], similar to first-order MAML, ignores the dependence of task-parameters on meta-
parameters. However, instead of following the gradients at ¢; = Alg;(6%), Reptile uses the task-
parameters as targets and slowly moves meta-parameters towards them:

M
1
k+1 k k ,
0" =0 —7)—2_1(9 — ;).

From the proximal point equation in the proof of Lemma 1, we have ¢; = 6% — 1V 4Li(¢h;),

using which we see that the Reptile equation becomes: 81 = % — 1 S™ 7, 2, (¢;). Thus,
Reptile and first-order MAML are identical in our problem formulation up to the choice of learning
rate. Making the regularization explicit allows us to illustrate this equivalence.

B Optimization Preliminaries

Let f : R? — R. A function f is B Lipschitz (or B-bounded gradient norm) if for all z € R¢
IVf(@2)]] < B.
Similarly, we say that a matrix valued function M : RY x RY — Ris p-Lipschitz if
[|M (z) = M| < plla — 2],
where || - || denotes the spectral norm.
We say that f is L-smooth if for all z, 2’ € R?
IVf(z) = V(@) < Lz - 2|
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and that f is p-strongly convex if f is convex and if for all z, 2’ € R,

IVf(x) = V@O = pllz — =]

We will make use of the following black-box complexity of first-order gradient methods for mini-
mizing strongly convex and smooth functions.

Lemma 2. (d-approximate solver; see [9]) Suppose f is a function that is L-smooth and 1 strongly
convex. Define k. := L/, and let * = argmin f(x). Nesterov’s accelerated gradient descent can
be used to find a point x such that:

|z —z*[| <0
using a number of gradient computations of f that is bounded as follows:

*
# gradient computations of f(-) < 2v/k log (2&”%') .

C Review: Time and Space Complexity of Hessian-Vector Products

We briefly discuss the time and space complexity of Hessian-vector product computation using the
reverse mode of automatic differentiation. The reverse mode of automatic differentiation [6, 22] is
the widely used method for automatic differentiation in modern software packages like TensorFlow
and PyTorch [7]. Recall that for a differentiable function f(z), the reverse mode of automatic
differentiation computes V f(x) in time that is no more than a factor of 5 of the time it takes to
compute f(x) itself (see [22] for review). As our algorithm makes use of Hessian vector products,
we will make use of the following assumption as to how Hessian vector products will be computed
when executing Algorithm 2.

Assumption 1. (Complexity of Hessian-vector product) We assume that the time to compute the
Hessian-vector product Viﬁi(qﬁ)v is no more than a (universal) constant over the time used to

compute Vﬁi(d)) (typically, this constant is 5). Furthermore, we assume that the memory used
to compute the Hessian-vector product Viﬁi(qb)'v is no more than twice the memory used when

computing VL (). This assumption is valid if the reverse mode of automatic differentiation is used
to compute Hessian vector products (see [21]).

A few remarks about this assumption are in order. With regards to computation, first observe that
the gradient of the scalar function V 4L;(¢) v is the desired Hessian vector product Véﬁi((b)'u.
Thus computing the Hessian vector product using the reverse mode is within a constant factor of
computing the function itself, which is simply the cost of computing Vﬁi(¢)Tv. The issue of
memory is more subtle (see [21]), which we now discuss. The memory used to compute the gradient
of a scalar cost function f(z) using the reverse mode of auto-differentiation is proportional to the
size of the computation graph; precisely, the memory required to compute the gradient is equal to the
total space required to store all the intermediate variables used when computing f(z). In practice,
this is often much larger than the memory required to compute f () itself, due to that all intermediate
variables need not be simultaneously stored in memory when computing f(z). However, for the
special case of computing the gradient of the function f(¢) = Vd,/j,»(gb)Tv, the factor of 2 in the
memory bound is a consequence of the following reason: first, using the reverse mode to compute
f(¢) means we already have stored the computation graph of £;(¢) itself. Furthermore, the size
of the computation graph for computing f(¢) = Vd,ﬁi(qb)T'v is essentially the same size as the
computation graph of /fl(qS) This leads to the factor of 2 memory bound; see Griewank [21] for
further discussion.

D Additional Discussion About Compute and Memory Complexity

Our main complexity results are summarized in Table 1. For these results, we consider two notions
of error that are subtly different, which we explicitly define below. Let g; be the computed meta-
gradient for task 7;. Then, the errors we consider are:
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Definition 3. Exact-solve error (our notion of error): Our goal is to accurately compute the gradient
of F(0) as defined in Equation 4, where Alg;(0) is an exact algorithm. Specifically, we seek to
compute a g; such that:

lgi — deLi(Alg; (0))] <€

where € is the error in the gradient computation.

Definition 4. Approx-solve error: Here we suppose that Alg; computes a d—accurate solution to
the inner optimization problem over G; in Eq. 4, i.e. that Alg; satisfies || Alg;(0) — Alg?(0)|| <,
as per definition 1. Then the objective is to compute a g such that:

llg — deLi(Algi(0))]| < ¢

where € is the error in the gradient computation of dgL;(Alg;(0)). Subtly, note that the gradient is
with respect to the d-approximate algorithm, as opposed to using Alg;.

For the complexity results, we assume that MAML invokes .Alg; to get a §-approximate solution for
inner problem (recall definition 1). The exact-solve error for MAML is not known in the literature;
in particular, even as § — 0 it is not evident if the approx-solve solution tends to the exact-solve
solution, unless further regularity conditions are imposed. The approx-solve error for MAML is 0,
ignoring finite-precision and numerical issues, since it backpropagates through the path. Truncated
backprop [53] also invokes .Alg; to obtain a §-approximate solution but instead performs a trun-
cated or partial back-propagation so that it uses a smaller number of iterations when computing the
gradient through the path of .Alg;(€). Exact-solve error for truncated backprop is also not known,
but a small approx-solve error can be obtained with less memory than full back-prop. We use Prop
3.1 of Shaban et al. [53] to provide a guarantee that leads to an e—accurate approximation of the
full-backprop (i.e. MAML) gradient. It is not evident how accurate the truncated procedure is when
an accelerated method is used instead. Finally, our iIMAML algorithm also invokes an approximate
solver Alg; rather than Alg?. However, importantly, we guarantee a small exact-solve error even
though we do not require access to .Alg}. Furthermore, the iMAML algorithm also requires substan-
tially less memory. Up to small constant factors, it only utilizes the memory required for computing

a single gradient of £;(-).

E Theoretical Results and Proofs

Lemma 1, restated. Consider Alg;(0) as defined in Eq. 4 for task 7;. Let ¢»; = Alg?(0) be the
result of Alg? (0). If (I + %Viﬁl(qﬁz)) is invertible, then the derivative Jacobian is

dAlgr ()

_ 1 2 . -
5O (1 L)

Proof. We drop the task ¢ subscripts in the proof for convenience. Since ¢ = Alg*(0) is the
minimizer of G(¢’, ) in Eq. 4, the stationary point conditions imply that

Vo G(6,6) ly—p =0 = VL) + (b~ 0) =0 = ¢=0— | VE($),

which is an implicit equation that often arises in proximal point methods. When the derivative exists,
we can differentiate the above equation to obtain:

Ao _ ;1 opg 3@ L o2pay) 2@ _
T V) = <I+)\Vﬁ(¢)>d01.

which completes the proof. O

Recall that: )
Gi(¢,0) = Li(d') + 5 |6 — 6]
Assumption 2. (Regularity conditions) Suppose the following holds for all tasks i:

1. L;(-) is B Lipshitz and L smooth.
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2. Forall 0, G;(-,0) is both a 3-smooth function and a p-strongly convex function. Define:

3. L;(-) is p-Lipshitz Hessian, i.e. V2L;(-) is p-Lipshitz.

4. For all 0, suppose the arg-minimizer of G;(-,0) is unique and bounded in a ball of radius
D, i.e. forall 6,

lAlg; (0)[| < D

Lemma 3. (Implicit Gradient Accuracy) Suppose Assumption 2 holds. Fix a task i. Suppose that
@; satisfies:
lpi — Algi (0)]| <6

and that g; satisfies:
1 K -1
loi = (145 V4:6)) Vol <0

Assuming that 6 < 1/ (2p), we have that:

A AL
llgi — deLi(Alg; (0))]| < ( MpB * H ) s

Proof. First, observe that:

-1
QoL Algi ©) = (T + 5 VEAIGE(0)) VoLl Algi(0)
For notational convenience, we drop the % subscripts within the proof. We have:
|do L(Alg™(0)) — g

1 R 1
|doL(Alg* (6)) — (I . v2£<¢>) VoL(d)] +

IN

A

IN

ldoc(Aig* (6)) ~ (45 V£(@))  VollAg ©))]+

[ (I T v2£(¢>>_ (VoL(Alg*(8)) = VoL()) ||+

where the first inequality uses the triangle inequality.

‘We now bound each of these terms. For the second term,

(145 7%0))  (Volldlg"©) - Vot ()|

< <I+ ! V2£(¢)) 11V oL(Alg (8)) - Vol(d)]
< AL (A + V() I1Alg*(6) - &)
— ALIV2G(6,0) Il Alg*(0) - &
AL
< —94
1

where we the second inequality uses that V4L is L-smooth and the final inequality uses that G'is
strongly convex.
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For the first term, we have:

oLty (6)) ~ (1+5 T*4(6))  VollAlg* @)

|| <(I i) -1+ v2é<¢>)l) VoLl Alg (0))]

1

M (M + VLAl 0)) — (A4 V2L(9) |,

IN

using that V4L is B Lipshitz. Now let
A= V2L(Alg*(8)) — VL(p), M :=V3G(¢,0) =\ +V>L(¢)
Due to that V2£(-) is Lipshitz Hessian, || A|| < pd. Also, by our assumption on §, we have that:
IMLA] < AN/ < p8/n < 172,

which implies that || (I + M~*A)™" || < 2. Hence,

| (A + V2L (g 0))  — (M VL) |

= M2 -m

_ _ -1
< M+ MTRA) T -
_ _ -1 _
= M (I +MTA) - (I= (IT+MA)) ||
_ _ -1 _
< MU+ MTEA) M TA
1
< -2 »_ = 2—6
H © p?
The proof is completed by substitution. O
Theorem 2. (Approximate Implicit Gradient Computation) Suppose Assumption 2 holds. Fix a task
1. Let
A AL
B, = 220p42=
p? H

Suppose Nesterov’s accelerated gradient descent algorithm is used to compute ¢ (as desired in
Algorithm 2), using a number of iterations that is:

2V/x log (8@ (Bel + Z))

and suppose Nesterov’s accelerated gradient descent algorithm (or the conjugate gradient algo-
rithm ?) is used to compute g; using a number of iterations that is:

2V log <4m( /mB )

lgi — deLi(Alg;(0))]| < e.

We have that:

Proof. The result will follow from the guarantees in Lemma 2. Specifically, let us set § =
min{e/(2B1), 1/ (2p)} and 8’ = €/2. To ensure the bound of §, by Lemma 3, it suffices to use
a number of iterations that is bounded by:

210g( 1D ><2flog<8mD<B€1+Z>>

>The conjugate gradient descent algorithm also suffices and give a slightly improved iteration complexity
in terms of log factors.
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To ensure the bound of ¢’, the algorithm will be solving the sub-problem in Equation 7. First observe

. -1
that in the context of in Lemma 2, note that ||z*|| = || (I + 3 Vzﬁi(qﬁ)) VLi(o)| < (N wB,
and so it suffices to use a number of iterations that is bounded by:

2log (2&”%') < 2log (4/{WM)B> ,
€

which completes the proof. O

Finally, we present a corollary of previous theorem that shows that iMAML finds approximate sta-
tionary points due to controllable error in gradient computation.

Corollary 1. (iMAML finds stationary points) Suppose the conditions of Theorem 1 hold and that
F(-) is an Lg smooth function. Then the implicit MAML algorithm (Algorithm 1), when the batch
size is M (so that we are doing gradient descent), will find a point 8 such that:

IVE(9)] < e

in a number of calls to Implicit-Meta-Gradient that is at most 4MLf(F(0)€;min" £6)

Furthermore, the total number of gradient computations (of Vﬁi) is at most
O(M\/ELf(F(O)zglmeF(e)) log (POI'V(H"D’B’L")’“’)‘)>), and only O(Mem(VL;)) memory is

€
required throughout.

F Experiment Details

Here, we provide additional details of the experimental set-up for the experiments in Section 4. All
training runs were conducted on a single NVIDIA (Titan Xp) GPU.

F.1 Synthetic Experiments

For the synthetic experiments, we consider a linear regression problem. We consider parametric
models of the form hy(x) = ¢, where x can either be the raw inputs or features (e.g. Fourier
features) of the input. For task 7;, we can equivalently write a quadratic objective that represents the
task loss as:

£i(#) = 3Epeyyny [Iho(x) ~ yIP] = 567 4ip + 67,

where A; = E(x yyoprr [xx7] and b; = E(xyyopt- [xTy]. Thus, the inner level objective and
corresponding minimizer can be written as:

1 A
Gil@,0) = 5¢" Aig' + ¢ b+ S(¢' —0)" (¢~ 0)
Alg:(0) = (A; + A" (A0 — by)
Thus, the exact meta-gradient can be written as
doLi(Alg;(0)) = MAi + M) "'V Li(0) |g=a1g2 o) -
We compare this gradient with the gradients computed by the iIMAML and MAML algorithms. We
considered the case of x € R°?, y € R, A = 5.0, and k = 50, for the presented results.

F.2 Omniglot and Mini-ImageNet experiments

We follow the standard training and evaluation protocol as in prior works [50, 57, 15].

Omniglot Experiments The GD version of iMAML uses 16 gradient steps for 5-way 1-shot and
5-way 5-shot settings, and 25 gradient steps for 20-way 1-shot and 20-way 5-shot settings. A regu-
larization strength of A = 2.0 was used for both. 5 steps of conjugate gradient was used to compute
the meta-gradient for each task in the mini-batch, and the meta-gradients were averaged before tak-
ing a step with the default parameters of Adam in the outer loop.
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The Hessian-free version of MAML proceeds by using Hessian-free or Newton-CG method for
solving the inner optimization problem (with respect to ¢) with objective G;(¢, @). This method
proceeds by constructing a local quadratic approximation to the objective and approximately com-
puting the Newton direction with conjugate gradient. 5 CG steps are used for this process in our
experiments. This allows us to compute the search direction, following which a step size has to be
picked. We pick the step size through line-search. This procedure of computing the approximate
Newton direction and linesearch is repeated 3 times in our experiments to solve the inner optimiza-
tion problem well.

Mini-ImageNet For the GD version of iMAML, 10 GD steps were used with regularization
strength of A = 0.5. Again, 5 CG steps are used to compute the meta-gradient. Similarly, in
the Hessian-Free variant, we again use 5 CG steps to compute the search direction followed by line
search. This process is repeated 3 times to solve the inner level optimization. Again, to compute the
meta-gradient, 5 steps of CG are used.

19



	Relationship between iMAML and Prior Algorithms
	Optimization Preliminaries
	Review: Time and Space Complexity of Hessian-Vector Products
	Additional Discussion About Compute and Memory Complexity
	Theoretical Results and Proofs
	Experiment Details
	Synthetic Experiments
	Omniglot and Mini-ImageNet experiments


